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NEW TRENDS IN POLARITY
[. TRANSPORT POLARITY AND CYTOSKELETAL
COMPONENTS!

BY

Gilbert TURIAN*

(Ms soumis le 7.6.1994, accepté le 5.7.1994)

ABSTRACT

New trends in polarity. I. Transport polarity and cytoskeletal components. — These Trends are
devised to update our general knowledge of Polarity with a biais on Biopolarity. Cytoskeletal components
are first singled-out and vectorially motive in the establishment of intracellular polarizations.

INTRODUCTION

The primordial electrical bipolarity (+/-), intrinsic to inert matter since the
confinement of quarks into the first H atom, has been evolutionarily taken over in living
matter by ways in which polar structures are at the molecular level made themselves felt
macroscopically in the various polar biopatterns (Turian, 1994). These ways which
involve the expression of positional information leading to biopolarizations modulated
by extrinsic factors are being progressively unraveled. Their most fertile Trends will be
annually reviewed, thereby complementing our general survey of Polarity (Turian,
1989-1992) in close correspondence with its sequence of chapters. Our two first Trends
(I and II) will be focussed on nucleocytoplasmic processes of polarity transport which
exploit the intrinsic polarity of the long, proteinaceous polymers of the cytoskeleton,
actin and tubulins.

A. Polarity of transport

As motile, intracellular functions, exocytosis and endocytosis play an important
role in the organization of cell architecture (Bershadsky and Vasiliev, 1988; Lloyd,
1991; Kreis and Vale, 1993). The exocytotic (secretory) pathway is composed of the

I Chapter 1V. C and E (Table of contents, Turian, 1989-92)
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endoplasmic reticulum, the Golgi apparatus, the endosomal/lysosomal system, and the
plasma membrane, which is polarly separated into apical and basolateral domains in
epithelial cells, and various vesicular and tubular intermediates that connect dynamically
these membrane compartments. Selective targetings of proteins to the various
compartments of the exocytotic pathway are governed by complex molecular mechanisms
and signals. Endocytotic carrier vesicles which derive from peripheral early endosomes
are thought to transport endocytosed materials to more centrally located late endosomes.
A role for microtubules for the delivery of endocytosed molecules to the pericentriolar
late endosomes via endocytotic carrier vesicles has been suggested by Gruenberg et al.
(1989). A new protein, CLIP-170 (Pierre et al., 1992), would also additionally play a role
as a linker between endosomes and microtubules (Scheel et al., 1993).

Nuclear uptake of Agrobacterium spp. T-complex (Citovsky et al., 1992; Zambryski,
1992) and nuclear export of BR hnRNPs (Mehlin et al., 1992) are transported inter-
cellularly in a polar fashion. Polarity of TmG cap signals in pol II U snRNPs (Hamm et
al., 1990) suggests that these nucleic acid-protein complexes are also transported direc-
tionally. Such a vectorial transport may be required for immediate processing — inte-
gration, translation, etc. — of the emerging complex. According to Citovsky and
Zambryski (1993), transport polarity is potentially determined by a specific signal
associated with one end of the transported nucleic acid molecule (e.g. VirD2 protein in
Agrobacterium spp. T-complex and TmG in snRNPs).

As linear molecules, single-stranded nucleic acids are polar and, being less rigid
and easily coated by SSBs, have certain advantages over transport of double helix.
Intercellular moving plant viruses (presumably through plasmodesmata) possess a
single-stranded genome or replicate via a single-stranded nucleic acid intermediate (ref.
in Citovsky and Zambryski, 1993) as are also most of the transported nucleic acids
(Agrobacterium spp. T-strand, RNA, and genomic nucleic acids of many animal
viruses).

B. Cytoskeletal components

The microtubule cytoskeleton is thought to be intimately involved in generating
and maintaining cell polarity and can generate many different morphological structures
from a few structural elements (Goldman et al., 1976 and Gottlieb et al., 1981, both in
Schulze & Kirschner, 1988).

A model for cytoskeletal reorganization responsible for the polarization of
pseudopodia has been proposed by Bershadsky and Vasiliev (1993) which implicates
the stabilization of the signal-induced polarization of pseudopodia.

In vivo, some microtubules depolymerize up to a specific point and then either
regrow along exactly the same path or abruptly reverse their direction of growth.
Schulze and Kirschner (1988) have also suggested that certain cytoplasmic components
stabilize microtubules and exert strong influence on the direction of growth of
microtubules. Because of their cellular distribution and well established association with
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microtubules, mitochondria are ideally suited to serve such a function. On this basis,
Gupta (1990) has proposed a new model for in vivo microtubule assembly.

As departing centre of intracellular transports, the nucleus has also its own
skeleton, a network of insoluble protein fibers known as the nuclear matrix (Berezney
and Coffey, 1960s-1970s, in Hoffman, 1993). In it, complex nuclear processes are at
work, which in turn, are influenced by cytosolic signals of intra- and extracellular origin
which induce biochemical cascades that result in modification of gene expresssion (see
Marx, 1993 and Whiteside and Goodburn, 1993, in Bustamente, 1994).

Nuclear actin and its role in cells have long been a controversial issue (Volkman et
al., 1992) because contamination is difficult to rule out. Nevertheless, it has be found in
many cases in the nucleus both in plants and animals as well as in molds (ref. in II).
Systems suited to solve the problem are, however, still rare but nucleus-specific actin-
binding proteins have been discovered which are reliable indicators (Ankenbauer et al.,
1989; Rimm & Pollard, 1989).

A direct example of the possible function of intranuclear actin has been provided
by injection of anti-actin antibodies into the germinal vesicles of Xenopus laevis oocytes
which suggested to Rungger er al. (1979) an actin function in chromosome conden-
sation. A functional role for such nuclear actin in gene expression has also been
suggested by transcription blockage of the lampbrush chromosome loops by micro-
injected actin antibodies and actin-binding proteins (Scheer ez al., 1984). However, "the
function of nuclear actin and myosin remains enigmatic" (Milankov & De Boni, 1993).
Results by Nakayasu & Ueda (1985) had suggested that rapidly-labelled RNAs anchor
on the actin filaments in the nuclear matrix. It has further been proposed by De Boni
(1994) that intranuclear actin and myosin represent the motor driving chromatin motion.
According to Sahlas er al. (1993), snRNPs are associated with actin in the nuclear
matrix suggesting that "both actin and snRNPs may be involved in the processing and
transport of transcripts”.

Other long but more rigid polymers of globular proteins, « and B rubulins
assembled as microtubules are not only closely associated with the intranuclear onset of
the bipolar mitotic spindle, but also constitute an important part of the cellular scaffold
or cytoskeleton. Thereby, they provide a network of "rails” or tracks for active intra-
cellular polar transports.

The organized dynamical activities of microtubules might involve information
processing tentatively explained by Hameroff et al. (1986) by a microtubule automaton
behavior based on coherent dipole oscillations within microtubule subunits (Hameroff
& Watt, 1982: Smith et al., 1984) .

Formation of a microtubule network lies in a process of out-of-equilibrium
aggregation or polymerization called "dynamical instability” (Mitchison & Kirschner,
1984) which involves a GTP conversion to the diphosphate GDT. This model has been
further analyzed by Dogterom & Leibler (1993) within a simple theoretical model in
which the polymers are nucleated by a flat surface. According to Maddox's opinion
(1993), the essence of the model must be a mechanism for switching between the state
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of growth and of shrinkage of the microtubules, the "treadmilling” process previously
described by Margolis & Wilson (1978, see Turian, 1989) supposed to be a random
process. However, to more fully understand the underlying molecular mechanism of
microtubule dynamic instability which concerns the kinetic properties of tubulin-GTP
and tubulin-GDP (see reviews by Gelfand & Bershadsky, 1991 and Erickson & O'Brien,
1992), it should be additionally taken in account that tubulin GTP is present in dynamic
microtubules in the limits of analytical detection. Quantitative numerical modelling of
this instability rationalizes the transitions between microtubule growth and shortening in
terms of a single terminal layer of tubulin GTP at the microtubule end as reviewed by
Bayley & Martin, 1992).
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