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NEW TRENDS IN POLARITY
III. DIPOLAR HYDROGEN BONDINGS AS HOMOTEMPLATE

FORCES FOR PREGENETICAL EVOLUTION

BY

Gilbert TURIAN*

(Ms re^u le 1 6 1995, aitepte apres revision le 16 8 1995)

Abstract

New trends in polarity. III. Dipolar hydrogen bondings as homotemplate forces for pre-
genetical evolution. - Interniolecular H bonding is bioevolutionarily motive by (1) promoting
prototypic self-assembly ot H20 molecules, and (2) providing template forces for stacking cyclic
peptides into prevital proproteinaceous nanotubes possibly endowed with self-reproductive competence.

Key-words: Hydrogen bonding, H2O, cyclic peptides, nanotubes, homotemplate forces.

INTRODUCTION

Endowed with both electro-structural and informational polarity contents, hydrogen

(Hi bonding can be considered as "the unifying principle of continuity in the evolutive

complexification of Polarity" (our Epilogue in Addenda IV, 1992) (Turian, 1989-92).

Electrostatic in origin, H bonding is the attraction to an acceptor atom of a hydrogen

already bonded to a donor atom (Pimentel & McClellan, 1960; Joesten & Schaad,
1974; Schuster et al„ 1976; Jeffrey & Saenger, 1994). A fundamental question

regarding H bonds is whether the potential energy for motion of the hydrogen has a single

minimum or two minima. With two minima the hydrogen is closer to one acceptor than to

the other. There are then two different tautomeric forms of H bonds which equilibrate

rapidly with each other (Perrin, 1994) and knowledge of their symmetry may be

important for the design of small molecules that are to exhibit intermolecular recognition
(Gellman et al„ 1991).

H bonds are regarded as the strongest and the most directional of the weak

intermolecular interactions (1 /10th the strength of covalent bonds) that cause molecules

to form either liquids or solids. Nevertheless, all intermolecular H bonds are broken by
small changes in temperature, as occurs at the liquid/vapor (gas) transition in H2O (see

p. 175) or between the double helical strands of warmed up DNA.

* Laboratoire de Microbiologie generale, Universite de Geneve, Sciences III, 30 Quai Emest-
Ansermet, CH-1211 Geneve 4
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Uncharged H bonds contribute to both binding energy and specificity
(discrimination energy). The presence of mispairs (=NH HN=) in DNA duplexes will amplify
this specificity, leading to the paradoxical conclusion that "the single most important
factor in specificity are steric repulsion and unsolvated charges at the interfaces of
complexes" (Fersht, 1987). H bonding is therefore a major determinant of specificity,
molecular recognition and, finally, for information transfer (Jeffrey & Saenger, 1994).

Consequently, it can be considered as a primary structure-determining template force in

biological molecules which spans Polarity "from its electromagnetic origins to its

biological take-over" (Turian, 1994).

Evolutionarily, H bonds first appeared between successive H2O molecules. At this

primitive level and like the other low strength van der Waals bonds (CH3—CH3, etc.)

they can be considered as homopolar cohesive forces (O-H—O). H bonds became

heteropolar cohesive forces (N-H—O) when they linked opposite, amide bonded amino
acids (a.a.) of neighbouring polypeptide chains. However, as in both cases H bonds

provide their forces to link unit-to-unit similar molecular templates, they can still be

considered as (1) homopolar-homotemplates for H2O—H2O bondings and as (2) hetero-

po\ax-homotemp!ales for a.a::a.a. peptidic bondings of proteins. It was only later that

homopolar (N-H—N) and heteropolar (O-H—N) cohesive bonds provided hetero-

template forces when they started to link different nitrogen bases, i.e. purines versus

pyrimidines in the pairs adenine=uracile/thymine (O-H—N; N-H—N) or guanine=cyto-
sine (O-H—N; N-H—O; N-H - N) of the sequentially born RNA and DNA.

In our opinion, the challenge of the pregenetical evolutionary sequence remains
therefore: how information-coding systems have developed from the simplest prebiotic

precursor, H2O, using H bonding template forces? and, according to Orgel (1992),
"how simple replicating molecules must have played a critical role in the origin of Life
through that of protobionts".

1. SELF-ASSEMBLY OF H20 DIPOLES

Molecules of H20 not only provide a superb stable universal medium in which

organic molecules can dissolve and interact (see Sagan, 1994), they confer a structural
order upon cells and they contribute to the stabilities of macromolecules by a redirection
of H bonding interactions of water molecules thereby contributing directly to the

properties of proteins by influencing their interactions with ligands such as sugars
(Quiocho etat., 1989).

In large part, the properties of water reflect the dipole that results from the greater
electronegativity of the single oxygen atom over the two hydrogen atoms in each

molecule. Water is singular as a liquid because of its ability to form three-dimensional
network of mutually H-bonded molecules (Wiggins, 1990). The fact that electrons in

sp3 orbitals of oxygen atoms can easily be rehybridized to respond to the relative

configurations of adjacent molecules may account for its two types of H bond. Spectra
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oi thin films of water suggest that only H bonds of the strong variety are present, these

strongly H-bonded clusters should have all the properties reported for vicinal water (Li
& Ross, 1993)

Of fundamental importance in life processes, hbO boils at a temperature 160°C

higher than does hbS (Klemperer, 1993) When this only nonvolatile, biological
solvent is led to evaporate by provision of energy (heat of vaporization), this transition
to the gas phase leads to the disruption of hydrogen bonds However, when water is

again condensed, at lower temperature, its H bonded lattice or "flickering cluster" is

parallely reconstituted The amount of energy required to bring water molecules from
the interior of an aqueous phase to the air-water interface, to expand the surface area

and to disrupt the hydrogen bond is the surface tension (see Potts, 1994). Water
molecules in aqueous solution continually escape into the surrounding gas phase — as

third most prevalent in air after N2 and CH — and the vapor pressure at equilibrium is

dependent on the temperature and the amount of solutes in solution.
In the living cell, H2O is modified by a special physical force called solvation

which arises when water abuts a cell surface (Drost-Hansen & Singleton, 1989) and

which involves H bonding interactions with cations such as K+, Mg2+, etc. (see Franks
& Mathias, 1982, Vasilescu et al., 1990; Wiggins, 1990). In these molecular

networks, cations are hydrated- 6 H2O encage the alcaline K+ and also surround the

alcaline earth metal Mg2+. The hydration shells resulting from the self-assembly of
water molecules thus sequester them in the immediate surroundings of the cations, an

anhydnzation process which creates the necessary microenvironment for condensation

of amino acids into peptide bonds, and a condition for the salting-out of proteins
Among the properties of water which make it so uniquely suited to the diverse

roles it plays in cell processes (Potts, 1994), its electric dipole is preeminent. It results

from the greater electronegativity of the single oxygen atom over its two hydrogen
atoms It is this bipolarity wich confers to water its capacity to H-bond to other H2O
molecules (see Fig. 2 in Turian, 1994) Such process of self-assembly into an expanding

network, exerted between similar molecules by template forces is a characteristic

feature of living matter and therefore allows us to consider water as prototypic,
preliving molecules.

2. SELF-RECOGNITION OF AMINO ACIDS BETWEEN PEPTIDIC RINGS OF
NANOTUBES

It has often been speculated (see Kauffman, 1993) that perhaps enough
information is present in the protein molecule for replication. This belief that life began with
self-replicating proteins is widespread since Oparin (1957), with his protobiontic
coacervates, proposed that, contrarily to the current idea that only polynucleotides can

replicate, polypeptides are capable of catalytic behaviours and thus could be produced

abiotically on the primitive Earth as simulated by Fox & Dose (1977) among others
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Many amino acids, the most abundant being glycine and alanine, have been pioduced in

laboratory simulation and abiogemcally self-condensed into peptides or protein-like
polymers called proleinoids (see Fox, 1965). Concentration by evaporation of amino
acids from HF7 M as supposed to occur in primitive oceans to the levels oi

concentrations that may be needed to form polymers (at least 10 6-10 s M) might have

been reached on clays (Cairns-Smith, 1982). Such synthesis of polypeptides proceeds

more readily in the absence of FFO, the basic idea being at least to separate the

products, FFO and polymers. The condensing force — used largely for intermolecular
dehydration — would be drawn from the anhydrization and peptidizing conditions
produced by the cations mentioned above As questioned by Cairns-Smith (1982)
"what the simplest useful proproleins might have been like — defining a poly-ct-amino
acid as (at least) a proprotein if it is both sufficiently accurately specified and long
enough to fold, or otherwise "self-assemble", into some distinct higher order structure"
Moreover, many processes of biological lecogmtion require the stripping away (at least

in part) of solvent water from inteiacting groups and hydration potentials of amino acid
side chains have been measuied (see Wolfenden et al., 1979).

The suggestion has been made of a possible self-sustaining network of proteins in
which the components mutually catalyse the synthesis of each other from monomeric
starting materials (Dyson, 1982) A large enough assemblage of random polypeptides
could thus catalyze peptide-bond formation (Kauffman. 1986) even though leaving the

difficulty of amino acid sequence specificity (Joyce, 1989) A process of self-recognition

between amino acids by point-point complementarity ordered by mutual H

bonding could be an answer, especially exhibited by the regularly ordered organization
of proteinous ß-sheets. Orgel (1972) has imagined some very simple proprotein
structure which could be based on just two kinds of ammo acids, one hydrophobic and

one hydrophilic. He suggested that, with such an alternation, coherent ß-structures
would tend to form the sheets made from aligned polyamino acid chains in which one
surface would be covered with hydrophilic and the other with hydrophobic groups Such

ß-structures might then be expected to assemble further into water-dispersible bilayers
(see Fig 9 11 (b) in Cairns-Smith, 1982) The tendency ol linear heteropolymeric
polypeptides to form antiparallel ß-pleated sheets could thus provide the self-reproducing
sequential information as noted above (see Orgel, 1992)

It is known that to form a ß-strand from segment of polypeptide chain with one

hydrophilic face and one hydrophobic face, the sequence must be designed with a

periodicity of polar and nonpolar residues that matches the repeat for that type of

secondary structure (Kamtekar et al, 1993) For the design of a stable ß-sheet protein,
the sequence must be composed predominantly of alternating polar and nonpolar
residues constituting some type of binary code

Sequential specification of amino acids has been shown to occur in the interannulai

association of ß-type rings which are formed through linear legular L.D-polypeptides
resulting into parallel and antiparallel cylindrical structures as first suggested by De

Santis et al (1974). Later, construction of nanotubular structures has then been realized
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by synthesis of some cyclic oligopeptides with symmetry (Tomasic & Loren/i,
1987). On this principle, self-assembled organic nanotubes have recently been produced
on a cyclic peptide architecture (Ghadiri et al., 1993). The interest of this model is the

convergent approach in which "numerous ring-shaped peptide subumts interact through
an extensive network of hydrogen bonds to form nanotube structures"

In molecular evolution, the first peptides abiotically formed might also have been

cyclic ones on the model of bacterial cyclic peptidic antibiotics (gramicidin, valino-

mycin) known to be synthesized without an RNA template (see Lipmann, 1971).

Stacking of such cyclic polypeptides therefore could concour to the self-assembly of
cylindrical nanostructures of the type of the organic nanotubes — first described by
Iijima (1991) and Ebbesen & Ajayan (1992) — self-assembled according to the cyclic
octapeptide architecture built by Ghadiri et al (1993). The hollow cylinders provided
by nanotubes have the physico-chemical advantage over the plain structures of wires,
vesicles (budding microspheres, in Fox, 1965) and "marigranula" (Bounias, 1990) to

offer two interfaces for the energetic ionic exchanges required by prometabolic
activities, i.e. external for exergonic forces, internal for endergonic ones.

These considerations lead us to propose a model of prevital nanotube (Fig. 1)

integrating (I)Orgel's first proposal (1972), experimentally concretized by Brack &
Orgel (1975), of a dimeric polymerization into an antipaiallel ß-pleated sheet of
alternating hydrophobic-hydrophilic chains of amino acids with (2) our visualization of
such a ß-sheet closed upon itself into the polypeptide nanotube built by vertical

stacking of rings of cyclic peptides, intensively H-bonded (Fig. lb), according to the

architectural model recently produced by Ghadiri et al (1993).
In our model, two successive rings would constitute a unit of template replication

(Fig. la) because the lowest ring could first attract and peptide bind ammo acids of
opposite electric charge (for ex glutamic acid [-] facing lysine [+]) thereby building the

second ring of the dimer. In short, the first ring formed by peptidization in the contact of
the anhydrizing substrate (a Mg2+ nanocrystal?, see below) would thus serve as

template for an electrically complementary ring below it and the H-bonded ring stacking

process would basipetally proceed further up into the nanotube (Fig. lc).
The recognition-interaction (attractive/repulsive) between hydrophilic amino acids

would be vertically complemented by the hydrophobic forces between carbon side

chains of amino acids either homologous (alanine-alanine, valine-valine, etc.) or closely
related (alanine-glycine, etc.) but not between spatially too different ones because of
stenc hindrance (alanine-leucine, etc.). Such hydrophobic forces would provide the

cohesion forces between rings when similar electric charges (+ in Fig. la) face each

other due to the steric constraints of the antiparallel amino acid ring chains.

Nanocrystals emerging from rocks could have provided the primordial "seed" for
the annular condensation of the primordial peptide ring accoiding to a fortuitous

sequence complementarily specified by the H-bond sequences of the mineral, a

replicatory role attributed by Cairns-Smith (1982) to primordial "mineral life" or by
that of anhydrizing chemicals (polyphosphates, etc.) creating the necessary peptidizing
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Fig 1

(a) Antiparallel ß-pleated polypeptide sheet with L-amino acid side chains alternating according to
Pauling & Corey (1951), (b) patternized to be closed upon itself into a nanotube of self-assembled, H

bonded cyclohexapeptide rings according to the model synthesized by De Santis el at. (1974). (c).
Alternation of hydrophobic (o) and hydrophilic (i -/+) amino acids residues modellized to insure self-
replication of protobiontic nanotubes (d) from the 2-ring (a) template units.
OX closure peptide bond of cyclohexapeptide rings condensing and then basipetally (1) piling up
(1—>2—>(3)—>(4)—>...) into a Fl-bonded (X---X) nanotube (o might be alanine; i", glutamic acid; i+.
lysine). anhydnzing and peptidizing core materials, possibly Mg2+ nanocrystal (nc) emerging from

waterlogged rock.
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conditions (Lipmann, 1971). Our model would thus rely on such a dehydration requirement

to shift the equilibrium of an amino acids-oligopeptide mixture towards larger
heteropolymers, a process which appears to be especially enhanced by cations such as

Mg2+, an aquo ion surrounded by a shell of hexahedrically co-ordinated H2O dipoles,
known to be abundant in hydrated arche-rocks such as crystallized brucite [Mg(OH2)],
white asbestos, etc. (see Cairns-Smith, 1982). Other possible anhydrizing chemicals
such as poly- and metaphosphates have also been successfully used as condensing

agents of oligopeptides (Ponnamperuma & Peterson, 1965; Rabinowitz et al., 1969).

To insure their "viability", such nanocolumnar structures had naturally to be terminally

plugged by proteinoids possibly playing the role of the recently proposed cationic
metallo-oxides (Guerret-Plecourt et al.. 1994; Tsang et al., 1994) to anticipate the

rule of any living cells to be peripherally closed. Secondary, coaxial widening of the

column by reciprocal, bipolar (+/-) and hydrophobic "semipermeable" boundary
properties to meet environmental constraints could be envisaged either by
"crystallization" of many primary cylinders according to the model of gramicidin (Wallace
& Ravikumar, 1988) or by secondary widening of the column by progressive encasing
of the primary polypeptidic sheath by secondary proteinoids selectively binding to side

chains of the cyclic peptides; thus would be formed an equivalent of early "cytoplasm"
surrounding the central hollow core, an equivalent of a "protonucleus" when possibly
filled by negatively charged polyphosphates. These would have been further taken over
in their primitive coding task by abiotically produced nucleic acid bases, the most

important being adenine (A) to produce ATP and providing energy for further peptide
bond formation by the concourse of primordial thioesters according to De Duve's

hypothesis (1991). A necessary protective external layer involving hydrophobic residues

of amino acids, isoprenoids or fatty acids, would have thus provided a "protoperi-
plasmic membrane" thereby completing the primitive "Russian nanodolls".

The ring structure of the nanotubes could theoretically be repeated so long mechano-

chemical constraints be met, contrarily to the tobacco mosaic virus in which the length of
the particle is determined by the length of the internally coiled RNA (Klug, 1969, in

Turian, 1989). However, when reaching a critical length, the nanotubes would be prompt
to dislocate as old tumbling-down chimneys (Fig. Id), following rupture of their

interrings H-bonds. This would be expected to occur preferentially between two
successive dimeric template units where electric repulsions between similarly charged
side chains (see Fig. 1 a) might overcome both hydrophobic forces and the interannular H

bondings. The separated oligorings would thus be competent to resume new cycles of
self-replicative annealations by basipetal condensation of specific amino acids around

surface nanocrystals and therefore perpetuate the breed. Such dislocation of the rod-like

"nanochimneys" would prefigure the most primitive, binary fission process of cell

reproduction still exhibited by most modern bacteria.
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CONCLUSIONS

Grounded in the principle of Polarity (Turian, 1994), the universal prebiological
and biological use of dipolar H templates enforces us to share with others the opinion
that pregenetical evolution would have followed a route inveise that of the "central

dogma" of genetic information which has already been challenged not only at the level

of reverse transcriptase but also by the proposal of reverse translation (Mekler. 1967,

Cook, 1977; Mehta, 1986) and therefore of protein first In this molecular evolution,
water molecules showed the way to replication by templating themselves through their

prototypic homopolar H bonds Such polar bondings were then exploited by homo-

templation of the covalently linked peptide bonds between homologous amino acids

heteropolarly bonded unit-to-unit in the stacked cyclic peptide rings of proproteinaceous
nanotubes Such "protein first" evolution would then have been taken over by the

improved specification anticipating the more specific heterotemplate self-recognition
provided by peptide nucleic acid (PNA) and the "RNA world" (see Gesteland &
Atkins, 1993) announcing the "modern DNA world" endowed with its tremendous

memory capacity.

ADDENDUM

According to our preliminary experiments, molecules ot a simple, monomeric
cyclotetrapeptide (ß-Ala-Gly-ß-Ala-Gly) dissolved in an anhydrizing Mg2+-rtch saline

solution are not only stabilized but could also act as templates for their autocatalytic
replication as evidenced at least by significant increases in dipeptide bondings obtained
from only homologous amino acids (technical data in Communic. SPHN, Novembei 2,

1995, Archs Sei Geneve, Vol 49, Fase. 1, 1996)

We are grateful to Ariane Fehi for typing the manuscript and to Arlette Cattaneo

for technical help in the preliminary experiments
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