Zeitschrift: Archives des sciences et compte rendu des séances de la Société

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

**Band:** 49 (1996)

Heft: 2: Archives des Sciences

Artikel: La mahnertite : (Na, Ca) Cu3 (As04)2 Cl 5H20 : un nouveau minéral

de la mine de Cap Garonne, Var, France

Autor: Sarp, Halil

**DOI:** https://doi.org/10.5169/seals-740417

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

| Archs Sci. Genève Vol. 49 Fasc. 2 pp. 119-124 Septembre 1996 |  |
|--------------------------------------------------------------|--|
|--------------------------------------------------------------|--|

# LA MAHNERTITE, (Na, Ca) $Cu_3$ (As $0_4$ ) $_2$ . Cl . $5H_20$ , UN NOUVEAU MINÉRAL DE LA MINE DE CAP GARONNE, VAR, FRANCE

PAR

### Halil SARP\*

(Ms soumis le 24.06.1996, accepté le 17.09.1996)

### **ABSTRACT**

Mahnertite, ideally (Na, Ca, K) Cu<sub>3</sub> (As0<sub>4</sub>)<sub>2</sub>. Cl. 5H<sub>2</sub>0, occurs on a specimen found at Cap Garonne Mine, Var, France. - It is associated with tennantite, covellite, geminite and pushcharovskite on the quartz gangue. The thin square crystals, intense blue to emerald green in color forms aggregates or spherules (0,2 mm in diameter). They are tabular on {001} and the forms present are {001} and {100}. The mineral is translucent with a vitreous lustre and pale blue streak. It is fragile and soft H 2 to 3), has an irregular fracture and a perfect cleavage on {001}. It is non-fluorescent. Mahnertite is optically uniaxial negative with  $\omega = 1,686$  (2),  $\varepsilon = 1,635$  (2), measured at 589 nm; it is pleochroic with O = blue to intense green blue, E = clear blue to clear green. A chemical analysis was carried out by means of an electron microprobe: Cu0 36,37; As<sub>2</sub>0<sub>5</sub> 39,07; Na<sub>2</sub>0 4,58; Ca0 2,14; K<sub>2</sub>0 0,40; Cl 4,67; H<sub>2</sub>0 by loss on heating 14,5; total 101,73; less Cl = O 1,05; total 100,68. Mahnertite is tetragonal, space group P4<sub>2</sub>1<sub>2</sub>, unit-cell parameters a = 10,085(2), c = 23,836(8) Å, V = 2424,1(8) Å3 and Z = 8. The density is 3,33(2) (meas.) and 3,36(1) g/cm<sup>3</sup> (calc.) The strongest lines in the X-ray diffraction pattern are [din Å, (hkl), Ivis.]: 11,90, (002), 100; 9,29, (101), 60; 7,131, (110), 50; 5,043, (200), 60; 4,641, (202), 40; 3,098, (303), 80; 3,061, (224), 70; 2,780, (321), 35; 2,652, (315), 35.

Mahnertite is named in honor of Dr. Volker Mahnert, director of the Natural History Muesum of Geneva.

**Key-words:** Mahnertite, new mineral, Cap Garonne Mine.

# **INTRODUCTION**

L'échantillon contenant la mahnertite a été récolté en 1992-93 lors d'une campagne d'échantillonnage de la mine de Gap Garonne en compagnie de MM. Camerola et Guarino, dans la zone que nous avons baptisée «fond de la mine». Ce minerai est associé à la tennantite, la covellite, la geminite et la pushcharvoskite (nouveau minéral récemment approuvé par l'I.M.A.), sur une gangue de quartz. Dans cette zone, on trouve encore divers minéraux: zdenekite, lavendulan, lindackerite (SARP 1995), antlerite. La gîtologie et la minéralogie de cette mine ont été récemment étudiées par MARI & ROSTAN (1986).

<sup>\*</sup> Département de minéralogie, Muséum d'histoire naturelle, CP 6434, CH-1211 Genève 6.

Nous avons donné le nom de mahnertite en l'honneur du Dr Volker Mahnert, directeur du Muséum d'histoire naturelle de Genève.

Ce nouveau minéral et son nom ont été approuvés par la Commission des nouveaux Minéraux et des Noms de Minéraux de l'Association internationale de Minéralogie (I.M.A.) en novembre 1994.

En 1995, avant cette publication, ce minéral a été partiellement décrit par SCHUBNEL & CHIAPPERO (1995).

L'holotype est déposé au département de minéralogie du Muséum d'histoire naturelle de Genève.

# Propriétés physiques et optiques

La mahnertite est bleu intense à vert émeraude. Elle se présente en agrégats ou sphérules de 0,2 mm, formées par des cristaux à section carrée, très minces, de 0,1 mm d'arête. Ils sont tabulaires, aplatis sur {001} (Fig. 1). Les formes observées sont {001} et {100}. Le minéral est translucide et possède un éclat vitreux. La poussière est bleu pâle; elle n'est pas fluorescente aux U.V. La dureté estimée est 2 à 3. Il possède un clivage parfait sur {001}. Les cristaux sont fragiles et ont une fracture irrégulière; Ils ne possèdent apparemment pas de macle.

La densité, mesurée avec les liqueurs denses, est de 3,33(2) g/cm<sup>3</sup>. Cette valeur se compare favorablement avec la valeur de 3,36(1) g/cm<sup>3</sup> calculée à partir de la maille élémentaire et de la composition chimique. Le minéral est soluble dans HCl.

La mahnertite est optiquement uniaxe négative avec  $\omega = 1,686(2)$  et  $\varepsilon = 1,635(2)$  à 589 nm. Elle possède un pléochroïsme intense avec O = bleu, vert bleu foncé, E = bleu clair à vert clair. Le calcul de la relation de Gladstone-Dale, en utilisant les constantes de Mandarino (1981) donne un indice de compatibilité  $1 - \frac{Kp}{Kc} = 0,005$  indiquant une très grande compatibilité entre les données chimiques et physiques.

# **Composition chimique**

La composition chimique a été déterminée à l'aide d'une microsonde électronique Cameca SX 50. Les investigations qualitatives ont révélé la présence de Cu, As, Na, Ca, K et Cl. Les conditions expérimentales suivantes ont été utilisées pour l'analyse quantitative: tension accélératrice 15 kv, courant de sonde 5,5 nA, diamètre du faisceau 6 μ et les standards utilisés ont été la clinoclase (Cu, Kα, AsLα), l'albite (Na Kα), l'andradite (Ca Kα), l'orthose (K Kα) et la vanadinite (Cl Kα). La présence de H<sub>2</sub>0 a été confirmée par l'infrarouge et sa quantité a été déterminée par la perte au poids. La moyenne et la range des 9 analyses figurent dans le tableau 1. La formule empirique calculée sur la base de 14 atomes (0 + Cl) est:

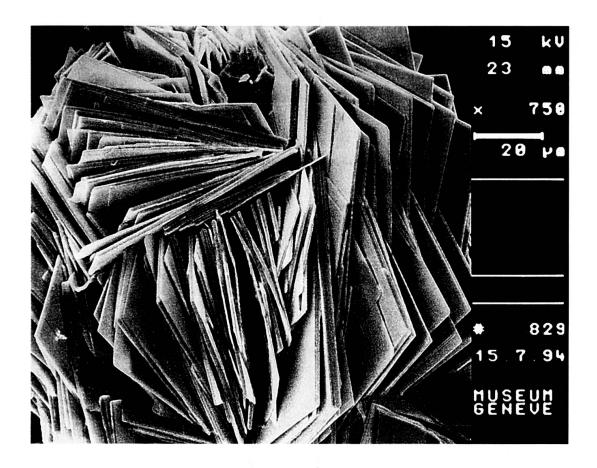



Fig. 1.

L'habitus des cristaux de mahnertite aplatis suivant l'axe c. Photographie prise par le Dr Jean Wüest, avec le microscope à balayage du Muséum d'Histoire naturelle de Genève.

 $Na_{0,90}\ K_{0,05}\ Ca_{0,23}\ Cu_{2,79}\ (As0_4)_{2,07}\ Cl_{0,81}\ 4,91\ H_20$  ou idéalement (Na, Ca) Cu\_3 (As0\_4)\_2 Cl . 5 H\_20.

# Données radiocristallographiques

Le diagramme de poudre de la mahnertite a été obtenu avec une caméra de Gandolfi (114,6 mm de diamètre, radiation Cu K $\alpha$ ). Les valeurs de d<sub>calc.</sub> et de d<sub>obs.</sub> sont reportées dans le tableau 2. L'étude d'un monocristal par la méthode de précession et les lois d'extinction obtenues h00: h = 2n; 001 : 1 = 2n; hkl : pas de condition, montre que le minéral est tétragonal avec le groupe d'espace P4<sub>2</sub>2<sub>1</sub>2. Les paramètres de la maille élémentaire, affinés par la méthode des moindres carrés à partir du diagramme de poudre sont a = 10,085(2); c = 23,836(8) Å. Le rapport c: a calculé à partir des paramètres de la maille élémentaire est 2,3635. Le volume de la maille est V = 2424,1(8) Å<sup>3</sup>. Avec Z = 8 et la formule chimique, la densité calculée d<sub>calc.</sub> est de 3,36(1) g/cm<sup>3</sup>.

### **Discussion et conclusion**

La mahnertite est un minéral d'altération secondaire. Elle est probablement en relation cristallographique avec la lavendulane et la zdenekite. En effet, tous trois possèdent un paramètre basal assez proche l'un de l'autre et une longueur c très grande. Par ailleurs, le produit 0,5 CaCl<sub>2</sub> . <sub>3</sub>CuO . As<sub>2</sub>O<sub>5</sub> . yH<sub>2</sub>O synthétisé par Guérin et Duc-Maugé en 1952 pourrait aussi avoir une relation cristallographique avec la mahnertite si l'on compare leur chimisme. Mais il n'existe pas encore d'étude détaillée de ce produit.

Un éventuel remplacement de type (Na, Ca)  $\iff$  (Cl, O) dans la formule chimique de la mahnertite pourrait être mis en évidence avec l'étude de la structure. Ceci sera possible si l'on trouve des cristaux de meilleure qualité.

# **RÉSUMÉ**

La mahnertite, idéalement (Na, Ca, K) Cu<sub>3</sub> (AsO<sub>4</sub>)<sub>2</sub>. Cl. 5H<sub>2</sub>O a été découverte sur un échantillon récolté dans la mine de Cap Garonne, Var, France. Elle est associée à la tennantite, covellite, geminite et pushcharovskite, sur un gangue de quartz. Elles se présentent en minces cristaux à section carrée, de couleur bleu intense à vert émeraude, qui forment des agrégats ou des sphérules (0,2 mm de diamètre. Les cristaux sont tabulaires sur {001} et les formes présentes sont {001} et {100}. Le minéral est translucide avec un éclat vitreux et a une poussière bleu pâle. Il est fragile et mou (H~2 à 3), possède une fracture irrégulière et un clivage parfait sur {001}. Il n'est pas fluorescent. Optiquement, la mahnertite est uniaxe négative avec  $\omega = 1,686(2)$ ,  $\varepsilon = 1,635(2)$ , mesurés à 589 nm; il est pléochroïque : 0 = bleu à vert bleu intense, E = bleu clair à vert clair. L'analyse chimique a été effectuée avec la microsonde : Cu0 36,37; As<sub>2</sub>0<sub>5</sub> 39,07; Na<sub>2</sub>0 4,58 Ca<sub>0</sub> 2,14; K<sub>2</sub>0 0,40; Cl 4,67; H<sub>2</sub>0 par perte au poids 14,5; total 101,73; moins  $Cl \equiv O 1,05$ ; total 100,68. La mahnertite est tétragonale, son groupe d'espace est  $P4_22_12$ . Les paramètres de la maille élémentaire sont a = 10,885(2), c = 23,836(8) Å, V = 2424,1(8) Å 3 et Z = 8. La densité est 3,33(2) (mesurée) et 3,36(1) g/cm<sup>3</sup> (calculée). Les lignes de diffraction les plus intenses du diagramme de poudre sont [dÅ, (hkl), Ivis]: 11,90, (002), 100; 9,29, (101), 60; 7,132, (110), 50; 5,043, (200), 60; 4,641, (202), 40; 3,098, (303), 80; 3,061, (224), 70; 2780, (321), 35; 2,652, (315), 35.

Le nom a été attribué en l'honneur du Dr Volker Mahnert, directeur du Muséum d'Histoire naturelle de Genève.

Mots-clés: Mahnertite, nouveau minéral, Mine de Cap Garonne.

# REMERCIEMENTS

Nous remercions C. Gilles et M. J. Breton (BRGM, Orléans) pour les analyses à la microsonde. Un très grand merci à Mlle Béatrice Rossire qui a dactylographié le manuscrit.

TABLEAU 1: Analyse chimique de la mahnertite

|                                | 1      | 2           | 3   |  |
|--------------------------------|--------|-------------|-----|--|
| Cu0                            | 36,37  | 35,04-37,78 | 0,8 |  |
| As <sub>2</sub> 0 <sub>5</sub> | 39,07  | 38,05-40,58 | 0,9 |  |
| Na <sub>2</sub> 0              | 4,58   | 3,95- 5,33  | 0,4 |  |
| CaÕ                            | 2,14   | 1,70- 2,73  | 0,3 |  |
| K <sub>2</sub> 0               | 0,40   | 0,21- 0,54  | 0,1 |  |
| CĨ                             | 4,67   | 3,84- 5,74  | 0,6 |  |
| $H_20*$                        | 14,5   |             |     |  |
| Total                          | 101,73 |             |     |  |
| Cl≡0                           | 1,05   |             |     |  |
| Total                          | 100,68 |             |     |  |

 <sup>%</sup> poids, moyenne des 9 analyses
% extrêmes

Tableau 2: Diagramme de poudre de la mahnertite (gandolfi, 114,6 mm de diamètre, CuKα radiation)

| hkl  | d <sub>calc</sub> . | d <sub>obs.</sub> | I <sub>vis</sub> . | hkl. | d <sub>calc</sub> . | d <sub>obs</sub> . | $I_{vis.}$ |    |
|------|---------------------|-------------------|--------------------|------|---------------------|--------------------|------------|----|
| 002  | 11,918              | 11,90             | 100                | 326  | 2,287               |                    |            |    |
| 101  | 9,288               | 9,29              | 60                 | 228  | 2,286               | 2,284              | 20         |    |
| 110  | 7,131               | 7,132             | 50                 | 219  | 2,284               |                    |            |    |
| 112  | 6,119               | 6,110             | 5                  | 423  | 2,169               | 2,169              | 10         |    |
| 200  | 5,042               | 5,043             | 60                 | 424  | 2,109               | 2,110              | 5          |    |
| 202  | 4,644               | 4,641             | 40                 | 431  | 2,010               | 2,009              | 5          |    |
| 105  | 4,310               | 4,307             | 15                 | 510  | 1,978               | 1,981              | 10         |    |
| 006  | 3,973               | 3,974             | 10                 | 433  | 1,955               |                    |            |    |
| 220  | 3,565               | 3,566             | 10                 | 503  | 1,955               | 1,953              | 10         |    |
| 222  | 3,416               | 3,411             | <5                 | 512  | 1,951               |                    |            |    |
| 301  | 3,329               | 3,327             | 10                 | 338  | 1,858               | 1.057              | 10         |    |
| 107  | 3,226               | 3,232             | 5                  | 435  | 1,856               | 1,857              | 10         |    |
| 303  | 3,096               | 3,098             | 80                 | 523  | 1,823               | 1,824              | 5          |    |
| 224  | 3,060               | 3,061             | 70                 | 506  | 1,798               |                    |            |    |
| 800  | 2,979               | 2,982             | <5                 | 436  | 1,798               | 1,799              | <5         |    |
| 321  | 2,778               | 2,780             | 35                 | 428  | 1,798 J             |                    |            |    |
| 18   | 2,749               | 2,749             | 2.740              | 20   | 440                 | 1,783              | 1,783      | 10 |
| 305  | 2,747 <b>}</b>      |                   | 20                 | 339  | 1,767               | 1.765              | 5          |    |
| 315  | 2,651               | 2,652             | 35                 | 442  | 1,763               | 1,765              | 3          |    |
| 323  | 2,638               | 2,637             | 20                 | 525  | 1,743               | 1.740              | 10         |    |
| 806  | 2,566               | 2,568             | 20                 | 443  | 1.739               | 1,740              | 10         |    |
| 208  | 2,565               |                   | 20                 | 600  | 1,681               | 1,682              | 10         |    |
| 100  | 2,521               | 2,521             | 15                 | 439  | 1,605               | 1.606              |            |    |
| 102  | 2,467               |                   | 1                  | 5    | 509                 | 1,605              | 1,606      | 10 |
| 227  | 2,463               | 2,464             | 5                  | 622  | 1,580               | 1,582              | 5          |    |
| 325  | 2,412               | 2,411             | 15                 | 624  | 1,540               | 1,540              | 10         |    |
| 0010 | 2,384               | 2,383             | <5                 | 616  | 1,530               |                    |            |    |
| 332  | 2,331               | 2 221             | .5                 | 448  | 1,530               | 1,529              | 10         |    |
| 17   | 2,328               | 2,331             |                    | <5   | 529                 | 1,529              |            |    |

<sup>3.</sup> déviation standard

<sup>\*</sup> perte au poids

# **BIBLIOGRAPHIE**

- MANDARINO J.A. (1981). The Gladstone-Dale relationship: part IV. The compatibility concept and its applications. *Can. Min.*, 19, 441-450.
- MARI G. & ROSTAN P. (1986). La mine de Cap Garonne (Var). Gîtologie et Minéralogie IMG, 87 p.
- SARP H. & DOMINIK B. (1995). Redéfinition de la Lindackerite: sa formule chimique, ses données cristallographiques et optiques. *Archs Sci. Genève*, 48, 239-250.
- SCHUBNEL J.H. & CHIAPPERO P.J. (1995). *Minéraux de France*. Muséum national d'Histoire naturelle. 44 p.