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POLARITY
FROM DIPOLES TO BIOPOLARIZATIONS

II. ADDENDA AND INDEXES

BY

Gilbert TURIAN*

Polarity is a problem of wide interdisciplinary interest that we have attempted
to survey in its widest span from its atomic to its embryogenic, plant and animal levels
in the Archives of 1989 reprinted as book I (Turian, 1989).

Primeval polarity is bipolar, founded on the separation of two equal but
opposite electric charges. Consequently, even apolar molecules are intrinsically
electrically polarized but with a symmetrical distribution of their opposite (+ and —)
electric charges and therefore they lack in electric polar moment. Similarly, apolar
morphological biostructures are examplified by spherical cells (certain eggs, etc.),
initially deprived of heterogeneously distributed components, and which being
identical with their mirror image can be also considered as achiral.

The whole universe is electrically neutral and, by necessity, contains rigorously
equal numbers of opposite electric charges (10* of protons and of electrons, see
Souriau in Brack ef al., 1989) even though it is filled with electric dipoles from the
minute water molecules to giant cosmic dipoles, a basic requirement for its physico-
chemical and biological functionings. However, in its wider expression, polarity
spans not only pure electric and magnetic phenomena but also chemostructural
(chiral), biomolecular (cytoskeletal elements) and spatio-temporal developmental
processes. Our survey had therefore to encompass them in their whole span from
monopoles to multipoles as following:

1) monopoles, electric (+ or —) or magnetic (still elusive north or south isolated
poles) as well as homochirals (I- or d-enantiomers) and monopolar, elongating
biostructures such as microfilaments (actin), microtubules (tubulins),
multinucleate cells such as hyphae and neurites;

* Laboratoire de Microbiologie générale, Sciences III, Université de Geneve.
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2) dipoles, basically electric (+ and —) or magnetic (north and south poles), but
also heterochirals (I + d-enantiomers) as well as morphogenetic homodipoles in
the twice-budded or -germinated yeasts or fungal spores and heterodipoles in the
developing eggs of plants and animals;

3) tripoles, electric (+ — + asinthunderclouds, see addendum) or morphogenetic
as in iris flowers!

4) quadrupoles, electric (radio-frequency electric traps and nuclear coupling, see
addendum) or morphogenetic as in four- (multi-) budded yeasts and germinated
fungal spores;

S) multipoles as exhibited by cells such as amoebae or fungal spores outgrowing
n (>4) pseudopodia or germ tubes, respectively.

During the second half of 1989 and first trimester of 1990, we have noticed a few
omitted significant papers as well as newly published ones, related to dipoles and
biopolarities. We have registered them below by following the sequence of the eight
preceding chapters and, parallely, added two subject and taxonomic indexes. Their
item entries cover the main book (I, 1989) and these first addenda (II, 1990).
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I. ATOMIC POLARIZATIONS

A. ORIGINS

A fourth state of matter is the plasma state which is formed when a gas is heated
to such high temperatures that it becomes partly or fully ionized: ‘‘electrons are torn
off the atoms in the gas, leaving a stream of negatively charged free electrons and
positively charged ions’’(Peratt, 1990). Suggestively, the term plasma proposed in
1932 by Langmuir evokes ‘‘the unstable almost lifelike behavior of the ionized
material’’. According to plasma cosmology, ‘‘the universe has been and remains a
veritable sea of charged particles interlaced with complex magnetic fields and electric
currents. Many among the cosmologists therefore conclude with Peratt (1990) that
‘““the universe may have evolved not with the Big Bang but from a vast sea of
plasma’’. However, the theory of primordial explosion and of the shaping of the
universe by gravitational rather than by electromagnetic forces keeps strong
proponents (Rees, 1990).

In the evolutive perspective from the inert to the living matter, the atom of
hydrogen (H) could be viewed as forming ‘‘le couple divin’’(Turian, 1990) displaying
the electron, mobile as a male cell around the passively ‘‘courted’’ proton, as female
cell, a most fertile association indeed concretized in the bioenergetics through the
ATP-generating redox scale CH™ + 2¢e~ + O = H,0, see I, IV.B.2.¢).

B. SYMMETRY — POLARITY

The whole world appears to be chirally asymmetric from the scale of elementary
particles upward. This leads Hegstrom and Kondepudi (1990) to ask the questions,
as we did (I) for related polarities ‘“How do the asymmetries arise? Are chiral
symmetries at one level linked to those at another, or are they independent?”’

Chiral asymmetry must therefore be first studied at the scale of elementary
particles. Indeed, there is symmetry within an atom only when it is regarded as
governed by the electromagnetic force and its associated property of conservation of
parity. The additional weak force (involving W™ and W~ gauge bosons) gives rise to
a violation of parity and consequently an asymmetry between the electrons and the
nucleus in the atom (Bouchiat and Pottier, 1984). Chiral asymmetry at the subatomic
level is thus fundamentally connected to parity nonconservation. One result of this
asymmetry is that nuclear § decay, which is governed by the W force, produces mostly
left-handed electrons. Consequently, electrons of matter are polarized with a left
helicoidal coil while positrons of antimatter are right-directed. However, such chiral
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effects of the electroweak W and Z charges leading to a distinction between left and
right chirals are strictly valid only when the electrons are travelling at the high energies
near the speed of light (Hegstrom and Kondepudi, 1990).

An important consequence of chiral asymmetry at the subatomic level is that it
causes a chiral asymmetry at the higher level of atoms: under the influence of the Z
weak force, the electron orbit becomes a right-handed helix in the vicinity of the
nucleus. However, the asymmetric Z force is so small that its effects on the chemical
properties of molecules has not (yet) been observed (Hegstrom and Kondepudi,
1990). That such a mechanism affecting the production rate of L- and D-amino acids
can indeed exist in nonequilibrium chemical systems was shown theoretically by
Kondepudi and Nelson (1985, see I).

The problem of equivalence which has been upheld about left and right (see I11.D)
also arises ‘‘with respect to positive and negative electricity’’ as commented by Weyl
(1952) in his book entitled ‘‘Symmetry’’ in which he also discussed relationships bet-
ween quantum mechanics and symmetry. This author also assumed that ‘‘the
primary polarity as well as the subsequent bilateral symmetry come about by external
factors actualizing potentialities inherent in the genetic constitution’’ (see VII-VIII
in I).

As already expressed by Pierre Curie ““symmetric systems behave in a symmetric
fashion’’. However, such Curie’s principle is contradicted by the occurrence of
spontaneous symmetry breaking which occurs when a perfectly symmetric system
takes up a state with less symmetry (Field and Richardson, 1989). An example of the
phenomenon is the change of form produced by compression of a cylindrical shell
initially endowed with a perfectly circular symmetry.

The principle of ‘‘cosmologie symétrique’’ has been further discussed by Brack
et al. (1989) in relationship with the equivalence between matter (proton + electron)
and antimatter (antiproton + antielectron). Among previous books concerned with
the principle of symmetry there are those cited by Weyl (1935), namely Jaeger (1917)
and Hambidge (Dynamic Symmetry, 1920), completed by Jaeger (1925) and, more
recently, those by Nicolle (1950) and Caillois (1973) as well as Hargittai and Hargittai
(1986).

C. ELECTRIC BIPOLARIZATION

2) Electric dipoles

The hydrogen atom (H) can be considered as the primordial electric dipole when
we consider that its electron or unit of negative charge is probabilistically positioned
on a peripheral orbit around the positive proton according to the classical image of
a planet circling the sun (Fig. 1B, in I). However, when the atom is placed under
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strong stimuli such as a constant magnetic field or exposed to electromagnetic radia-
tion in the form of microwaves, either of these strong stimuli disturbs the orbit of
the electron and pushes it into chaotic, unpredictable motion. Eventually, the
electron atom isionized, i.e. its electron has so much energy that the pull of the proton
can no longer hold it, and the electron is torn away. According to quantum
mechanics, the electron is not considered as a particle orbiting the proton, but as a
rather nebulous ‘‘wave packet’’. lonization high energy will delocalize the wave
packet, namely ‘‘the electron will become ‘‘spread out’’ over several energy levels’’,
an event corresponding to ‘‘the chaos in the classical motion of the electron’’ (Pool,
1989).

Protons and neutrons, the two types of nucleons, can be examined ‘‘by observ-
ing electron or muon scattered off them with a large transfer of momentum to one
of their constituent particles or partons’’ (Roberts, 1990). As for the proton, its
simplest properties are dependent on the three valence quarks, two ‘“up’ (#") and
one ‘‘down’ (d") (see I, 1.C.2), each of which carries a spin of 1/2. These are
polarized so that the #* quarks contribute 4/3 of the proton’s total angular momen-
tum (also 1/2), and the d quark — 1/3. The distribution of polarized quarks can never
exceed the distribution of unpolarized quarks (further discussion in Roberts, 1990).

The neutron (1 quark u* and 2 quarks d ", see Cline, 1988) has also an electric-
dipole moment, the upper limit of which has been recently measured (Smith ef al.,
1990). The interest of neutron’s electric-dipole moment is that ‘‘it would violate the
combination of charge conjugation invariance and parity known as CP symmetry.
As such, any electric-dipole moment would take the opposite sign for the
antineutron, and thus discriminate between matter and antimatter’’ (Ellis, 1990).

Quantum theory holds that two photons emitted by a particular light source
share their similarly oriented polarization. According to Clauser and Freedman’s
experiments recently recorded by Linden (1990), ‘‘a change in one photon did alter
the polarization of the other’’ as if they were not separate objects and thereby obeying
to the laws of quantum mechanics also applied to other ‘“wave particles’” such as
leptons (electrons, etc).

In a search for understanding the charging of storm clouds, and contrarily to
previous conclusions from Wilson and Simpson (see Williams, 1988) that electrical
structures of thunderclouds were either a positive dipole (Wilson) or a negative dipole
(Simpson), their actual structure is tripolar rather than dipolar. The correct explana-
tion for this tripolar structure of thunderclouds is now known to lie in the
microphysics of charge transfer between graupel particles (soft hail) and ice crystals
(Williams, 1988).

3) Polarized conductivity

In a semiconductor the electrons move through an array of constituent atoms
arranged in a crystalline lattice. Electrons move with great ease through gallium
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arsenide circuits. This compound is made into bipolar transistor devices by depositing
it in three layers: electrons n-type doping, holes p-type base and n-type collector.
These compose light-emitting diode of gallium arsenide alloyed with aluminium.
Gallium arsenide photodetectors respond faster than silicon ones. They can also
detect light by reversing the reaction and the resulting photodetector converts the
flash signal to electronic pulses. Such optoelectronic computing systems can be linked
by optical fibers which greatly increase the efficiency of the digital computing
circuitry (Brodsky, 1990).

D. MAGNETIC POLARIZATION

1) Cosmological level

The sun’s magnetic field can affect many aspects of the sun’s surface and
atmosphere. It oscillates along a 11-year variation of sunspot number. Measurements
of sunspot spectra (Zeeman effect’s analysis) showed that the strength of the
magnetic fields around sunspots is thousands of time stronger than the earth’s field.
Most spots occurred in paired groupings that resemble giant magnetic dipoles roughly
parallel to the solar equator. According to Foukal (1990), the great astronomer Hale
already announced in 1924 that this switch in polarity occurred at each activity
minimum, in the midst of a 22-year solar magnetic cycle and was a basic feature of
the sunspot cycle. The largest areas of single magnetic polarity are the sites of spot
formation. These solar magnetic changes may have their effects on the earth’s
periodic climate changes.

2) Magnetic fields

The discovery of ferroelectric crystals such as barium titanate (BaTiO;) offered
an electrically switchable, two-state device with which one could encode the 1 and 0
states required for the Boolean algebra of binary computer memories. A tetragonal
ferroelectric crystal has two polarization states in which the centrally located Ti**
ions are involved through their displacement up or down with respect to the other ions
(Ba** or Pb**, O*"). In a crystal of PbTiO’, for example, there would then occur
regions in which the polarization is up and regions it is down, called ‘‘ferroelectric
domains’’ (Scott and Paz de Araujo, 1989). Most important for memory applica-
tions, the polarization of the entire crystal can be switched from up (+ 1) to down
(0) by reversing the applied field. This ferroelectric memory progressively fades when
the amount of switched charge decreases with use or by retention failure when the
stored charge decreases to a level where the + or — state of polarization cannot be
sensed.
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All ferroelectric materials display a hysteretic behavior relating polarization and
applied field, so that there is a nominal threshold (coercive field) above which the
polarization changes sign.

4) Spin polarizations

Dipolar interaction between two nuclear spins depends on size and orientation
of the magnetic moment as well as on the distance. In NMR spectroscopy which is
based on the Zeeman phenomenon (Ernst ef al., 1987), nuclei with a kinetic moment
of spin I higher than 1/2 have a quadrupolar (Q) electric moment. The nuclear
quadrupolar resonance (NQR) is bound to a nonspherical symmetry in the distribu-
tion of electric charges on the nuclear volume. This NQR can only be observed on
a limited number of nuclei but is helpful in the study of the electric structures of
chemical bonds (Lucken, 1969).

E. LIGHT POLARIZATION

A light ray can be polarized by reflection on a polarizer and the intensity of the
reflected ray received on an analyzer varies with its incident angle. The proportion
of polarized light in the light ray or the rotation of the polarization plane of light are
measured with a polarimeter (Pariselle, 1936).
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[I. MOLECULAR DIPOLES AND CHIRALS

A. ELECTRIC DIPOLE MOMENTS

Dipolar electric moments and dielectric polarization have been surveyed by
Errera (1928, 1935). Further study of the dielectric response of matter to an applied
electric field has contributed to the measurement of molecular dipole moments
(Price, 1969). The induced dipole moment per unit volume or polarization consists
of two components: a polarizability one which arises from the distorsion of the elec-
tronic distribution of the substance, and an orientation component. Farley and
McClelland (1990) have demonstrated that even in collisionless molecules, ‘‘hot
isolated polyatomic molecules can reorient in response to an external field, thereby
giving rise to this second component of polarization’’.

B. MINERAL DIPOLES

1) Dipolar water

Among recent and complementary knowledge about water biophysics and
relevant to polarity, mention can be made of Saenger’s 1987 review. It mainly
concerns the relationships between hydration water and hydrogen bonds. Hydrogen
bonding dynamics involves flip-flops and movement of water along the surface of
macromolecules. Water would not have its particular properties if the molecules were
not associated by hydrogen bonds O-H: - -O. If the O-H group is involved in
hydrogen bonding it becomes polarized (see II in I). In the association of water
molecules to the surface of proteins or nucleic acids, hydrogen bonding of type
(water) O-H- - - Y is the main attractive force. When the O-H- - - O bonds all run in
the same direction, this is called homodromic; it is indicative of the influence of the
cooperative effect. When a water molecule donates two hydrogen bonds this gives rise
to heterodromic situation, where hydrogen bonds are randomly oriented.

According to the idealized structural model for water presented by Finney
(1982), the simplest picture of the molecule ‘‘assigns partial charges to the two
hydrogens and the two lone pairs which are considered to be disposed in an approx-
imately tetrahedral manner. Each molecule is capable of forming four hydrogen
bonds to neighbouring molecules’’ (see also I). Among the three proposed models of
the water-water hydrogen bond, the PE model (water molecule electron distribution
in terms of an electrical multipole expansion, see Barnes et al., 1979) represents the
water molecule electron distribution in an electrical multipole expansion. According
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to Finney (1982), ‘‘the experimental dipole moment and quantum mechanical
quadrupole are used, together with a dipole polarizability to try to handle the
cooperative effects’’. Switching on polarizability in the PE model would therefore
affect only the dipole-dipole and dipole-quadrupole energy terms (Finney, 1982).

The local dipolar field of protons of liquid water is averaged out by fast isotropic
rotation and translational diffusion, and this gives a single narrow line in the NMR
spectrum. In a molecular or biological system which can restrict water motion,
causing an anisotropic averaged orientation, the NMR spectrum of the preferentially
oriented water molecules can be given by a line pair or doublet. Lenk et al. (1980) have
reported such NMR doublets spectra due to ‘‘structured’’ water in plant systems.

A typical example of efficient proton translocation across or along the surface
membrane is the movement of protons across a cell membrane after their generation
in some oxidation process. A high level of proton conductivity is extremely rare in
crystalline solids. Thomas and Farrington (1982) have proposed that the proton
conduction mechanism in one of the very best crystalline proton conductors so far
studied ammonium/hydronium p’’-alumina is a useful model mechanism for
biological proton transfer. This proton conduction mechanism deduced from an
accurate single crystal neutron diffraction study involves a classical Grotthus-type
mechanism (see below).

In relationship with bilayer membranes (see 1V.B.2) it should be pointed out that
‘““an ion in water is stabilized by the favorable interactions of the water dipoles, the
hydration energy. To remove an ion from water and place it in the middle of a
membrane is unfavorable because of the loss of this hydration energy’’. The most
successful model for quantifying this is the Born model described in Gennis (1989).
In addition to this Born energy, a second component due to the polarization arises
at the dielectric interface. An ‘‘image energy’’ results from the ‘‘presence of a charge
on one side of the interface which causes the dipoles in the medium on the other side
to reorient’’.

Cell water is modified by solvation which arises when water abuts a cell surface.
Molecules become restricted in their motions and a greater proportion of them have
four (rather than three or fewer) hydrogen bonds with their neighbours. Water
modified in this manner is called vicinal (see I and Drost-Hansen and Singleton
(1989).

Virtually all of the water in cells is considered to exist as polarized multilayers
arising from fixed charges on extended protein surfaces. Cardinal sites exist on these
particular proteins, the degree of binding for a given ion being influenced by a
number of factors. Clegg (1982) further commented ‘‘ATP binding at the cardinal
site leads to cooperative alterations and the selective accumulation of K* over Na™,
and generates the polarized multilayers of water; ATP splitting and the removal of
ADP results in a movement of the system to a lower energy state in which the ion
selectivity is lost as is the polarization of water’’.
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Protons can be transferred along lipid/water interface in the absorbed water
molecule network by a Grotthus-type mechanism (ref. in Tocanne and Teissié, 1990,
see also IV.B.2.a).

C. ORGANIC DIPOLES

2) Multiple molecules (polar chains)

Charge transfer molecular interactions are of high significance in biology
(Sklifkin, 1980). Electrons are delocalized in molecular conjugated systems (alternate
single and double bonds). The polarization of these molecules is enhanced when they
carry hydroxy-substituent(s) which behave as electron-attracting groups. Conse-
quently, Pont and Pezet (1990) could suggest that ‘‘the polar interaction of these
molecules with membraneous proteins could lead to a destruction of the cellular
membranes by depolarization’’ (see IV.B.2.d). This could account for the biocidal
effects of highly conjugated phenol derivatives such as the natural hydroxystilbenes
which are efficient protectors of grape berries against the grey mold Botrytis (Pont
and Pezet, 1990).

D. CHIRAL MOLECULES

Pasteur (1884, see I) audaciously extrapolated from molecular asymmetry the
famous aphorism ‘‘la vie est apparue dans une brisure de symétrie’’. If we equate
asymmetry and polarity, this would therefore mean that polarity is basic to the arisal
of living matter.

From atoms to human beings, nature is asymmetric with respect to chirality
(Gardner, 1979) and ‘‘clues are beginning to emerge that connect chirality on
different levels’’. Thus, and as resulting from the weak nuclear Z force between
electrons and nuclei, all atoms are also chiral. Consequently, the interaction that
causes the helical motion does not conserve parity, and the mirror-image atom with
a right-handed helical electron flow does not exist in nature (Hegstrom and
Kondepudi, 1990, see 1.B).

Chirality has its fundaments in the asymmetry between electron and positron;
this asymmetry follows up in the hydrogen atom and reaches its full expression in the
carbon asymmetry (see II.D). The basic molecules of life all have a specific
handedness. They are therefore asymmetric (see I.B): its amino acids are left-handed,
whereas its sugars are right-handed (see I). Chiral compounds which dissociate into
enantiomers display a sharp difference in biologic activity. Chemists have been able
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to induce a selection between two enantiomers and to develop methodologies for
asymmetric syntheses initiated from prochiral center (Mosher, 1971, in Morrison,
1983-1985; see Oppolzer, 1987 and Holmstedt et al., 1989). Chiral auxiliaries have
been produced around asymmetric centers using organo-copper reagents. New
bondings have thus been obtained with the concourse of highly stereo reactions in
compounds such as diverse drugs (R(+ )-S(—) thalidomide, etc.), pheromones, and
perfumes (Oppolzer, 1987).
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III. MACROMOLECULAR POLARITIES

A. FREE MACROMOLECULES

1. a) Deoxyribonucleic acid (DNA)

a' Structure. As noticed in I (Fig. 5) the two polynucleotide strands of the DNA
double helix have opposite polarities and transcription only occurs from the sense
strand (+) in the 5°— 3’ direction.

The bipolar pattern of the DNA double helix has important consequences on
DNA recombination processes which involve restriction enzymes (Arber, 1974,
Nathans and Smith, 1975). The recognition sequence for representatives of these site-
specific endonucleases such as EcoRI and Hindlll is a palindrome, i.e. a sequence
of six inverted repeat base pairs showing a twofold rotational symmetry. The inverted
polarity of the two DNA strands imposes a positioning of the cleavage sites outside
the axis of palindromic symmetry. The ensuing asymmetric cutting produces single-
stranded ends containing four bases of complementary sequences.

Seemingly, small variations in molecular structure or electrostatic potential at
specific sites can make a critical difference in how the nucleic acid is organized and
how it is recognized by other molecules in the intracellular environment. This is
becoming increasingly clear from scanning tunnelling microscopy studies of calf
thymus DNA and poly(rA)-poly(rU) which have shown that the helical pitch and
periodic alternation of major and minor grooves can be visualized and reliably
measured (Arscott et al., 1989).

a' Mutations. Those causing variegation are due to the action of transposons, a
group of genetic elements known to move from one location in the genome to
another. Certain strains of Saccharomyces cerevisiae contain an intron endowed with
the ability for transposition in the gene coding for mitochondrial RNA which is
absent from the corresponding gene of other strains; most of the progeny between
intron plus and intron minus are positive (Dujon ef a/., 1974). This phenomenon,
termed ‘‘polarity of recombination’’ by Bolotin et al. (1971) resembles a duplicative
transposition which is characteristic for prokaryotic transposons.

As recently outlined by crystallographic structural studies of contacts in
repressor-operator complexes, ‘‘positioning contacts’’ appear to be important
conserved features within families of helix-turn-helix proteins (Pabo et al., 1990).

b) Ribonucleic acid (RNA)

Antisense RNA molecules can selectively turn off genes and be used as antisense
expression vectors to produce pigment variegations in flowers (Weintraub, 1990).
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2. PROTEINS

As one of the recently described DNA-binding motifs, the zinc finger protein
coordinates with a Zn*" ion through paired cysteine and histidine residues along the
amino-to-carboxyl protein dipole (Johnson and McKnight, 1989).

The thermodynamics of membrane-located proteins containing large (hundred
of Debye units) permanent dipoles has been outlined by Schwarz (1978). Ordered
water molecules can contribute directly to the properties of proteins by influencing
their interaction with ligands. In their studies of atomic structures of the complexes
of the L-arabinose-binding protein with sugars, Quiocho et a/. (1989) have found that
““‘two hydrogen-bonded water molecules in the site contribute further to tight binding
of L-arabinose but create an unfavourable interaction with a methyl group of D-
fucose’’.

5. ENZYMES

The distribution of charges within the charge-relay system (or ‘‘catalytic triad’’)
at the active site of the serine proteinases has been further investigated. An Asp--Asn
mutant in rat trypsin has been engineered by Craik er al. (1987). As reported by
(Blow, 1990), this mutant showed that ‘“the polarization of the histidine by the buried
aspartate enhanced the reactivity of the serine’’. Warshel e a/. (1989) have used the
technic of computational chemistry ‘‘to estimate the effect of the charged
carboxylate group and the polarized histidine on the reactivity of the serine side-chain
surrounded by water’’.

B. AGGREGATES

2. ¢) Polar viral morphopoiesis

Packaging of bacteriophage A DNA involves polarity of chromosome entry into
the prohead (I, p.70) from the Nul end to the R end (Becker and Murialdo, 1990).
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IV. SUBCELLULAR POLARIZATIONS

B. SURFACE MEMBRANES

2. a) Biochemical properties

The bilayer membrane can be modelled electrically as a thin slab of non conduc-
ting material separating two aqueous solutions and thereby acts as a simple parallel-
plate capacitor (Gennis, 1989). ‘‘Its dielectric constant is a measure of the
polarizability of the material and the degree to which any permanent electric dipoles
which may be present in the material respond to an electric field (voltage
difference)’’.

The amphiphilic phospholipids form spontaneously well-organized bilayer
structures in water which are the basic architecture of biomembrane. Evidence has
been obtained with membrane model systems, which support the view that lateral
proton conduction occurs at water/lipid interfaces (Tocanne and Teissié, 1990). The
polarity at these interfaces in terms of dielectric constant is different of that of bulk
water. This means that, ‘‘in terms of micropolarity or water molecular dipole
moment, the lipid/water interface region is more than likely anisotropic both in terms
of structural organization and electrical properties’’ (see B.2b).

As for the very low permeability of the lipid bilayer to cations as compared to
anions (see Tocanne and Tessié, 1990) it is ascribed to the positive polarization poten-
tial of the surface membrane (see B.2.d) which would constitute an energy barrier
against the transport of positively charged compounds across membranes.

Permeability coefficients have been determined for several kinds of small
molecules. Among them, water can relatively easily penetrate the membrane bilayer.
As commented by Gennis (1989) ‘It may seem surprising at first to learn that water
cansoreadily penetrate the phospholipid bilayer’’. However, ‘‘there is no substantial
water to be found inside the membrane beneath the carbonyl groups”’.

2. ¢) Energy transduction

In 1961, two proposals were made as to the way in which electron-transfer reac-
tions of the cytochrome chain — the chain used in the oxidation of NADH by
molecular dioxygen — could be connected to ATP formation without the interven-
tion of chemical intermediates (Williams, 1989). Both mechanisms invoked the
transduction of the energy of the oxidation/reduction reaction to a proton gradient
before the gradient generates ATP. The two mechanisms, sometimes termed the
delocalized (Mitchell) hypothesis and the localized (Williams) hypothesis, are very
different: in the first, protons generated by oxidation appear only in aqueous phases;



SUBCELLULAR POLARIZATIONS 339

even ATP is generated by an electric field acting on the ATP synthetase and not by
proton flow; in the second, protons move in proteins within matrices and aqueous
phase equilibrations are ignored in the development of proton gradients, in proton
diffusion and in the ATP-synthesis step. To distinguish between these mechanistic
possibilities, long series of experiments (Wikstrom, 1989) have been carried out on
separate parts of the cytochrome chain, especially on the last stages of the electron-
transfer reactions, those of cytochrome oxidase.

Electric currents produced by oxido-reduction reactions, also called Faraday
currents, can be assayed by electrochemical methods such as those of polarography.
The polarograph apparatus works with three electrodes (see Monnier et al., 1979):
an indicator capillary electrode on which oxido-reduction reactions occur at the sur-
face of mercury drops, areference electrode allowing to impose to the first one a cons-
tant potential while varying the voltage, and an auxiliary electrode insuring passage
of current. Registered curves of intensity-potential of chemicals such as metal ions
allow their quantitative assay. Dissolved O, can also be measured by the
polarographic technique (Fork, 1972).

In artificial fuel cells, gases are combined electrochemically such that the
exothermicity is converted directly to electrical energy and the only reaction product
is water. Dyer (1990) observed gas — electrical energy conversion processes occurring
whithin very thin films of gas-permeable, ionically conducting membranes of
hydrated aluminium oxide, as a prototypical membrane. Both polarity and the
magnitude of the voltage were unexpected. The covered inner platinum electrode was
positive and the polarity of the cell could be changed in H, + O, mixtures only
when the outer platinum catalyst was changed to a nickel catalyst. This shows the
strong dependence of cell polarity on the metals used and their sequence, suggesting
that ‘‘different electrochemical kinetics might establish the polarity observed’
(Dyer, 1990).

2. d) Electric potentials

Many possible factors can contribute to the amount of electrical work to move
a charge through a membrane (Gennis, 1989): a) associated work with dielectric
constant; b) internal dipole potential by orientation of the dipoles at the membrane
surface resulting in a positive potential in the center of the phosphatidylcholine
bilayer; c) surface potential which, in most biomembranes, is negatively charged,
usually due to the presence of acidic, anionic phospholipids; the electric potential at
the shear plane which is the plane defining what migrates in the electric field is called
the zeta potential (McLaughlin, 1977); it someway controls the electrophoretic
mobility of charged vesicles (electrokinetic effects); d) transmembrane potential
which is defined as the difference in the electric potentials of the two bulk aqueous
phases separated by the membrane. The asymmetric charge distribution generates
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transmembrane potentials which are usually negative inside and can be measured
with fluorescence polarity methods using probes such as merocyanine or anilino-
naphthalene.

The membrane surface potential (AV) is the sum of an electrical term (o) and
a dipolar or ““polarization’’ term (AVp) which exhibits high positive values (about
300 to 500 mV). The variously oriented and rotating strong dipoles of lipid polar
heads would contribute to the surface polarization potential and this view (Tocanne
and Teissié, 1990) has been correlated with the concept of ‘“molecular electrometer’’
as developed by Seelig et al. (1987) on the ground of ‘H-NMR experiments using
parameters such as the deuterium quadrupole splitting.

In fungi, marked changes in the membrane potential detected by
[*H]tetraphenylphosphonium (TPP ") uptake rate have been caused by illumination
of dark-grown mycelium of Trichoderma viride. An initial hyperpolarization of the
plasma membrane was found to be accompanied by a rise in the intracellular ATP
concentration and by changes in the intracellular level of cyclic AMP (Gresik ef al.,
1988).

In higher plants, blue light is known to activate the electrogenic proton pump
to hyperpolarize the plasmalemma (Assmann ef a/., 1985 and Shimazaki ez al., 1986).
Plasma membrane hyperpolarization caused by auxin (IAA), accompanied by short
time oscillations in the electric potential of corn coleoptile cells, is paralleled by
cytosolic pH drops as well as changes in Ca’* activity (Felle, 1989). Moreover, the
activity of the plant plasma membrane enzyme NADH oxidase which transfers the
electrons from NADH to oxygen in the absence of added electron acceptors has been
linked to membrane polarization (Novak and Ivankina, 1983). In Conjugatophycean
green algae photoreception, a tetrapolar gradient of phytochrome created by light
perception is achieved by the dichroitic orientation of plasma membrane-bound
phytochrome molecules; blue-light also appears to mediate a tetrapolar gradient of
the sensor pigment proper mediating tetrapolar actin anchorage sites on the
plasmalemma (Grolig and Wagner, 1988).

Gating and ion selectivity of calcium channels have been further studied by elec-
trophysiological experiments. Subtypes of calcium channels have been classified
according to their voltage threshold for activation and by their inactivation
characteristics (Wray et al., 1989). Current dependence of channel gating has been
tentatively ascribed to the formation of dipoles along the trajectories of ion move-
ment that exist during dipole relaxation time (Kostyuk er a/., 1989). This new
approach would assume that ‘‘ion transition through the open channel produces local
displacements of charged molecular groups lining the wall of its steric region’’.
During the process, the frequency of ion transitions would increase drastically and
become comparable with frequency of dipole relaxation (Kostyuk ef al., 1989).

Release of Ca** from the sarcoplasmic reticulum (SR) following depolarization
of transverse tubules (T-tubules) triggers contraction of the skeletal muscle. The foot
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structure of the SR is part of a molecular bridge which spans a short gap between the
T-tubules and the terminal cisternae of the SR. Large cytoplasmic extensions of the
molecule evidently attach to the dihydropyridine receptor complex in the T-tubules
(Agnew, 1989). There is also evidence that the dihydropyridine receptor in the T-
tubule membrane of skeletal muscle functions not only as slow calcium channel but
also as an essential component of coupling, probably as the voltage sensor
(Takeshima ef al., 1989). A model of the structure of the dihydropyridine-sensitive
calcium channel has been proposed (Catterall er al., 1989) in analogy with current
models of the structure of voltage sensitive sodium channels.

Chloride (Cl7) channels (normal and pathological) were activated by patch
excision which caused large membrane depolarization. This allowed Welsch et al.
(1989) ““to use depolarization as a ‘‘tool’’ to determine if a Cl~ channel was present
in a patch’’. Active chloride transport can be light-driven by retinal proteins. These
bacterio- or halorhodopsins function as inward-directed electrogenic pumps for Cl~
ions (Zimanyi and Lanyi, 1989). Parallely, these pumps transport protons out of the
cell interior, thereby generating an inside-negative membrane potential.

Opening and closing of chloride channels studied in the electric ray Torpedo
californica are unequally timed. This asymmetric electric conduction increases with
transmembrane electrochemical gradient for the chloride ion thus demonstrating that
the channel-gating process is not at thermodynamic equilibrium (Richard and Miller,
1990).

2. e) Action potentials

They are not only generated in animals (see I) but also in fungi, algae and higher
plants in response to light, heat, cold, chemicals, electrical stimulus, and wounding
as reviewed by Pickard (1973) and Simons (1981). Davies (1987) considered action
potentials as multifunctional signals in plants and proposed a unifying hypothesis to
explain apparently disparate wound responses. Action potentials could also be a
unifying factor to explain the involvement of an interaction between Ca’** flux and
auxin transport in the role of gravity in geotropisms (De la Fuente, 1984, also
VIII.A.2.cY).

Cell electrophysiology and membrane transport in plants have been recently
reviewed by Bentrup (1989) who stated that ‘‘the evergreen question of the role of
Ca’* during the characean action potential will remain elusive as long as the chara-
cean plasmalemma is not routinely accessible to patch clamp technics’’. In the
Characeae, depolarization occurs by diffusive Cl -efflux and repolarization by
diffusive K™ -efflux (Kohler ef al., 1986; Gradmann, 1989).

The role of K* in the mechanisms of action potentials has been further
analyzed in the green alga Eremosphaera viridis by Kohler et al. (1985, 1986) who
showed that it is caused by a transient opening of a K* channel which is not gated
by the membrane potential.
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In animals, action potentials experimentally evoked by electrical activity can
suppress neurite elongation and growth cone motility (Cohan and Katter, 1986) and
thereby may influence structure and connectivity within the nervous system (see also
VI.A.2.1).

Following electrical activity in excitable cells, there is an increase in intracellular
Ca’" concentration. Silver et al. (1990) also report that clustering of L-type Ca’*
channels causes intracellular Ca’’ hotspots at the neural growth cone. Enzymes
with a micromolar requirement for Ca*" at the hotspots are therefore activated by
the ensuing depolarization. The role of voltage-dependent calcium influx in controll-
ing nerve cell outgrowth remains puzzling because ‘‘also raised intracellular Ca**
concentration triggers outgrowth of the growth cone margin, neurite elongation
requires low intracellular Ca** concentration’’. According to Silver et al. (1990),
the fact that ‘“electrical activity can selectively raise intracellular Ca®* concentration
in the growth cone, leaving neurite calcium concentration low would resolve this
paradox’’.

C. ENDOMEMBRANAR AND VESICULAR SYSTEMS

1. Endoplasmic reticulum

In the endomembranar sorting process, proteins destined for transfer are
sequestered within membrane vesicles that bud off from a donor organelle and then
fuse with the appropriate acceptor organelle. Vesicle fusion in several distinct
branches of this complex distribution network as well as transfer of vesicles between
the rough endoplasmic reticulum (ER) and the Golgi complex require the same
cytosolic protein, a tetrameric, N-ethylmaleimide-sensitive protein (NEM) called
NSF (Beckers et al., 1989). Such transfer requires ATP and is inhibited by NEM or
the monoclonal antibody against NSF. NSF is required in a late, calcium-dependent
transfer step; this step is most likely the fusion step. Surprisingly, the deduced protein
of cloned and sequenced NSF product showed sequence similarity with the product
of a yeast gene (SEC18) previously shown by Schekman and Novick (1982) to control
the transfer of vesicles between the rough endoplasmic reticulum and the Golgi
complex; more recent studies suggested it has a function in endocytosis (Riezman,
1985). These results raise the possibility that ‘‘fusions between different organelles
derived from the rough endoplasmic reticulum may all be catalyzed by the same set
of proteins’’ (Schatz, 1989).

2. Golgi apparatus

This compact structure colocalizes with the microtubule organizing center
(MTOC) in a perinuclear region of fibroblasts. Intact interphase microtubules but
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not microfilaments appear to be required for this specific location of the Golgi
apparatus. This has been demonstrated by the scattering of Golgi elements after treat-
ment with the microtubule depolymerizing drug nocodazole, and by the subsequent
reclustering of the Golgi elements when nocodazole is removed (Ho ef al., 1989). A
protein may be involved in linking the Golgi apparatus to the microtubule network
and the MTOC in vivo (Allan and Kreis, 1986). A fungal antibiotic, brefeldin A,
produces a reversal of traffic polarity i.e. a rearrangement of Golgi elements into the
ER, thereby inducing a secretion block (Bosshart et al., 1990). Such ‘‘violation of the
one-way system’’ has been further discussed by Armstrong and Warren (1990).

D. ORGANELLES

3. Chloroplasts and phototransducing membranes

Most of the chloroplast proteins are imported from the cytosol and polarly
directed into six different compartments (Smeekens ef a/., 1990). Two sorting systems
are involved in this import and intraorganellar transport of nuclear-encoded
protoplast proteins. Additional sorting informations located at N- termini are
contained in thylakoid lumen proteins. The information present in transit peptides,
decoded by the chloroplast import machinery, is not yet known.

The electron transfer reactions in photosystem II take place within the so-called
reaction center grouping numerous antenna pigment molecules (chlorophyll, etc.) as
well as organic ions and charged atoms (manganese, calcium, etc.). The stepwise
transfer of electrons through this reaction center succeeds in pulling far apart the
mutually attractive positive and negative charges. The task of the photosystem II is
thus to act as a tiny capacitor, storing energy by separating and stabilizing positive
and negative charges on either side of the thylakoid membrane (Rutherford, 1989).
The water-splitting reaction produces four protons and four electrons released
simultaneously with O, in that water-oxidizing clock which is a cyclic mechanism of
four states (Gowindjee and Coleman, 1990).

E. CYTOSKELETAL COMPONENTS

That the cytoskeleton is someway involved in plants intracellular movements,
perception mechanism and transmission effects has again been emphasized by Hensel
(1989b) who concluded that ‘‘the function of the cytoskeleton is to generate and
maintain cell polarity’’.

As for fungal cells, they have been comprehensively surveyed in 1987 and 1989
by Hohl.
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1-2. Microfilaments (actin-myosin)

Both actin and myosin filaments have definite polarities and well-ordered
structures (see I). Actin filaments can move in opposite directions on tracks of myosin
heads. They always move foreward but never backward reversing the polarity of the
movement. According to Toyoshima ef al. (1989) ‘“The direction of movement is
therefore determined by the polarity of the actin filament’’.

Myosin heads can form reverse chevrons and, when tethered in a single thick fila-
ment of a mutated Drosophila flight-muscle sarcomere, can bind with opposite rigor
crossbridge angles to flanking thin filaments, which are apparently of opposite
polarities (Reedy et al., 1989).

The driving force for the rearrangements of the actin cytoskeleton in cell
motility, division and differentiation is provided by actin-binding proteins. The
addition of actin subunits to the barbed end of actin filaments and the nucleation of
polymerizing actin in vitro are controlled by capping protein. Recent experiments
suggest that capping protein regulates polar distribution in vivo of actin filaments.
The actin cytoskeleton is disrupted in yeast capping protein mutants, indicating that
“‘the asymmetric distribution of actin in budding yeast (see VI.A.1.a’ in I) depends
on the proper functioning of several actin-binding proteins with apparently different
functions’’ (Amatruda ef al., 1990).

The uniform angle and conformation of myosin subfragment 1 (S1) bound to
actin filaments (F-actin) ‘‘attest to the precise alignment and stereospecificity of the
binding of these two contractile proteins. Because actin filaments are polar, myosin
heads must swing or rotate about the head-tail junction in order to bind’’ (Reedy ef
al., 1989). Adams and Pollard (1989) have shown for the first time that the single-
headed myosins called myosin-I can bind directly to NaOH-extracted membranes
isolated from Acanthamoeba and to vesicles of pure lipids with an affinity sufficient
for extensive binding in the cell. Membrane-bound myosin-I may provide a
mechanism for many cellular movements previously thought to involve filamentous
myosin-1I (see V, in I) and for the specification of sites of cell surface growth (Drubin
et al., 1990).

For a general review about cytoskeleton microfilaments, see Kristen (1987).

1-3. Microfilaments-microtubules (actin-tubulin)

In the cortex of the giant coenocytic green alga Caulerpa, amyloplasts are
transported along microtubular strands as shown by the fact that both microtubule-
and dynein-specific inhibitors block movements of these organelles. In contrast,
chloroplast movement is blocked by cytochalasin but not by colchicine thereby
showing that immobilization and movement of chloroplasts are dependent on intact
microfilaments of actin but not on microtubules (Menzel and Elsner-Menzel, 1989).
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F. NUCLEI AND MITOTIC FIGURES

2. Polewards chromosome movement

The bipolar attachment of chromosomes to the spindle occurs well before all the
chromosomes congregate metaphasically. In the normal functioning of the mitotic
spindle most of its growth and disassembly take place at the end of the microtubule
away from the pole. All microtubules have the same polarity and the fibers behave
differently depending on the structure in the spindle to which they bind. Most impor-
tant as microtubule-organizing center is the centrosome which serves as a seed to start
microtubule polymerization; thereby it defines their polarity. That polarity, or
asymmetry, is crucial to the functioning of microtubules (see I) by at least two of its
functional consequences: at the ends it causes the (+) end to add and lose subunits
faster than the (—) end; along the surface it influences the orientation with which
proteins will bind to the microtubule surface (McIntosh and McDonald, 1989).

The molecules involved in the mechanical forces moving polewards
chromosomes begin to be unraveled (Vale and Goldstein, 1990). Among such mitotic
motors there are kinesin motors and perhaps the newly discovered dynamin motor
(Shpetner and Vallee, 1989) which forms cross-bridges and induces ATP-dependent
sliding between antiparallel microtubules in vitro (McIntosh and Koonce, 1989).
Kinesin is a microtubule-interactive, force-generating ATPase acting as a plus-end
motor in intracellular transport of vesicles along microtubules (Vale, 1987, and
others, see in I). The inherent asymmetry of the polymer (actin or tubulin) and the
motor is necessary for the unidirectional movement of the motor along the polymer.
It is toward the barbed (or +) end of the actin filament that myosin motors such as
myosin [ (single ellipsoidal head) move.

A superfamily of kinesin motors acting in fungal nuclear fusion and division has
now been described in Saccharomyces cerevisiae (Meluh and Rose, 1990) and in
Aspergillus nidulans (Enos and Morris, 1990). Such kinesin motors bear either round
or rectangle heads at the end of the a-helical coiled coils. Short single-headed kinesins
analogous to myosin I, kinetochore-specific kinesins, and perhaps kinesins may also
be expected to be involved in morphogen or RNA transport as force-producing
proteins (Vale and Goldstein, 1990).
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V. POLAR CELL MOVEMENTS

B.1. Cilia-flagella

In the green unicellular alga Chlamydomonas, a component of contractile
flagella roots is the centrosome-associated phosphoprotein centrin. This type of
structural organization contributes to define its cell polarity through cell axiation
(Fig. 1, in Salisbury, 1989).

2. Gliding movements

Bacterial gliding motility appears to be dependent on the establishment of
transmembrane potential and any depolarization (nof depolymerization as wrongly
written in I p. 132) by protonophores such as 2,4-DNP or CCCP results in a cessation
of motility.

3. Amoeboid motion (transient polarity)

Both the single headed myosin I and the double headed myosin II are
mechanochemical enzymes which generate force through the hydrolysis of ATP when
complexed with F-actin.

Fukui er al. (1989) show by immunofluorescence microscopy that non-
filamentous myosin-I occurs at the leading edges of the lamellipodial projections of
migrating Dictyostelium amoebae, which are devoid of myosin II, whereas filamen-
tous myosin I is concentrated in the posterior zone of the cells. The authors suggested
on the basis of these locations of the two forms of myosin and their known
biochemical and biophysical properties that ‘‘actomyosin 1 may contribute to the
forces that cause extension at the leading edge of a motile cell, while the contraction
of actomyosin II at the rear squeezes the cell mass forward. Myosin I isoenzymes
might have similar roles in metazoan cells, for example at the leading edges of
neuronal growth cones, and in the extension of lamellipodia and pseudopodia of
leukocytes, macrophages and fibroblasts.’”” These observations suggest that
“‘actomyosin I-dependent force-generating activity occurs at the leading edge (as in
pseudopodia extension) and that actomyosin II-dependent force-generating activity
occurs at the trailing end of a migrating Dictyostelium amoeba (causing the cell mass
to move forwards)’’. This could explain ‘“how myosin II-minus mutants can form
smaller-than-normal pseudopodia at a relatively normal rate. Membrane-bound
Acanthamoeba myosin I can generate force against actin cables however, and both
Acanthamoeba and Dictyostelium myosin I will crosslink actin filaments and
generate force between crosslinked filaments”’.
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None of Fukui et al. (1989) observations is compatible with the participation
either of other processes in amoeboid movement, such as membrane flow or the
remodelling of the actin matrix, or of myosin I and myosin II in other motile
activities. The significance of Fukui’s team results is that they show the presence in
the leading edge of a migrating cell of myosin I, which in conjunction with F-actin
is known to be capable of producing force and movement.

To explain the rearward movements of membrane proteins in locomoting
polymorphonuclear leukocytes, the experimentally best supported model implies the
cytoskeleton (see I, pp. 133-137). The retrograde lipid flow hypothesis has been
proposed by Bretscher (1984) as an alternative explanation for the rearward
movements of membrane proteins. However, recently used techniques of low-light-
level fluorescence microscopy and digital image-processing of photobleached images
disprove that lipid flow model (Lee ef al., 1990). By further implicating cytoskeleton
in proteins movements, they also validate the conclusion of Sheetz et al. (1989) that
such a membrane flow in the leading edge of amoeboid cells does not drive rearward
movements of membrane glycoproteins.

About the motor of amoeboid motion, there is much evidence linking actin-
based system to the generation of motile structures in the cell (Bray and Vasiliev,
1989). Nevertheless, a mutant of Dictyostelium discoideum deficient in a-actinin and
in which movements are unimpaired has been obtained by Gerisch’s group (Wallraff
et al., 1986; Schleicher er al., 1988). ‘‘Motile life without myosin’’ also exists as
shown by mutants of D. discoideum that lack normal myosin-II (Knecht and Loomis,
1987; De Lozanne and Spudich, 1987, see I, p. 134). Since, André et al. (1989) have
described a strain of this slime mold lacking severin (actin-filament fragmenting
protein) even though still able to move. A relative interpretation of these findings is
that “‘there is an extensive overlapping redundancy in the activity of actin-binding
proteins in vitro and more than one way to crosslink, fragment or even to move actin
filaments’’ (Bray and Vasiliev, 1989). There is analogy between the behavior of such
parallely distributed processor of the locomotive cytoskeleton of Dictyostelium
amoebae and of the cytoskeletal network intervening at yeast budding (see
VI.A.1.2%).
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VI. POLAR CELL GROWTH

A.l. MONOPOLAR OUTGROWTH (EMERGENCE)

In our present state of knowledge, cytoplasmic microtubules are dispensable for
bud outgrowth (see I) but required for specific, single or double budding of yeast cells
or fungal spores to direct their mono- or dipolar axiation toward the site(s) of bud
formation. By contrast, polarly localized actin microfilaments appear to be an
absolute requirement for the budding processes.

a’ Yeast budding

The cortical actin cytoskeleton seems to specify sites of growth of the yeast cell
surface (Adams and Pringle, 1984, see I; Novick and Botstein, 1985). An actin-
binding protein (ABP1p) might be involved in the spatial organization of cell surface
growth and the identification of C-terminal protein domains suggests that such
domains might serve to bring together signal transduction proteins and their targets
or regulators, or both, in the membrane cytoskeleton (Drubin et al., 1990).

The cytoskeletal network in the budding yeast cell (Saccharomyces cerevisiae)
behaves as a parallely distributed processor, as suggested by the finding of a protein
(SPAZ2) associated with actively growing regions of the cell surface (Snyder, 1989).
Such polarization of the growth process is disturbed in mutant cells displaying an
inability to stop growing under nutrieht-limiting conditions which often results in
multiple budding (multipolar growth, see I, p. 187).

b' Fungal spores

In the germinating spores of Mucor rouxii the change in growth pattern from
spherical to polarized correlates with the degree of DNA methylation and this, in
turn, may be controlled by polyamine levels. The establishment of the polarized
phase of growth in M. rouxii probably occurs through the regulation of the genes
involved in the synthesis of products necessary for apical growth of the hyphae (Cano
et al., 1988).

¢) Dimorphism

Quite recently, Crombie ef al. (1990) have shown that the sites of budding and
germ tube formation on yeast cells of Candida albicans were polarized preferentially
towards the cathode. Buds were found to be less polarized than germ tubes at any
given applied voltage. Moreover, polarization of germ tubes was biphasic.



POLAR CELL GROWTH 349
2. TIP GROWTH

b) Fungal hyphae

In the models of hyphal tip growth, electric current does not always enter the
growing end (A/lomyces hypha drives an outward protonic current, see Youatt et al.,
1988 in I). As recently commented by Gow (1989) ‘“Most of the evidence suggesting
that ionic currents are involved in establishing and maintaining polar growth is essen-
tially correlative, and it is not yet clear whether the current is a cause or consequence
of polarity”’. However, Gow leaves open the possibility that ‘‘Cytoplasmic proton
and calcium-ion gradients and fixed-charged gradients resulting from asymmetric
transport of calcium into a cell may be involved in localizing growth’’. The same
conclusions have recently been reached about differentiation at egg germinations of
brown and red algae (Quatrano and Kropf, 1989; Waaland, 1989; see VII.C.3.a).

In hyphal tips of the oomycete Saprolegnia ferax, Heath and Kaminskyj (1989)
observed that ‘‘all the organelles and the microtubules are non uniformly distributed,
each showing a characteristic longitudinal gradient starting at a different point
behind the tip’’. A few microtubules can reach the extreme tip but they were more
abundant sub-apically. The authors concluded that ‘‘the correlated patterns of
organelle and cytoskeleton organization from this and previous work show that
neither the microtubules nor the detected arrays of actin are sufficient to account for
most organelle arrangements’’.

The role of microtubules at the onset and maintenance of polarized growth of
hyphae is still unclear. Intact microtubular tracks are required to initiate dominant,
monopolar outgrowth from macroconidia of Neurospora crassa (Caesar et al., 1988,
see in I). However, further elongation of hyphae deprived of microtubules can still
occur contortionally, with a damped polarity (Howard and Aist, 1980, see I).

Germlings of the bean rust fungus Uromyces appendiculatus treated with the
microtubule-binding drug griseofulvin continued polarized apical growth even
though showing changes in the morphology of their apical and subapical regions
(Hoch et al., 1987).

1) Animal neurites

A major question in developmental neurobiology is how developing nerve cells
accurately extend processes to establish connections with their target cells (see Lasek
and Black, 1988). This unsolved problem of polarized growth involves ‘‘both the
nature of cues for growth cone guidance and also the question of how growth cones
survey their environment for cues and respond by altering their direction of migra-
tion’’ (Bentley and Toroian-Raymond, 1986, see I). According to Lamoureux ef al.
(1989) ““there is also controversy over whether axonal elongation is the result of a
pulling growth cone and the role of tension in axonal elongation”’.
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Earlier in this decade, the consensus was that axons or neurites elongated from
tension generated by forward motility of the growth cone (Landis, 1983; Letourneau,
1982). It was presumed that contractile filopodia were the source of the tension
moving the growth cone (Bray, 1982; Trinkaus, 1985). But this view was challenged
by experiments showing that neurites elongate, albeit abnormally, in the presence of
cytochalasin, which inhibits growth cone and filopodial movements (Marsh and
Letourneau, 1984).

Bentley and Toroian-Raymond (1986) also reported an examination of the
migration of pioneer growth cones deprived of filopodia by culture in agents which
disrupt actin microfilaments. Under these conditions, axons continue to extend but
a large percentage of growth cones are highly disoriented. Their results indicate that
filopodia are not necessary for axonal elongation in vivo but that they are important
for correctly oriented growth cone steering.

Additionally, high resolution, video-enhanced observations of growth cone
activity argue against filopodial shortening as a source of tension, suggesting instead
that an extrusion of cytoplasm rather than a pulling process, is the key event in neurite
elongation (Goldberg and Burmeister, 1986; Bray, 1986; Aletta and Greene, 1988,
ref. in Lamoureux et a/., 1989). Studies of slow axonal transport (Lasek, 1986)
indicate that much slower cytoskeletal pushing underlies axonal elongation and direct
measurements of neurite force as a function of growth cone advance show that they
are linearly related and accompanied by apparent neurite growth (Lamoureux et al.
(1989). No increase in force occurs in neurites whose growth cone fails to advance.

According to Mitchison and Kirschner (1988) there are three phases of axonal
development: an actin based-system in which the leading edge becomes orientated,
a consolidation phase in which filopodial microtubules become stabilized in their
direction of future growth and a conversion phase to stable microtubules bundled
within the axonal tube. The protein factor tau stimulates the conversion phase.
However, tau expression is insufficient to induce polarity but tau antisense
oligonucleotides can inhibit neurite polarity (Kosik and Finch, 1987).

Pulse-labelling studies performed both in mature nerve and in cell culture
provided most of our knowledge of the axonal transport of cytoskeletal proteins. In
1975, Ochs has put forward his unitary hypothesis of axonal transport according to
which proteins achieve different transport rates by having different affinities for a
single moving vector. Tubulin and actin molecules are the essential components of
the axonal cytoskeleton and considered by some (Black and Lasek, 1980) as a static
complex travelling down the axon, a view challenged by others (ref. in Okabe and
Hirokawa, 1990) who observed a gradual recovery of photobleached zones rather
than their movement or spreading along the axon, both in neurons injected with
fluorescein-labelled tubulin and actin. Therefore, these cytoskeletal components can
be considered as ‘‘dynamic structures that continue to assemble along the length of
the axon’’ (Okabe and Hirokawa, 1990).
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In most recent and interesting experiments, Schnell and Schwab (1990) have
shown that axonal regeneration and elongation in the rat spinal cord can be produced

by the neutralization by monoclonal antibodies of myelin-associated neurite growth
inhibitors.
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VII. POLARIZED CELL DIFFERENTIATION

B. APICAL DIFFERENTIATIONS

1. Monopolar patterns
a) Fungal exosporulation: a* Sporangia

A unique capability of excised segments of sporangiophores of the terrestrial
mold Phycomyces is to regenerate new sporangiophores with sporangia (Goétze,
1918). The excised segments in the sporangiophore preferentially regenerate at the
apical end. In addition to this segmental polarity, there is a polarity of the whole
sporangiophore. Moreover, the fact that ‘‘polarity is not destroyed by acropetal or
basipetal centrifugation seems to indicate that the plasma membrane or the cell wall
(see also proposal for algal axiation in C.3.a) plays a crucial role in the polarity”’.
Galland and Ootaki (1987) conclude from their comprehensive review that the
molecular basis for this polarity is still obscure, and one of the challenging problems
in Phycomyces differentiation remains to discover what molecules constitute the
actual gradient and where are they located?

The tip of the growing zone of the sporangiophores of Phycomyces (Bergman
et al., 1969) is the site where the gravitropic bending occurs (Sachs, 1879, in Shrop-
shire and Lafay, 1987, see VIII.A.2.c%).

a’ Basidiospores

Basidia of Coprinus cinereus continue differentiation when explanted to water
agar and vegetative hyphal tips monopolarly elongate from the four apical sites of
the basidium expected to produce sterigmata (Chiu and Moore, 1990).

C. APICO-BASAL DIFFERENTIATIONS

3. a) Algal eggs (rhizoid-thallic poles)

In model systems of early embryogenesis of the Fucales, the site of inward
current precedes and accurately predicts the site of rhizoid outgrowth (see I) and the
polar axis can be oriented by external vectors (light, etc.) and two unequal cells result
from the first division. Experiments with inhibitors (i.e. the cytochalasins) clearly
implicate microfilaments in the process of axis fixation. Moreover, such polarization
of two-celled embryo cannot occur in absence of a cell wall, demonstrating that the
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presence of this cellular component is an absolute requirement for axis fixation. From
these results, Quatrano and Kropf (1989) derive their actual working hypothesis that
‘‘axis fixation involves transmembrane bridges at the presumptive rhizoid pole, from
the cell wall to the microfilament cytoskeleton’’.

Using repair shoot cells and rhizoids of the red alga Griffithsia, Waaland (1989)
tested Jaffe’s hypothesis (1968, 1979, see I) that transcellular currents are responsible
for establishing and maintaining sites of localized secretion and growth. However,
in repair shoot cells, the inflowing current continued even when the cell repair
hormone rhodomorphin was withdrawn and elongation stopped. Thus, in Griffithsia
“‘transcellular currents per se do not appear to control localized organelle accumula-
tion and localized growth™’.

6. Higher animal cells

b) Epithelia (apical-basolateral poles)

The apical and basolateral, macroscopic domains of polarized epithelial cells are
mostly large, morphologically distinct regions of the cell surface which are separated
by proteinous barriers.

The rapid diffusion and equilibration of lipophilic NH; across cell membranes
and the accumulation of NH; seem to be governed by pH differences between com-
partments. Kikeri et al. (1989) reported that renal tubule cells from the medullary
thick ascending limb of Henle have an apical membrane which is not only virtually
impermeable to NH;, but is also highly permeable to NH, . They proposed a model
which would explain how this renal epithelium can mediate vectorial movement of
NH, between compartments of equal pH.

A hierarchy of sorting information with multiple sorting signals — apical and
basolateral — present in different domains of a given plasma membrane protein has
been suggested from the evidence that covalently attached glycosyl-phosphatidyl-
inositol (GPI) acts as a ‘““dominant’’ apical targeting signal. Polarized epithelial pro-
tein sorting might therefore rely on glycolipids (Lisanti and Rodriguez-Boulan,
1990).
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VIII. MORPHOGENETIC POLARIZATIONS

A. PLANTS
2. Organismic polarities

a) Mushrooms

These higher fungi grow upwards and should be responsive to the gravitational
field. The problem will be to find the gravity sensor and the way its signals are inter-
preted (also for the model mold Phycomyces, see below).

¢*) Polar auxin transport and tropic curvatures

Bioelectric gradients along axial organs demonstrate morphological and
physiological polarity in higher plants (Fensom, 1959; Scott, 1967; Zatsepina and
Tsaplev, 1980; Goldsworthy, 1986). This electric polarity probably controls the
distribution of phytohormones (Clark, 1937). Changing the bioelectric gradients by
an external electric field has various consequences on plant growth and development
(Lund et al., 1947; Cholodny, 1956; Jaffe and Nuccitelli, 1977; Ellis and Turner,
1978; Medvedev and Markova, 1990).

In studies of gravity-dependent plant responses provided by the special condi-
tions of spaceflights, interfering accelerations are relatively small (below 10 * g) and
termed ‘‘microgravity’’ (see Hensel, 1989a).

Plant morphogenesis in general does not appear to be considerably disturbed by
microgravity, as shown by the polar differentiation of anise callus cultures into
somatic embryos (Theimer ez al., 1986). Compared to ground controls the distribu-
tion of the amyloplasts is shifted towards the proximal pole in statocytes of space
grown roots (ref. in Hensel, 1986). This polarity of statocytes does not require the
continuous action of gravity but develops also at microgravity. In statocytes of lentil
roots differentiated in microgravity, the nucleus was preferentially located toward
the gravity center of the cell (Perbal and Driss-Ecole, 1989). Polar differentiation of
statocytes was also disturbed but only at the level of endoplasmic reticulum (ER) in
seedlings of Zea mayslaunched from earth after germination, while those germinated
at microgravity had aggregated ER in root statocytes (Moore ef al., 1987).

By comparison, the normally negatively gravitropic sporangiophores of the ter-
restrial mold Phycomyces (see VII.B.la*) become disoriented when cultivated
aboard an orbiting spacecraft (Parfyonov ef al., 1979). The nature of the gravity
receptor is still unknown (Shropshire and Lafay, 1987).
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As previously suggested, statocytes polarity depends on a genetically prepat-
terned program (Sievers et al., 1976). Since, agravitropic mutants of roots have been
discovered (see Scott, 1990). Such mutants exhibit morphological and physiological
abnormalities which suggest that they are unable to respond to the plant growth hor-
mone auxin, indole-3-acetic acid (Hicks ef al., 1989). The root cap plays a role in root
geotropism (Pilet, 1978) and its removal can also lead to an agravitropism (Moore
etal., 1990). Gravity could thus induce a change in cellular structure which somehow
generates a chemical and/or electrical signal in the cap.

The starch statolith hypothesis attempts to explain gravity perception in plants.
Starchless (phosphoglucomutase deficient) mutants recently produced in
Arabidopsis thaliania (Caspar and Pickard, 1989) showed a lower response to
gravity. The authors concluded that a full complement of starch is necessary for full
gravitropic sensitivity (Kiss ef al., 1989). However, these mutants can still sense
gravity also more slowly and less accurately. According to Bandurski (1990) ‘‘if an
organism has a dense and heavy statolith then it will use the statolith to provide a very
accurate and rapid gravity sensor. If however it does not have such a dense body then
the organism uses some more subtle gravity sensing apparatus’’. Bandurski’s guess
is then ‘‘that the plant uses its own bioelectric fields as a sensor’. With his
collaborators he had developed a working theory postulating that ‘“the perception of
the gravitational stimulus involves a perturbation of the plant’s bioelectric field’’ and
that the transduction of the stimulus involves a hormone-transport voltage-gating
mechanism (Bandurski et al., 1986).

In the provoking suggestions concluding his recent review on ‘‘ Plant Movements
and the Cytoskeleton’’, Hensel (1989b) suggests that the cytoskeleton has a general
function to generate and maintain polarity of root cap statocytes but that the
cytoskeleton is ‘‘indirectly involved in perception by generating and maintaining a
structural polarity of statocytes’’. Interestingly ‘‘it maintains domains of ion
pumps/channels and/or hormone receptors/channels in the plasma membrane’’.
The cortical part of the cytoskeleton would be directly involved in mechanotrans-
duction of statolith weight into shear forces, thus triggering a plasma membrane
response.

B. ANIMALS

Polar axiation in the eggs and embryos as well as the mechanisms underlying
these processes in annelids, arthropods, amphibia and mammals are further
discussed in a symposium on ‘‘Cellular Basis of Morphogenesis’’ published by
Wolpert in 1989.
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2. BIAXIAL PATTERNS: 1) Mammals

Homologous gene clusters have been recently compared in insects and
vertebrates. Specific homologues of Antennapedia (Antp)-like homeobox genes in
Drosophila (see VIII.B.2d, in I) have been characterized as Hox complexes in
vertebrates (Duboule er al., 1986). Corresponding murine genes and insect complexes
show the same relative boundary of the expression along the antero-posterior (A/P)
axis of the developing embryo (Akam, 1989). A model for the mouse forelimb bud-
ding has been proposed by Dollé er a/. (1989) that accounts for the establishment of
the expression of the Hox-5 domain in relation to the existence of a morphogen
released by the zone of polarizing activity.

3. TRIAXIAL PATTERNS (left-right polarities)

Handedness is a fundamental quality already appreciated by D’ Arcy Thompson
(1942, see I).

a) Helical bacteria

The twist model of the lytic-deficient mutations of Bacillus subtilis has recently
reactivated the handedness principle (Mendelson and Thwaites, 1989). Growth of
these lytic-deficient mutants does not result in increased numbers of individual
bacteria but in long thread-like clones which may have an unusual double-helical
morphology. These double-helical threads fold repeatedly to form helical,
multicellular ‘““macrofibres’ (’’macrobes’’) that, according to Galloway (1990) are
structurally analogous to twisted textile yarns. A macrobe is therefore an amplifier
of the cell wall structure-determining features of the individual cells and therefore has
a helical structure.

On the basis of screw sense, some strains are left-handed, others right. Others
again are ‘‘conditional’” mutants — they may be either left or right, and the degree
of twist can vary continuously between left-handed and right-handed extremes
depending on environmental factors, such as temperature (Galloway, 1990). Right-
hand clones are produced at lower temperatures, left-hand at higher ones (Mendelson
et al., 1984). It seems that a protein is needed for left-handed structures but not right-
handed.

e) Molluscs

Interestingly, a same asymmetric behaviour as in bacteria is seen in the early
development of snails: right-handedness in Lymnaea peregra needs a protein, left-
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handedness apparently does not (see I). In the interplay between molecular self-
assembly into helicoidal structures and mechanical reorientation due to growth forces
(Neville, 1985; Galloway, 1990), a central role has been suggested to microtubules in
the formation of helical patterns (Lloyd, 1984).
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EPILOGUE (complement to pp. 271-273 in I)

The predictor question — What is life? — asked by the brilliant physicist Erwin
Schrodinger in 1945 has since been partially answered by the cracking of the enigma
of the genetic code. However, it still leaves open the question of ‘“How does this one-
dimensional code specify a three-dimensional organism?’’, a question relevant of
topobiology (Edelman, 1988). At this epigenetic level, organizational principles of
inanimate objects appear to be still valid even though complexified for animate ones.
Preeminent among such universal principles is polarity emerged from the primary
asymmetries of particulate matter (see [.B) and multi-expanded into the numerous
biopolarities.

To bridge génetics and epigenetics still remains the great question of how genes
control the transduction of the intrinsic molecular polarities into those cellular and
organismic biopolarities? The bridge starts to be completed at the cellular level with
the recent unravelling of genes controlling polarity of cytoskeletal macromolecules
such as actin, myosin and tubulins (see IV.E), themselves someway related to known
cell positioning as examplified by our Allomyces ‘‘sexual dipoles’’ (Plate I).
However, the link remains elusive at the organismic level where some types of inter-
action should intervene between macromolecular polarities and DNA-controlled
directional (head or foot in the Hydra model) morphogenetic gradients.

I renew my gratefulness to ARIANE FEHR for her trustful technical help.
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Abiotic, 46
Acetone, 39
Achiral, 45
Acidic, 40, 62, 82, 101-103, 112, 167, 168,
218, 339
compartment, 167, 175, 185, 220
hyaloplasm, 154
pH, 235
polysaccharide, 207
protein, 154
Acidification, 101, 108, 151, 175, 186, 236
Acridine(s), 198, 199
Actin, 15, 38, 80, 81, 96, 112-118, 120, 125,
129, 130, 132-136, 139, 144, 145,
152-154, 163, 167, 168, 177, 179,
180, 187, 200, 211, 218, 325,
344-347, 349, 350, 358
binding site, 115, 118, 344, 348
cable(s), 118, 130, 346
cortex, 180
dots, 151-154
F-, 111, 113, 114, 117, 145, 174, 346,
347
G-, 111, 114
G-F, 133
microfilaments, 152, 167,173, 174, 179,
207, 344, 348
molecule(s), 112, 114, 350
polymerization, 179
translocation, 180
Actin-binding protein(s), 115, 344, 348
Actin-like filaments, 154
Actin-mediated transport, 183
Action potential(s), 87, 88, 90-94, 341, 342
Activation, 52, 60, 64, 67, 80,92, 102, 117,
127, 145, 148, 158, 162, 189, 198,
217, 222, 232, 243, 247, 248, 250,
341
Actomyosin, 89, 133, 134, 154, 346
Adhesion, 81, 115, 134, 136, 181
Affinity, 39, 40, 42, 60, 76, 106, 114, 194,
347

Agglutinin, 79, 80
Aggregates-aggregation, 68-71, 87,96, 118,
137, 169, 209, 226, 228, 243, 265,
337
Agravitropism, 355
Algal
axiation-differentiation, 195, 352
eggs-embryos, 157-159, 229, 352
elongation, 184
exosporulation, 195
rhizoids, 168
zygote, 171, 207
Algorithm, 61
Amines, 40, 41, 95
Amino acids, 40, 41, 44-46, 57, 58, 60, 66,
67,73, 81, 86, 95, 96, 167, 168, 249,
328, 334, 337
polar, 62
Ammonia (-ium), 68, 243, 353
Amoeboid (Amoeba), 15, 137-139, 141
cells, 147, 347
motion, 133-137, 346, 347
movement, 134, 135, 346
Amphipathic, 37, 40, 63, 65, 76-78, 80
Amphitropic, 77
Ampholytes, 41
Amphoteric, 38, 41
Amyloplasts, 168, 236, 344, 354
Anaphase, 120, 125, 126
Anchorage, 63, 76, 81, 115, 153, 222, 339
Animal(s), 211, 212, 214-217, 223, 246,
250, 253, 255, 272, 325, 342, 353,
355
cell(s), 189, 211, 223, 262, 353
eggs-embryo 13, 211, 212, 225, 238, 325
gradient, 217, 255
pole, 190, 212, 217, 254, 255, 263
regeneration, 13
Animal-vegetal (A/V)
axis, 212, 216, 253, 254, 262
gradient(s), 264, 265
halves, 255
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polarity, 211, 214, 216, 217, 253, 254,
262, 263, 269
Anion(s), 30, 91, 220, 339
Anisometry, 39, 70, 150, 181
Anisotropy, 24, 185, 111, 112, 333, 338
Ankyrin, 112, 221
Annihilation, 17, 21, 22
Anode, 180
Antenna, 108-111, 343
Anterio-posterior (A/P)
axis, 245, 249, 250, 252, 256, 259, 260,
265, 267-270, 356
differentiation, 228
gradients, 264
pattern(s), 240, 257
polarities, 213, 241-249, 250-266,
267-270
regeneration, 262
Anterior
pole, 213, 228, 229, 257-260, 263
segment, 256
structures, 259
tip, 243, 257
Anterograde (inward) transport, 122,
177-179
Antheridia, 174, 197
Antibiotic, 86, 151, 183, 343
Antibodies, 66, 115, 204, 220, 249, 353
Antigenes, 66, 67, 150, 243
Antimatter, 18, 19, 21, 47, 327, 328
Antiparallel, 25, 29, 49, 50, 64, 68, 86, 87,
117, 120, 345
Antiport, 82
Antisense, 58, 336, 350
Antisera, 267
Apex, 64, 129, 164, 165, 166, 169, 170, 172,
175, 180, 193-195, 197, 224, 225,
227, 232, 238, 239, 241
Apical, 13, 100, 104, 137, 169-173, 208,
218, 221, 225, 226, 231, 242, 271,
348, 352, 353
axis, 184
bud, 232
cell(s), 160, 169, 172-174, 197, 205, 209,
211, 268
differentiation(s), 192-221, 352, 353
division, 173
dome, 194

dominance, 164, 165, 231, 242
growth, 157, 162, 344, 345
meristem(s) 224, 229, 231, 238, 239
pattern(s), 189, 236
pole(s), 162, 170, 218-220, 223, 225,
248, 256, 266, 267, 272
targeting signal, 348
zone, 100, 163, 164, 168, 169, 174, 175,
231
Apical and basolateral
compartments (domains), 219, 220,
226, 353
gradients, 104, 171, 172
poles, 218, 219, 248, 352
surfaces, 220, 221
Apolar (nonpolar), 37-40, 43, 50, 55, 61,
67, 75, 97, 147, 201, 264, 266, 271,
325
cells, 14, 79, 87, 158, 160, 209, 264, 266,
271
egg, 158
growth, 149, 160
Archegonia, 174, 197
Ascospores, 155
Assembly, 57, 69, 70, 99, 111, 114, 117,
119-123, 125, 126, 132, 179, 202,
203, 219
Asymmetric
budding, 219
carbon, 32
distribution-transport, 80, 218, 339,
341, 345, 349, 350
division(s), 149, 150, 161, 189, 192,
200-202, 206, 210, 211, 222, 225,
229, 230, 252
growth, 236
septation, 190, 191, 202, 205
structure(s), 74, 82, 202
synthesis, 46, 335
Asymmetry, 13, 18, 35, 44, 46-48, 50-52,
64, 66, 74,77, 79, 82, 100, 102, 108,
109, 112, 114, 119, 123, 132, 145,
154, 159, 173, 181, 186, 194, 200,
205, 206, 208, 210, 213, 216, 225,
230, 236, 237, 247, 266-269, 326,
327, 328, 334-336, 339, 341, 345,
356, 358
Atomic, 17-32, 325-331
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ATP, 81, 83-85, 100, 104, 106-110, 114,
116, 117, 120, 122, 123, 128, 132,
135, 140, 142, 143, 160, 167, 179,
186, 192, 218, 327, 333, 338, 340,
345, 346
pump, 106
synthesis, 83-85, 339
ATPase, 82-85, 90, 91, 102, 106, 110, 115,
118, 121-123, 126, 128, 129, 167,
168, 220, 345
Auxin(s), 159, 160, 186, 222, 229-231,
233-238, 340, 354, 355
transport, 229, 230, 233, 235, 341, 354
Auxospores, 147, 184
Axis-axes (axiation), 13, 21, 22, 29, 31, 32,
47, 50, 60, 64, 71, 79, 86, 104, 105,
107, 123, 130, 132, 137, 144-148,
154, 157, 165, 170, 182, 188-190,
192, 198, 200, 201, 206, 207, 213,
216, 221-224, 227, 228, 231, 233,
238, 241, 244, 246-250, 262-265,
271, 352-354, 356
division, 209
growth, 147, 158, 161, 165
polarity, 148, 154, 161, 185, 192, 200,
205, 212, 213, 222, 227, 228, 233,
239, 242, 248, 262, 266, 272, 348,
354, 355
proximal-distal, 261
Axial, 66, 133, 174, 224, 247, 249, 356
asymmetry, 13
development, 224
head activator gradient, 248
regeneration, 13
symmetry, 64, 221, 249, 265
Axon(s), 90-92, 94, 105, 122, 123, 177-181,
349-351
cytoskeleton, 350
transport, 122, 177, 178, 350
Axoneme, 122
Axoplasm, 123, 179

Bacterial, 129-132, 140, 167, 181, 356
budding, 149, 150
cell(s), 53, 182, 190
chromosome, 183
division, 190
elongation, 167, 182
helical, 267, 356

shape, 150, 181
sporulation (endospores), 190, 191
Bacteriochlorophyll, 43
Bacteriorhodopsin, 109, 142
Band(s), 104, 110, 117, 130, 136, 148, 169,
172, 185, 195, 215
Barbed end(s), 114, 130, 145
Basal, 68, 122, 131, 137-139, 145, 147, 155,
160, 169-171, 193, 207, 208, 218,
225, 233, 235, 242, 244, 247, 249,
255, 256
bodies, 104, 244-246, 256
cell, 204, 211, 225
compartment, 205
permeability, 235
pole(s), 158, 170, 181, 221, 225
rhizoidal, 208
zone, 163, 164, 170
Basidia, 227, 228, 352
Basidiocarp, 227
Basidiospores, 155, 194, 195, 226, 352
Basolateral, 218, 220
cell surface, 219-221
domain, 220
membrane, 98, 218, 220, 221, 267
pumps, 220
Bending, 50, 131, 168, 169, 174
Benzene, 39, 43, 67
Biaxial patterns, 250-267, 356
Bidirectional, 102, 123, 179
Bifurcation, 143
Big Bang, 17, 19, 327
Bilayer(s), 63, 75-78, 107, 333, 338, 340
Binary, 23, 26, 272, 330
fission, 149, 150, 182, 201
Binding, 17, 24, 33, 34, 39, 50, 52, 57, 60,
64, 66-70, 77, 80, 86, 90, 93, 96, 112,
114, 123, 140, 337, 344
protein(s), 60, 114, 337
site, 66, 111
Bioelectric field(s), 237, 354, 355
potentials, 166
Bioelectrochemistry, 110
Biosynthesis, 62, 73, 129, 155, 166
Biopolarity, 14, 273, 326, 358
Bipolar, 13, 22, 64, 72, 107, 113, 115-118,
124, 130, 167, 170, 173, 181-186,
195, 196, 202, 208, 209, 229, 247,
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259, 271, 272, 325, 330, 348

axiation, 147, 181, 186, 192, 197, 204
budding, 184, 187
couple, 17, 21
differentiation(s), 181, 202, 204, 205,
229
field(s), 41, 222, 232, 240, 247
filaments, 116, 117
germination, 184
gradient, 200
growth, 167, 181-186, 271
mating systems, 195
mitochondrion, 107
pattern(s), 41, 195-201, 332, 336
regeneration, 251, 262
segregation, 184, 199
sexualization, 195, 196, 200
Bipolarity, 22, 41, 70, 108, 113, 116, 117,
119, 183, 185, 200, 204
Bipolarization, 70, 257, 258, 271, 272
electric, 19-22, 330
Bipolaron, 24
Blastocyst, 266, 267
Blastomere(s), 252-254, 262, 264, 266, 267
Blue light, 31, 169, 174, 209, 340
Bond(s), 24, 35, 39-41, 55, 59, 60, 62,
64-66, 68, 92, 332-335
Boson(s), 19, 24, 27, 29, 44, 327
Branching, 93, 164, 165, 169, 195, 228, 231
Brevin, 113
Bridges, 45, 70, 115, 122, 345, 353
Bristle(s), 176, 261
Bud(s), 95, 97, 101, 103, 149-154, 163, 172,
184, 187, 231-233, 239, 348
growth, 150-154
meristem, 238
polarity, 152
Budding, 102, 149-151, 153, 154, 162, 184,
187, 196, 246, 247, 342, 344, 348,
356
bacterial, 149, 150
forelimb, 265, 356
polar, 151
yeast, 150, 154, 184, 187, 326, 347, 348

Ca**, 73, 81, 88-90, 95, 106, 114, 118,
141-143, 166, 168, 169, 175, 180,
194, 209, 232, 237, 261, 340-342

channel(s), 89, 90, 175, 207, 216, 341,

342
currents, 216

gradients, 175, 262, 349
ionophore, 209, 254, 261
pump, 106
transport, 106, 342, 349
uptake, 106
Calcium, 23, 80, 88, 89, 93, 95, 102, 106,
116, 135, 139, 160, 237, 253, 254,
340-342, 349
Calcofluor, 153
Callus, 147, 239, 354
Calmodulin, 95, 116, 139, 142, 237
Cambium, 189
Cancer, 148
Capping, 80, 81, 113, 127
protein(s), 114, 344
Capsid(s), 69
Carbohydrate(s), 13, 17, 72, 75, 78, 100,
109, 355
Carbon, 38-40, 44, 60, 67, 75, 192, 248, 334
Carotene, 42, 158, 198, 199, 228
Carotenoids, 109, 161
Catalysis (-yst), 45, 56, 339
Cathode, 74, 180, 188, 348, 349
Cation(s), 23, 24, 30, 37, 38, 78, 81, 86, 90,
92, 99, 135, 143, 338
Caulonema, 172
Causal, 214, 217, 231, 255
CCly, 38, 39
Cell(s), 13-15, 23, 30, 34, 38, 46, 52, 62, 64,
68, 72-74, 77-81, 83, 85, 87-105,
107-109, 111-115, 117-119, 121-127,
129-154, 157, 160-166, 170-193, 196,
197, 200-226, 228-230, 232, 233,
235-241, 243-247,249-252, 254, 257,
259, 261-268, 271, 272, 325, 326,
333, 338, 342-348, 352-354, 358
adhesion, 82
asymmetry, 205
axes, 175, 190, 271, 346
compartment(s), 191
cycle(s), 151, 153, 154, 165, 183, 197,
201, 202, 203, 229, 243, 264, 267,
270
cytoplasm, 191
differentiation, 81, 189-221, 228, 244,
245, 272, 352-354
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division(s), 12, 15, 147, 148, 152, 160,
165, 169, 173, 185, 187, 190, 191,
196, 200, 201, 203, 205, 206, 210,
222,232, 244-246, 252,253, 268,272
elongation, 148, 169, 182, 185, 186,
222, 238
growth, 147-188, 348-351
membrane(s), 333, 353
movement(s), 123, 129-146, 346, 347
polarity, 15, 112, 148, 154, 159, 160,
186, 190, 191, 205, 235, 248, 261,
272, 344, 346
polarization, 205, 207
pole(s), 203, 204
surface(s), 63, 80, 89, 112, 149, 150,
157, 166, 181, 184, 204, 218, 219,
220, 246, 249, 255, 333, 348-350, 353
target(s), 345
Cellulose, 64, 129, 147, 176, 185-187, 206,
211, 241, 244
Centriole(s), 124, 127, 138, 195
Centrosome(s), 120, 124, 126-128, 141,
144, 145, 151, 345, 346
Cephalon-abdomen, 215, 257, 258
CH;Cl, 39
CH,, 38, 39
Channel(s), 22, 66, 83, 86, 87, 90, 91, 93,
94,110, 141, 142,154, 167, 194, 221,
340-342, 355
gated (-ing), 83, 340, 341
ionic(H*, K+, Na*, Ca?*, Cl), 86-95,
154, 175, 180, 207, 216, 221, 341
ligand-gated, 87
polar, 90
voltage gated, 87, 88
Chaos, 17, 328
Charge(s), 18-20, 22-24, 28, 33, 35, 42-44,
51, 52, 59-62, 64, 67, 68, 71, 74, 83,
84, 86, 87, 92, 108-110, 131,
135-137, 168, 271, 272, 327-334,
337, 343
asymmetry, 271, 339
separation, 43, 343
transfer, 328, 334
Chelation, 59
Chemical communication, 149
Chemical forces, 34
Chemiosmotic theory, 82-85, 186, 102, 109,
235

Chemo-structural gradient, 197

Chemotaxis, 60, 134, 139-141, 145, 241

Chirality, 15, 19, 43-48, 50, 53, 86, 124,
268, 325-328, 334, 335, 356

Chitin, 150, 153, 154

Chitosomes, 155, 157

Chloral, 160

Chloride, 85, 341

Chloroform, 39

Chloronema(ta), 172, 209

Chlorophyll, 60, 109, 110, 211, 343

Chloroplast(s), 50, 51, 83, 103, 108-111,
129, 130, 169-172, 195, 205, 209,
229, 343, 344

Choline, 65, 92

Chromaffin granules, 102

Chromatophore, 110

Chromosome(s), 52, 55, 120, 124-126, 128,
182, 192, 201, 203, 214, 252, 272,
337, 345

Cilia, 104,112,114, 118, 121, 123, 130-132,
141, 145, 346

Circular, 50, 51, 71, 86, 124, 327

polarization, 45, 47, 48

Cis-, 53, 81, 89, 97-100, 102, 103, 257, 260

Cl~ (see also Chloride), 158, 341

Clathrin, 101, 102

Clay(s), 73, 74

Cleavage(s) 45, 57, 66, 101, 158, 194,
211-213, 215, 217, 218, 229, 249,
252, 253, 255, 258, 259, 262-264,
266, 268, 269, 336

CO.,, 38, 65, 109, 162, 192

Coalescence, 242

Coat, 71, 117, 202

Code, 53, 54, 57, 260, 336, 358

Coenzymes (see also NAD-NADP), CoA,
65, 103

Colchicine, 141, 160, 173, 179, 186, 206,
211, 251, 344

Coleoptile, 186, 340

Commitment, 201, 210, 249

Communication, 72, 89, 249

Compartment(s), 72, 84, 99, 102, 103, 106,
168, 205, 220, 346, 353, 355

Competence, 198

Complexity, 69, 145, 197, 226, 231

Computer(s), 23, 26, 61, 66, 146, 330, 337

Conductivity-conductance, 22-25, 86, 107,
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329, 333, 338, 341
Conformation, 45, 49, 50, 70, 85-87, 89,
117, 121, 344
Conidia, 107, 155, 156, 184, 187, 188, 192,
193, 196, 349
Copper (Cut/2t), 23, 24, 61, 65, 66, 335
Cortex, 100, 134, 136, 138, 144, 145, 202,
210, 212, 216, 244, 263, 344, 346
Cosmic, 17, 25, 325, 327, 328, 330
Coupling, 20, 24-26, 54, 82, 86, 89, 94, 97,
102, 111, 148, 185, 223, 250, 326,
341
Crystal(s), 18, 21-24, 31, 32, 35, 37, 40, 55,
63, 64, 68, 76, 86, 110, 271, 328-333
Current(s), 22, 23, 26, 34, 45, 62, 92, 95,
120, 129, 137, 139, 142, 143, 154,
159, 161, 166-169, 194, 207, 216,
230, 235, 236, 262, 339, 341, 349,
353
loop(s), 157, 168, 231, 272
Cyanide, 132
Cycle(s), 90, 102, 113, 133, 135, 136, 147,
154, 165, 201, 203, 330
Cyclic, 139, 179, 343
adenosine monophosphate, 253
cAMP, 134, 140, 141, 157, 162, 163,
240, 243, 340
guanosine 5’-phosphate, 89
photophosphorylation, 192
Cyclosis, 129, 162, 164
Cylindrical, 69, 71, 78, 130, 137, 147,
154-163, 165, 182, 183, 186, 221, 328
germ tubes, 154-161
Cysteine-Cystine, 40, 41, 337
Cytochalasin(s) B, E, H, 80, 113, 145, 179,
200, 206, 207, 229, 344, 350, 352
Cytochemical gradients, 166
Cytochrome(s), 61, 66, 84, 198, 338, 339
oxidase, 198, 339
Cytogel, 72
Cytokeratin, 111
Cytokinesis, 136, 151, 153, 154, 161, 184,
200, 208
Cytolytic, 99
Cytoplasm, 15, 54, 62, 72, 85, 89, 103, 104,
112, 122, 124, 129, 130, 136, 142,
158, 161, 164, 168, 172, 173, 176,
186, 189, 190, 194, 198, 199, 208,

210, 212-214, 217, 218, 225, 235,
236, 255, 257, 259, 264, 269, 271,
272, 350
Cytoplasmic, 15, 79-81, 88, 89, 94, 95, 100,
106, 111, 115, 123, 124, 126,
129-131, 133, 139, 141, 146, 149,
151, 152, 158, 161, 168, 169, 173,
179, 185, 189, 194, 197, 198, 200,
206, 209-214, 217, 221, 228, 229,
235, 252, 255, 261, 262, 264, 340,
349, 350
basophilic gradient, 193
DNA, 198
granules, 151
movements, 73, 129, 261
streaming, 15, 129, 130, 137, 162, 164,
175
zonation, 169
Cytoskeleton, 81, 111, 112, 124, 132, 138,
139, 144, 145, 158, 162, 166, 173,
174, 176, 177, 179, 180, 200, 204,
206, 213, 214, 218, 219, 254, 264,
271, 325, 343-350, 353, 355, 358
outgrowths, 261
protein(s), 73, 77, 95, 99, 177, 350, 356
Cytosol, 65, 72, 73,77, 102, 111, 118, 130,
172, 177, 179, 343

Dehydrogenases, 82, 84
Deoxyribonucleic acid (DNA), 45, 49-57,
61, 64, 70, 71, 81, 155, 189-191,
197-200, 203, 259, 260, 272, 336,
337, 348, 358
packaging, 71, 337
polarity, 49, 336
polymerase, 61
positioning, 197-200
replication, 52, 190, 203
segregation, 191
topology, 53
transcription, 52-54
Depolarization, 87-92, 94, 95, 108, 141,
142, 157, 216, 221, 251, 334, 340,
341, 346
Design, 42, 69, 74
Desmin, 111
Detergent(s), 63, 76, 78, 110, 115
Determinants, 122, 215, 253
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Development, 15, 27, 72, 74, 91, 147, 152,
155, 157, 160, 164, 165, 167,
169-172, 176, 189, 193, 194, 203,
204, 206, 208, 210, 212, 213, 217,
221, 222, 224-230, 232, 238, 240,
243, 244, 247, 251-255, 260, 261,
263, 264, 270, 272, 338, 356

Dielectric, 19, 34, 61, 67, 332, 338, 339

constant, 78, 338
polarization, 332

Dielectrophoresis, 78

Differentiation, 13, 15, 139, 181, 189-221,
223, 225, 228, 230, 231, 233, 238,
240, 243, 244, 247, 255, 256, 260,
264, 269, 352-354

apical, 192-200
apico-basal, 200-221
intercalary, 190-192

Diffusion, 14, 25, 61, 76, 77, 101, 104, 154,
166, 235, 240, 272, 273, 333, 338,
354

gradient(s), 14, 224, 228

Dimorphism, 117, 157, 161-163, 201, 203,
238, 348

Diode, 23, 330

Diploid, 184, 196, 197

Dipole(s), 13, 23, 26, 30, 33-39, 41-43, 58,
59,61-63, 68,75, 76, 79, 86, 87, 108,
111, 249, 250, 271, 273, 325-334,
336, 340, 343, 358

electric, 21, 22, 33, 34, 328, 329

field, 25, 332

interactions, 76

mineral, 34-38, 332, 333

moment(s), 25, 33, 37, 39, 58, 60, 63,
76,85-87,89, 111,329, 330, 332, 338

organic, 38-43, 334

protein, 61, 337

water, 34-38, 332, 333

Diprotic, 41

Direction (-ality), 17, 19, 23, 25, 26, 28-33,
37, 43, 45, 49-53, 57, 58, 61, 62, 82,
86, 93, 99, 104, 106, 115-119,
121-123, 126, 129, 130, 133, 136,
140-147, 159, 160, 164, 165, 173,
174, 176, 179, 182, 185, 186, 189,
192, 197, 199, 205, 207-210, 220,
221, 224, 228, 231-234, 236, 241,
245, 249, 252, 254, 255, 261-263,

332, 344, 350, 352, 358
division, 148, 185, 186, 200
light, 209
nucleation, 244
Dismutation, 66
Dissipation, 195, 197
Dissymmetry, 33, 38
Division(s) 79, 104, 120, 148, 149, 151, 160,
161, 172-174, 176, 181-183, 186,
189, 191, 192, 197, 200, 202, 203,
205, 206, 209-213, 217, 222, 224,
225, 229, 232, 245, 252, 253, 267,
268, 272, 345, 352
nuclear, 125, 152, 205
unequal, 182, 197, 200, 205, 209, 212,
272
Domain(s), 47, 58, 66, 67, 76, 79, 81, 103,
213, 218, 221, 254, 260, 329, 349,
353-356
Dominance, 13, 47, 144, 242
Dorsal, 263
meristem, 231
tissue(s), 250, 257
products, 260
Dorso-ventral (D/V)
axis, 256, 262
genes, 259
gradients, 264
pattern(s), 256, 260
polarities, 214, 250-266, 267-270
structure, 173, 209
Dots, 152-154, 205
Double
gradient(s), 190, 255
helix, 50, 51, 56, 57, 112, 336
strands, 62, 86
Driving force(s), 42, 43, 111, 134, 135, 147,
166, 167, 186, 230, 345, 346
Drug(s) 70, 80, 101, 121, 144, 145, 152, 188,
267, 335, 343, 349
Duality, 13, 54, 67, 108, 140, 142, 161, 166
Duplex, 52, 53
Dyad, 51
Dynamics, 46, 111, 121, 126, 127
Dynamin, 345
Dynein, 121, 123, 126, 129, 179, 344

Ecto-meso-endoderms, 213, 248, 262, 264,
266, 269, 270
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Ectoplasm, 129, 133, 134, 173, 215, 261
Egg(s), 13, 14, 157, 158, 190, 201, 204, 206,
208, 210-218, 225, 241, 252-265,
268-270, 325, 349, 352, 355
axial polarity, 213, 217, 253, 254, 355
crescents
grey, 255, 262, 263
yellow-orange-red, 216, 254, 261,
262
fertilized, 158, 159, 204, 210, 213, 215,
252, 253, 263
Electric(al), 13, 14, 21-23, 26, 33-38, 60, 70,
74, 84, 86, 87, 89, 90-93, 107, 123,
131, 132, 143, 166, 168, 174, 209,
221, 248, 271, 272, 325, 338-342
biopolarity, 26, 107, 158, 272
bipolarity, 13, 15, 23, 108, 136, 230,
239, 271, 354
bipolarization, 15, 19, 22, 328
charge(s), 13, 14, 17-22, 27, 29, 30, 34,
35,40,41,61,62,70, 85, 87,93, 109,
221, 271, 325, 328, 329, 343
current(s), 26, 34, 62, 73, 74, 78, 79,
158, 159, 168, 204, 207, 209, 262,
325, 327, 339, 349
depolarization, 89
dipole(s), 19, 21, 23, 27, 33-36, 63, 76,
87, 137, 272, 325, 328, 330, 339
field(s), 19, 22-24, 31-34, 36, 37, 41, 61,
62, 78, 85, 87, 110, 137, 145, 160,
167, 168, 176, 180, 188, 201, 209,
210, 239, 247, 332, 338-340, 355
gradient, 102, 204
moment(s), 33, 38, 39, 272, 329, 331,
332
poles, 27, 175, 325, 333
potential(s), 83-86, 89, 90, 106-108,
133, 142, 143, 159, 166, 170, 200,
235, 338-340
signal(s), 87, 93, 94, 221
stimulation, 89, 154, 341
Electride, 30
Electrochemical, 68, 162, 176, 339
force, 175
gradient(s), 82, 84, 91, 102, 107, 109,
140-142, 167, 168, 235, 339-341
potential, 82, 84, 102, 107, 110
Electrode(s), 92, 137, 167, 339
Electrofusion, 78

Electrogenic, 110, 235
pump(s), 154, 168, 339-341
Electromechanical, 168
Electromagnetic, 17-20, 26, 30, 31, 42, 45,
325, 327, 329
field, 21, 31
Electron(s), 13, 17-24-31, 33, 35, 38-44, 47,
50, 51, 60, 62, 65, 66, 68, 78, 82, 84,
90, 106, 108-111, 143, 144, 186, 271,
272, 325, 332, 334, 339-341, 343
microscopy, 75, 98, 111, 114, 118, 119,
124, 151, 155, 156, 183, 184
polarization, 29, 47
transfer reactions, 338, 339, 343
transport, 82, 84, 110, 142, 186, 334
tunnelling, 42
Electronic, 23, 30, 38, 43, 61, 68, 110, 330,
331
Electrophoresis, 14, 50, 106, 118, 172, 200,
339
Electrostatic, 14, 35, 58-61, 66, 67, 75, 336
Elongation, 152, 165, 180-186
Embryo(s), 72, 126, 180, 189, 204, 210-215,
217, 218, 223-225, 229, 230, 240,
249-259, 261, 263-268, 270, 352-355
induction, 217
patterns, 256-260
polarity, 224, 257, 264
Embryogenesis, 13, 210, 213, 216, 218, 224,
238, 241, 252, 255, 259, 262, 266,
325, 352
Enantiomer(s), 44-47, 325, 326, 328, 334,
335
Enantiomorphs, 32
Endocrine, 93, 220
Endocytosis, 99, 101, 102, 180, 219, 342
Endonuclease, 51
Endoplasm, 129, 133, 134, 215, 261
Endoplasmic reticulum (ER), 59, 65, 74,
88, 95-100, 103, 148, 155, 164, 166,
180, 236, 342, 343, 354
Energy, 17, 19, 21-24, 27, 30, 31, 35, 37,
43-45, 51, 52, 58, 64, 67, 68, 74-76,
80-82, 84, 85, 87, 91, 92, 95, 100,
102, 104-111, 116, 119, 132, 140,
142, 167, 178, 198, 209, 235, 271,
328, 333, 334, 338-341, 343
transduction, 74, 82, 89, 102, 109, 338
Entropy, 18, 19
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Environment, 14, 30, 40, 43, 46, 47, 50, 51,
61, 66, 95, 101, 134, 142, 159, 181,
224, 233, 239, 352
Environmental, 138, 155, 163, 187, 197,
209, 226, 239, 252
factors, 129, 172, 272, 356
polarity, 79, 216
Enzyme(s), 46, 50-54, 56, 60, 64-66, 69, 73,
79-82, 85, 89, 93, 98-100, 103, 118,
123, 164, 166, 177, 186, 187, 194,
208, 220, 259, 337, 339, 340
Epidermis, 145, 175, 176, 185, 186, 210,
211, 228, 230, 261
Epigenetic(s), 201, 223, 224, 251, 358
Epithelium (epithelia), 104, 115, 146, 190,
218-221, 247, 260, 353
Equilibrium, 37, 102, 114, 119, 120, 159,
162, 222
Equipolar, 147, 181
Erythrocyte(s), 52, 62, 79, 137
Ethanol, 39, 43
Evolution, 46, 94, 192, 269, 271
Excitation, 42, 43, 51, 61, 74, 86, 88, 93,
108-111
Excited electrons, 23
ionization, 271, 327, 329
Excretion, 130, 230, 235
Exocytosis, 90, 94, 98-102, 135, 219, 220

Fascin, 114
Fat, 104
Fatty acids, 39, 40, 62, 73, 96
Feedback, 92, 168, 173, 250
Female, 174, 196-200, 327
basophilic gradient, 198, 199
gametangia, 192, 198, 199
Fermentation, 215
Fern(s)
gametophyte, 147
leaf, 238
mother cell, 210
prothallia, 173, 174
spores, 160, 173
Ferritin, 79, 135
Ferroelectricity, 26, 330, 331
Ferromagnetism, 26
Fertilization, 89, 157-159, 201, 204-207,
210, 212, 213, 215, 216, 224, 225,
252-254, 259, 261-263, 268, 269

Fibroblast(s), 62, 135, 137, 146, 342, 346
Fibronectin, 78, 134, 135
Field(s), 19, 22-27, 30-33, 142, 165, 175,
180, 189, 210, 212, 222, 223, 240,
245-247, 252, 272, 330, 331, 355
polar, 205, 331
Filamin, 114
Filopodia, 122, 179, 180, 350
Fimbrin, 114
Flagella, 118, 121, 130-132, 138-140, 143,
195, 346
polar, 201
Flip-flop(s), 56, 332
Flippase, 77
Flowering, 161, 197, 238, 239
Fluid(s), 37, 72, 77, 93, 101, 136
mosaic model, 75, 77, 80
Fluorescence, 42, 61, 155, 175, 183, 188,
347
polarity, 340
Fluorophores, 61, 108, 350
Flux(es), 25, 143, 207
Fodrin, 95, 221
Folic acid, 141
Foot, 135, 225, 247, 250, 340, 358
Formaldehyde, 46, 67
Formic acid, 39
Freeze, 102, 269
Fungal, 63, 105, 155-157, 162, 164-168,
181, 184, 187, 192-195, 228, 341,
343, 345
conidia, 155, 181, 349
cell(s), 161, 164, 204
exosporulation, 192, 352
germ tubes, 155-157, 184, 187, 188
hypha(e), 107, 147, 165, 166, 169, 176,
186, 349
mycelia, 164
spore(s), 155, 160, 163, 325, 348, 352

G-protein(s), 81, 89, 113, 149
Galvanotropism, 180

Gametangia, 197-199

Gamete(s), 170, 195, 198, 215, 252
Gametophyte(s), 160, 161, 173, 224
Gamma (y)-rays, 19, 21, 31, 47
Gap junction(s), 219, 249

Gas, 17, 18, 25, 28, 29, 327, 339
Gel, 78, 114
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Gene(s), 15, 52-58, 70, 74, 148, 162, 163,
170, 189, 192, 196-198, 200, 204,
213, 223, 229, 243, 244, 246,
255-260, 268, 269, 272, 336, 356, 358
conversion, 56
expression, 15, 52, 53, 55, 56, 163, 181,
189, 238
polarity, 52, 199, 259, 272, 356, 358
targeting, 118
Genetic(s)
analysis, 55, 259
control, 208, 358
information, 57, 74, 132
Genome, 50, 51, 57, 189, 191, 211, 223,
260, 336
Germ tube(s), 108, 155-157, 160, 161, 163,
171, 181, 184, 187, 188, 204, 206,
325, 348
Germination(s), 155-157, 160, 163, 187,
196, 204, 205, 209, 348, 349, 354
Gliding, 132, 133, 139, 142, 143, 346
Globin, 52
Globular, 76, 115, 117
molecules, 60, 76,77,106, 111,113,119
Glucans, 166, 184
Glucose, 64, 167, 168, 183
Glutamic acid, 62
Glycine, 39, 40, 41
Glycocalyx, 78, 81, 129
Glycolipids, 99, 353
Glycolysis, 73, 92, 215
Glycoproteins, 78, 80, 81, 98-100, 177, 347
Glyoxysomes, 103
Golgi (apparatus), 73, 74, 79, 95-104, 121,
148, 166, 175, 178, 206, 207, 216,
342, 343
vesicles, 97, 99-101, 164, 168, 178
Gradient(s), 14, 23, 54, 56, 72, 73, 82, 87,
93,104, 133, 139-142, 146, 160, 162,
163, 165, 170-172, 176, 180, 190,
195, 197-201, 205-207, 211, 215,
217, 222, 223, 230-233, 237, 239,
240, 247-250, 253, 255, 256, 261,
262,264,272, 338-341, 349, 354, 358
bioelectric, 354
differentiation, 197-200, 217
dissipation, 85
flowering, 239
inhibitor, 192

ionic (H*, Ca?*,Cl), 162, 163, 341,
349
light, 209
metabolic, 208, 217, 255
morphogens, 15, 222, 223, 230, 240,
247, 354, 358
polarity, 205, 340
proton(s), 82, 83, 102, 108, 237, 338
protoplasmic, 205
redox, 264
RNA, 198, 199
spatial, 180
Grafting, 14, 208, 212, 225, 233, 242,
245-247, 249, 265
Gramicidin, 86, 133
Gravitation, 26, 216
field, 216, 234, 354
forces, 19
Gravitropism (Geotropism), 237, 341, 354,
355
curvature, 168, 352
response, 168, 186, 236
Gravity, 19, 33, 39, 172, 173, 209, 216, 234,
237, 238, 264, 265, 327, 341, 354,
355
perception-sensor, 354, 355
signal-stimulus, 236, 354
Growth, 13, 52, 68, 81, 113, 114, 117, 119,
122, 129, 131, 134, 146-150, 152,
154,155,158-160, 162-166, 169-174,
176, 177, 179-188, 191-194, 201,
206, 208-210, 212, 224-226, 228,
230-234, 236, 237, 241, 271, 344,
345, 348-351, 353, 357
axis, 147, 160, 173, 183
cone(s), 176, 177, 179, 180, 342, 349,
350
differential, 186, 236, 237, 271
direction, 147, 148, 186
elongation, 182-186, 188, 349
factor(s), 148, 149, 181, 226, 232, 354,
355
inhibitors, 236, 351
orientation, 148, 185
pattern, 160, 175, 348, 349, 357
polar, 133, 147, 181, 348-351
zone, 165, 169, 181
GTP, 119-121, 149, 253
Gyrase, 51



SUBJECT INDEX 379

H, see Hydrogen
H-O (see also Water), 15, 17, 35-38, 78, 82,
271, 332-334
Hadrons, 17, 19, 20
Haem, 60, 62
Hair(s), 175, 176, 208, 210, 211, 221, 246,
261
Hair pin model, 82
Handedness, 43-45, 48, 268, 269, 334, 356,
357
Haploid, 137, 195
Hapten(s), 67, 66
Head (cephalon), 15, 26, 59, 63, 115-117,
130, 211, 213, 218, 247-251, 257,
258, 260, 273, 345, 358
gradient(s), 50, 51, 87, 113, 247-249
group(s), 76, 78, 340
regeneration, 249, 250
Heat, 29, 91, 190, 341
Helical (helicoidal), 50, 51, 55, 57, 59, 68,
70, 71, 86, 104, 115, 130, 131, 139,
267, 328, 334, 336, 345, 356, 357
DNA, 50
bacteria, 267, 356
protein, 59
Helix, 44, 45, 47, 49, 50, 53, 58-60, 70, 71,
86, 87, 139, 327, 336
alpha, 76, 86, 106, 117
dipole(s), 58, 59
double, 49, 50, 113, 336
Heme, 63, 66
Heterobipolar, 39, 41, 147, 181, 200-221,
326
Heterogeneity, 79, 171, 172, 195
Heterocysts (Cyanobacteria), 191, 192
Heterotrichous, 169
Histidine, 40, 65, 140, 337
Hole(s), 22-24, 51, 109, 330
Homeobox, 260, 350
Homeodomain, 260
Homeotic mutants, 256, 260
Homobipolar, 13, 39, 147, 148, 181, 185,
245, 326
Hormone(s), 93, 95, 101, 102, 172, 186,
209, 220, 227, 230-234, 236, 239,
354, 355
Hyaloplasm, 72, 104, 111
Hydration, 34, 73, 76, 330, 333
Hydrocarbon, 39, 40,42, 43, 63, 76, 78, 109

Hydrogen
atomic (H), 13, 17, 18, 20-22, 27-29, 35,
37-40, 49, 50, 55, 58-61, 66-68, 75,
76, 82, 85-87, 101, 102, 107, 109,
116, 120, 142, 176, 186, 194, 199,
236, 265, 270, 271, 328, 337
bond(s), 34-37, 49, 55, 58, 63, 66,
76, 86, 96, 332, 333, 337
ionic (H*), 84, 109, 169, 175, 271
channels, 87
efflux, 235, 237
gradient(s), 84, 102, 235
pump (ATPase), 167, 220
molecular (H,), 17, 18, 82, 339
Hydrolytic (-ases), 65, 103
Hydronium (H,O%), 37, 38, 168, 333
Hydrophilic, 37, 39, 40, 63, 65, 75-77, 103,
106, 110, 249
Hydrophobic, 34, 37, 39, 40, 63, 65, 66, 75,
76, 78, 80, 84, 86, 96, 97, 106, 107,
141, 244
domain, 77
Hydroxy(l) (OH ), 37, 40, 68, 78, 82, 334
Hymenium, 226, 228
Hyperpolarization, 89, 90, 108, 141, 142,
154, 187, 221, 236, 340
Hypha(e), 63, 107, 129, 147, 157, 161-168,
174, 181, 192-194, 197, 199, 204,
205, 225, 226, 228, 271, 325, 349
apex, 165, 190, 197, 200, 349
pole, 204, 345
tip(s), 105, 162-168, 174, 193, 194, 228,
349, 352

Imaging, 124
Immunochemistry, 66, 67, 103
Immunofluorescence, 112, 117, 124, 152,
346
Incompatibility, 195, 196
Indole-3-acetic acid (IAA), 159, 186,
230-232, 234, 235, 340, 355
asymmetry, 237
Induction, 169, 200, 208, 215, 218, 222,
238, 239, 244, 246
endosporulation, 190
polarity, 266, 267
prespore, 244
Information, 18, 23, 43, 56, 70, 89, 103,
140, 144, 145, 149, 155, 162, 181,
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197, 198, 200, 211, 214, 224, 227,
236, 243, 259, 262, 343, 353
Inheritance, 218
Inhibition, 64, 93, 139, 148, 155, 195, 231,
248, 249, 344
contact, 80
Inhibitor(s) 85, 99, 126, 187, 189, 192, 206,
211, 226, 228, 247, 351, 352
Insulin, 100, 101, 220
Integrin, 81
Interface, 34, 61, 75, 334, 338
Intermediate filaments, 111
Interposon, 55
Intestinal, 219 :
Ion(s), 17, 25, 34, 37, 38, 41, 43, 65, 66, 68,
75, 82, 84-91, 93, 94, 102, 104, 110,
135, 141, 142, 207, 249, 327, 329,
333, 337, 340, 343, 355
Ionic
channel(s), 86-89, 91, 93-95, 154, 180,
340-342
concentration, 201
current flux(es), 110, 154, 181, 188, 230,
349
gradient(s), 85, 175, 230, 236, 237
permeability, 90
transport, 104, 107, 341
Ionization, 17, 31, 42, 237, 329
Ionophore(s), 101, 133, 139, 160, 163, 170,
253, 261, 346
Iron (Fe2*73+), 14, 25-27, 60, 66, 74, 84
Irradiation, 169, 209
Isoelectric pH, 41, 164
Isometric, 38, 70, 133, 149, 205, 271
growth, 155

Junctions, 112, 218, 267

K* (see also Potassium), 24, 40, 85, 87, 88,
91-94, 101, 106, 107, 141, 142, 154,
158, 175, 237, 333, 341
channels, 87, 88, 90-92, 94, 216, 221,
341
efflux, 194, 341
ionophore, 107
Keratocytes, 145
Kidney (renal), 104, 105, 137, 218, 220,
221, 353

Kinase(s), 95, 148, 149, 162
Kinesin, 101, 123, 163, 179, 345
Kinetics, 43, 64

Kinetochore(s), 120, 124-128, 345
Kinetosomes, 244

Label(l)ing, 118, 131, 150, 153, 166, 204,
350
Lactic acid, 45
Lamellar, 63, 76
Lamellipodia, 179, 180, 346
Lamina-Laminin, 219, 220, 255, 256
Laser light, 23, 31
Lateral-posterior direction, 265
Lattice, 22, 24, 35, 38, 50, 64, 68,72, 73,79,
101, 111, 329
Layer(s), 75, 78, 129, 134, 150, 184, 201,
221, 225, 227, 232, 239, 330
Leading edge, 112, 135, 137, 144-146, 180,
346, 347
Leaf (leaves), 197, 205, 211, 230-232, 235,
238, 239
Lectins, 79, 80
Left-right polarities, 267-270, 328, 356
Leucine, 40, 47, 48, 60, 87
Leukocytes, 133, 137, 139, 141, 142, 146,
346, 347
Li* (Lithium), 158, 217, 255
Life, 20, 34, 45, 46, 48, 74, 127, 138, 225,
229, 267, 271, 273, 327, 334, 358
Life cycle(s), 170, 238
Ligand(s), 66, 76, 79, 80, 81, 85, 101, 113,
141, 235, 337
Light, 17, 23, 30-33, 43, 44, 46-48, 51, 66,
74, 80, 81, 87, 89, 94, 108-111, 129,
132, 142-144, 154, 159, 160, 1691
170, 172, 174, 189, 194, 201,
205-210, 214-215, 226, 227, 236,
242,246, 258, 328-331, 340, 343, 352
bioelectric response, 239
energy, 84, 109
excitation, 111
perception, 89, 336
polarization, 30, 32, 47, 124, 158, 174,
209, 210, 331
transducers, 108
Limb, 223, 231, 265, 356
Lipid(s), 62, 63, 75-79, 97, 164, 177, 198,
331, 334, 338, 342, 344, 347
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bilayer(s) (see also membranes), 72,
75-78, 87, 123, 338
flow model, 347
mosaic model, 76-78
transport, 97
Lipophilic, 235, 348
Lipoprotein(s), 63, 77, 82
Liver, 105, 249, 270
Locomotion, 126, 130, 132-136, 138, 144,
145, 179
Lomasome, 155
Lymphocyte(s), 99
Lysosome(s), 62, 95, 98, 99, 103, 164, 178,
220
Lysozyme, 59, 183

Macroconidium (-ia), 155, 349
Macrodipoles, 60, 61
Macromolecule(s), 14, 15, 34, 49-71, 73,
75,79, 97, 155, 168, 170, 177, 206,
262, 271, 332, 336, 337, 358
conformation, 111
polarities, 49, 332, 358
signals, 89
Magnetic, 13, 24-28, 325, 330
dipole(s), 30, 330
field(s), 14, 21, 24-26, 28, 30, 48, 175,
327, 330, 331
moment(s), 27, 29, 331
monopole(s), 26, 27
particles, 108
polarization, 25-30, 330, 331
resonance, 30
Magnets, 13, 25, 27
Male, 161, 174, 197-200, 261, 327
gametangia, 192, 198, 199
gradient, 199
mitochondria, 198
mutant, 198
Maternal, 213, 218, 259, 267, 272
inheritance, 213, 214, 257, 259, 268, 269
mutations, 214, 256-259
Mating, 152-154, 195, 197, 269
type(s), 56, 195-197
Matrix, 42, 77, 78, 81, 84, 103, 105-107,
111, 130, 134, 181, 223, 255, 256,
347
Matter, 17-22, 24, 26, 27, 29, 44, 47, 67, 82,
147, 161, 271, 327-329, 334, 358

Mechanochemical
enzymes, 346
forces, 121, 123, 179, 180, 346
Mechanoelectric transducers, 221
Meiosis, 252
Membrane(s), 14, 63, 72-93, 95-102, 104,
106-111, 114, 115, 123, 130-133,
135, 137, 139-144, 148-150, 153,
154, 163, 177, 178, 180, 182, 186,
191, 201, 204, 218-220, 267, 333,
338-343, 346-348
apical, 98, 175, 220, 353
asymmetric, 168
cellular, 15, 34, 58, 75, 76, 81, 86, 88,
91-93, 95, 101, 104, 109, 115, 135,
149
differentiation, 99
domains, 204, 221
plasmic (see Plasma membrane)
polarity, 85, 110, 191, 338, 339
potential, 85-93, 106, 107, 146, 155-157,
167, 188, 236, 239, 338-342
primitive, 73
protein(s), 62, 76, 77, 79-81, 85, 96, 100,
103, 110, 175, 219, 221, 333, 343,
347
pump(s), 158, 167
receptor(s), 80, 89, 181
surface, 73-95, 101, 177, 332, 338-342
traffic-flow, 95, 102, 338, 347
Memory, 19, 23, 35, 95, 246, 329, 330
Meristem, 210, 223, 224, 230, 238, 239
cells, 147, 225, 230
Meromyosin, 112, 113, 121
Messenger RNA (mRNA), 53-55, 57, 58,
96, 155,177,208, 213,214, 216, 217,
257, 259, 261, 264, 272
polarity, 58
transport, 124
Messenger(s),
chemical 89, 93, 94
Metabolism, 14, 53, 72, 73, 82, 85, 89, 91,
96, 100, 103, 132, 169, 170, 190, 217,
228, 233, 247, 255
gradient(s), 208, 217, 247, 255
transport, 82, 83
Metal(s), 22, 25, 68, 249, 339
ion(s), 40, 60, 65, 74, 337
Metaphase, 120, 126, 128
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Methane, 38, 39
Methanol, 39
Methylation, 140, 348
Mg?* (magnesium), 81, 135
Microbial spores, 14, 154
Microbodies, 103
Microconidium (-ia), 193
Microfibril(s), 162, 176, 211
Microfilament(s) (see also Actin-Myosin),
15, 81, 99, 111-113, 115, 117, 119,
121, 129, 130, 134, 138, 144, 157,
163, 164, 175, 177, 188, 199, 200,
211, 253, 267, 325, 344-346, 348, 350
associated protein, 116
Microgravity, 236, 354
Micropolarity, 338
Microinjection, 142, 259
Microspikes, 179
Microtrabecular lattice, 73, 111
Microtubule(s) (see also Tubulins), 15, 81,
95, 101, 105, 111-113, 118-129, 132,
138, 139, 141, 144-146, 148,
151-154, 157, 163, 164, 166, 167,
173, 176-180, 186-189, 193, 199,
200, 206, 211, 222, 229, 251, 253,
271, 325, 342-344, 350, 357
apical, 166
assembly-polymerization, 119, 121,
126, 187, 189, 222, 345
inhibitor, 152, 187
MAPs (-associated proteins), 118, 350
organizing centre (MTOC), 99, 121,
342, 343
polarity, 121, 122, 126, 127
Microvillus, 115
Microwave(s), 17, 37, 327
Mirror-image, 18, 44, 45, 69, 246, 268, 270,
334
Mitochondria, 74, 82-84, 96, 97, 103-108,
110, 122, 130, 146, 154-157, 164,
176, 168, 170, 173-175, 178, 179,
184, 188, 190, 198, 205, 206, 209,
215, 218, 221, 261, 264, 336
apical-subapical, 155, 167
ATP (ATPase H* pump), 82-85
bipolarity, 108
Ca’*, 106
membrane(s), 83, 104, 107, 108
segregation, 198, 199, 261

Mitogenic, 199
Mitotic
figures, 104, 122-128, 139, 151, 172, 345
spindle, 112, 120, 124, 125, 151, 201,
345
Model(s), 19, 25, 49-51, 56, 61, 67, 70,
75-78, 83, 86-88, 95, 97, 99, 101,
103, 108, 117, 122, 124-126, 128,
130, 132, 135, 137-139, 141-143,
152, 157, 162, 167, 179, 183, 190,
191, 199, 206, 210, 219, 224, 228,
235, 237, 241, 243, 245, 247, 250,
254, 256, 260, 269, 332, 333, 340,
341, 347, 352, 356, 358
cell growth, 182, 183
membrane systems, 108, 109, 338
polarity, 22, 34, 88, 167, 183, 217, 220,
240, 246, 250, 356, 358
Modelling, 61, 67, 338
Molecular, 13, 14, 25, 29, 30, 34,41, 42, 44,
46, 47, 50-52, 62, 63, 64, 66, 67, 69,
71, 72,75, 77, 85, 89, 94, 100, 109,
110, 112, 117, 131, 140, 144, 145,
158, 170, 176, 177, 180, 189, 192,
215, 240, 243, 244, 256, 269, 271,
272, 332-335
chirality, 43-48, 334-335
dipoles, 15, 33-43, 332
movement, 14, 33, 37
orientation, 14
polarity, 119, 121, 358
self-assembly, 350
structure, 13, 62, 85, 337
Monensin, 99, 101
Monoaxial patterns, 241-250
Monopodial, 133, 138
Monopolar, 130, 132, 147-181, 197, 202,
272, 325, 348-351
apical growth, 163-181, 197, 348, 349
assembly, 70
axiation, 107, 348, 349
budding, 153
differentiation, 202
dominance, 163, 188, 271
germination, 155, 158, 171
growth, 162, 167, 227, 348, 350
molecules, 39
outgrowth, 149-163
pattern(s), 192-195, 352
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regeneration, 251
Monopolarity, 133, 165, 187, 352
Monopole(s), 13, 27, 39, 61, 325
Morphogen(s), 14, 223, 228, 239, 240, 244,
249, 250, 253, 256, 259, 265, 272,
345, 356
gradient, 14, 256
transport, 248
Morphogenetic, 149, 151, 154, 162, 193,
200, 208, 209, 212, 213, 222-270,
273, 325, 354-358
determinants, 213, 253
factor, 265
field(s), 14, 228, 245, 251
gradient(s), 217, 250, 255, 256, 264, 358
movement(s), 241, 264
mutants, 154, 245, 257
polarizations, 222-270, 354-358
signal, 127
substances, 14, 354, 355
Morphopoiesis, 70, 337
Morula, 266
Mosaic model, 76, 77
Moss(es),
leaves, 211
protonema, 172, 173, 208-210
spores, 160, 208
Motion, 37, 43, 47, 51, 91, 110, 118, 125,
131, 132, 135, 137, 139, 143, 146,
179, 329, 332
Motor, 93, 94, 114, 118, 123, 131, 132, 140,
142, 143, 167, 179, 341, 343
Movement(s), 14, 38, 52, 62, 81, 87, 88, 90,
100-102, 112-116, 118, 120-123,
125-146, 151, 162, 175, 178, 180,
195, 214, 222, 231, 234, 262, 263,
332, 336, 346, 347
auxin(s), 230, 233, 237, 354
cytoplasm, 263
intracellular, 114, 130, 346
polarity, 126, 266, 346, 347

Mucopolysaccharides, 64, 78

Multipolar, 147, 187, 188, 226, 326, 332,
348
budding, 187, 247
germination (outgrowth), 147, 187,
188, 348
moment, 33, 332

Muscle(s), 85, 88-90, 93, 104-106, 112,
114-117, 179, 190, 247, 340, 344
Mutant(s), 53, 54, 56, 58, 59, 118, 132, 140,
142, 151, 152, 154, 183, 187, 188,
193, 204, 226, 245-247, 256-261,
268, 337, 344, 347, 355, 356
embryos, 257
morphological, 245, 256-261
Mutation(s), 53-55, 58, 70, 88, 154, 213,
252, 256, 257, 259, 260, 268, 269,
336, 356
Mycelium, 164-166, 193, 226, 340
Myelin, 351
Myofibril(s), 104
Myoplasm, 215, 216, 261
Mpyosin, 15, 80, 81, 111-118, 125, 129, 130,
134, 163, 167, 168, 179, 180, 211,
344-347, 358
gene, 118
kinase, 116, 118
fungal (myosin-like protein), 118
Myxamoeba, 124

N, see Nitrogen
Na*, 37, 85, 89, 91-93, 106, 142, 158, 333
-ATPase (pump), 91, 92, 221
channels, 87, 91-94, 216
NAD, 82, 84
NADH, 186, 338, 340
NADP, 84
NADPH, 109
Negative, 18, 19, 22, 33, 35, 39, 41, 51, 53,
61, 68, 70, 85, 88, 90, 92, 94, 106,
108, 109, 131, 136, 140, 142, 143,
148, 167, 229, 325, 326, 330, 339,
3435, 354
charge(s), 20, 33-35, 39, 40, 57, 64, 67,
82, 90, 108, 167, 175, 328, 345
electric potential, 235, 237, 327, 341
electrode, 209
Nerve(s), 68, 85, 86, 93, 149, 180, 181, 249,
252, 262, 342, 349, 350
conduction, 91
growth factor (NGF), 181
induction, 238
Neurite(s), 126, 176-181, 271, 325, 342,
349-351
Neuron(s), 87, 88, 90-95, 146, 176-181, 346,
350
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cytoskeleton-neurofilaments, 177, 179,
180
Neurotransmitter(s), 93-95, 102, 177, 178
Neutron, 17, 22, 329, 333
NH; (NHJ), 38, 271, 353
Nigericin, 107, 108
Nitrogen (N,), 40, 58, 60, 165, 192
fixing cell, 191
Nuclear, 20, 30, 43, 45, 47, 57, 135, 164,
169, 171, 198, 205, 208, 209, 244,
271, 327-329, 331, 345
cap(s), 199
differentiation, 193, 254
dipoles, 30
division, 125, 152, 205
fusion, 345
magnetic resonance (NMR), 30, 73, 78,
331, 333, 340
matter, 17, 18
membrane, 74, 95, 96, 128, 148, 151,
152
pore(s), 123, 124
Nucleation, 81, 114, 127, 128, 134, 344
Nucleus (nuclei), 17, 19-21, 28-30, 33, 35,
38, 72-74, 89, 97, 101, 104, 112-114,
123-128, 130, 137, 145, 146,
148-150, 152, 158, 161, 170-173,
188, 189, 193, 195, 198-200, 205,
206, 208-211, 214, 216, 218, 225,
236, 244, 252, 255, 258, 259, 271,
327-329, 331, 345
Nucleic acid(s) (see also DNA, RNA), 15,
49- 58, 69, 70, 74, 75, 214, 332, 336,
337
Nucleosomes, 53
Nucleosynthesis, 17
Nucleotide(s), 51, 57, 73, 119, 139, 157,
174, 256
Nutrient(s), 60, 93, 101, 169, 175, 203, 348

0O, see Oxygen

Oligosaccharides, 75, 79

Ontogenesis (ontogeny), 160, 193, 224

QOoplasm, 215, 216, 254, 261

Operon, 53-55

Optical, 23, 30, 44, 45, 48,61, 119, 155, 328

Oral (structures), 244-246

Organelle(s), 72, 89, 94, 96, 97, 100-102,
103-112, 118, 122, 123, 127, 130,

131, 138, 145, 146, 342-344, 349,
354

Organizer (organizing center), 124, 238,
241

Orientation, 13, 14, 29, 33, 41, 43, 62, 63,
79,104,112,114,116, 121,122,126,
132, 142, 143, 148, 151, 158, 159,
183, 185, 186, 190, 191, 205, 206,
208, 211, 212, 229, 238, 244, 261,
262, 331, 332, 336, 341

Oscillator, 89

Osmotic pressure, 182, 193, 237

Outgrowth(s), 108, 138, 149, 155, 157, 159,
160, 161, 169, 170, 180, 181, 184,
210, 232, 342, 348, 352

Oxalic acid, 39

Oxidation, 110, 340

phosphorylation, 85, 99, 106
reduction potential(s), 162, 166, 339

Oxygen (0-0,), 24, 25, 35, 37, 40, 58, 60,
65, 66,82,91,92,162, 186, 192, 198,
327, 332, 339, 340, 343

Pancreas, 220
Parallel
dipoles, 38
polarity, SO
Paramagnetic, 26, 30
Paramyosin, 117
Parenchyma, 147, 233
Parity, 18, 44, 45, 47, 327-330, 334
Particle(s), 17-22, 26-31, 34, 43, 44, 48, 67,
69-71, 77, 111, 122, 131, 133, 201,
207, 271, 327-329
Patches, 80, 81
Pattern(s), 13, 14, 26,61, 72, 115, 119, 131,
137, 138, 143, 145, 152, 154, 155,
159, 160, 165, 170, 172, 175,
182-185, 188, 189, 192-200, 207,
212, 215-217, 222, 223, 227, 228,
236, 238, 240, 241, 244, 246, 249,
250, 255, 256, 259, 260, 265, 268,
271, 272, 348, 349, 356, 357
formation, 154, 215, 222, 238, 247
polarizing current, 231
regulation, 217, 240, 241
Pennate, 147, 184
Peptide(s), 45, 53, 58-60, 62, 66, 80, 86, 87,
95, 107, 181, 249, 343
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dipole(s), 59, 60
Peptidoglycan, 182
Perception, 236, 340, 343, 354, 355
Periodic, 88, 330, 336
Periplasm, 60, 194
Permeability, 82, 85, 87, 89, 91, 338
Peroxide(s)-Peroxidase(s), 65, 66, 164
Peroxisomes, 103
pH, 37, 40, 41, 50, 80, 82, 84, 101, 106, 129,
159, 163, 166, 185-187, 201, 206,
220, 223, 230, 235, 237, 340, 353
gradient, 84, 101, 102, 109, 159, 235
intracellular, 168
Phage(s), 53, 70, 71, 182, 337
Phalloidin, 116, 152, 153, 174
Phialide, 193
Phloem, 233
Phosphate(s), 40, 70, 55, 62, 63, 92, 100,
103, 149, 166
Phospholipase, 88
Phospholipid(s), 62, 63, 65, 75-78, 80, 96,
97, 107, 109, 338, 339
Phosphoprotein, 177, 346
Phosphorylation, 64, 84,94, 103, 117, 118,
134, 140, 141, 181
Photo-
chemistry, 42, 47, 48, 108
excitation, 42
periodic induction, 239
polarization, 206
receptor(s), 89, 111, 142
dipoles, 174
synthesis, 43, 47, 48, 108-111, 142
apparatus, 74
magnetic particles, 108
reaction center, 110
system(s), 110, 343
taxis, 142, 143
transducers, 74
voltaic, 108
Photon(s), 17, 21-23, 27, 30-32, 47, 89,
108-111, 209, 329
Phycobilisomes, 111
Phyllotaxis, 197, 232
Phytochrome, 89, 174, 239, 340
Pigment(s), 81, 89, 100, 110, 142, 207, 213,
217, 242, 261, 269, 336, 340, 343
blue-green, 132, 133, 143

brown, 91, 159, 160, 169, 172, 195, 224,
244, 349
green, 119, 130, 143, 147, 169, 170, 185,
188, 190, 208, 228, 340, 341, 349
grey, 255, 262, 263
orange, 198, 199, 216, 254, 261, 262
red, 75, 111, 172, 185, 216, 220, 349,
353
yellow, 147, 169, 195, 216, 261,
Pinocytosis, 95
Plant(s), 13, 15, 32, 73, 79, 80, 89, 91, 101,
102, 124, 129, 147, 161, 169, 170,
172, 175, 185, 186, 189, 197, 200,
204, 208-210, 212, 222-225, 229-233,
235, 236, 238, 239, 268, 325, 340,
343, 354, 355
axis, 229, 233
cell elongation, 185
eggs-embryo, 154, 225, 325
growth substance(s), 186, 235, 355
Plasma membrane, 63, 74, 75, 77, 78,
80-82, 85, 89-91, 95, 97, 99-104, 106,
111, 112, 115, 132, 134-136, 141,
143, 149, 150, 154, 157, 162, 166,
173, 175, 185, 186, 195, 207, 216,
218, 219, 235, 269, 338, 352-355
domain(s), 218-220
polarization, 220
Plasma, 24, 137, 214, 327
Plasmalemma, 98, 142, 144, 164, 166, 167,
173-176, 180, 184, 194, 235-237,
254, 338
Plasmid, 118
Plasmodium, 129, 133, 143
Plate(s), 32, 60, 70, 131, 174, 221, 228
Polar, 13, 14, 33, 35, 37-41, 43, 53-55, 58,
60-62, 64, 66-68, 70, 73, 75, 76, 78,
80, 83, 86, 87,97, 108,111,112, 115,
117, 119, 120, 125, 128-131, 135,
136, 137, 140, 143-145, 154, 160,
163, 166, 170, 172, 173, 181, 183,
189, 191, 198, 199, 201, 204, 211,
214, 215, 224-226, 228, 232-236,
241, 242, 244, 246, 247, 249, 267,
268,271, 272, 331, 346-349, 352-354
blastomeres, 264
assembly, 179, 202
auxin transport, 233-235, 354
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axiation, 13, 81, 147, 154, 160, 165, 173,

174, 200, 201, 206, 207, 212, 224,
228, 241, 242, 257, 258, 263, 265,
266, 271, 346, 353, 355

bodies, 212, 218, 266
bonds, 76

budding, 151

cell(s), 97, 176, 217-222, 266

development, 73

differentiation, 189, 193, 195, 201,
346

divisions, 157, 158, 205, 210, 211,
225

growth, 147, 151, 164, 173, 176,
186, 194, 348

movements, 15, 84, 112, 162, 232,
233, 266

265-267, 271-273, 325-330, 332-334,

336-358
cellular, 157, 158, 229, 240

control(s), 22, 56, 62, 143, 157, 171,
222, 236, 238, 244, 245, 248, 256,

257
cytoplasmic, 210, 211, 262

developmental, 227, 257, 352
egg(s), 157-159, 210-212, 253-259
embryonic, 224, 225, 249, 257
hyphal, 166, 348, 349

intrinsic, 14, 15, 51, 115, 119-121, 132,
182, 244, 245, 248, 250, 271, 272,

358
inverse, 49, 58, 242

macromolecular, 14, 332, 334, 358
organismic, 225-239, 358
pigments, 216, 261, 340, 343

conduction, 38
cytoplasm, 13, 200, 208, 214, 215
domain(s), 64, 107, 203

elongation, 161, 171, 173, 180, 181,

195, 201
genes, 259

gradient(s), 173, 176, 205, 234, 264, 345

granules, 256

group(s), 50, 55, 63, 75-78
liquid(s), 37, 68

lobe(s); 213, 252, 253, 255, 269

replication, 52
reversal, 14, 50, 51, 92, 133, 141, 143,

174, 207, 220, 232-234, 247, 265,
268, 272, 343

systems, 244
tissular, 14, 262
Polarizability, 332

Polarizable particles, 19, 23, 34, 330, 332
Polarization, 14, 17, 18, 24, 29-34, 37, 40,

molecules, 14, 33, 35, 37-41, 43, 62, 63,

78, 80, 350
mutants, 34
pattern(s), 14, 26, 222, 239, 241
polymerization, 114
regeneration, 166, 234, 246, 251
segregation, 199, 343, 345
signal, 157, 261
site, 154

arimetry, 32, 331

41, 43, 45, 47, 48, 56, 89, 99, 101,
104, 105, 107, 109, 123, 127, 132,
137, 141, 145, 146, 149, 152, 155,
157-160, 177, 186, 205, 209, 210,
212, 216, 218, 220, 230, 254, 264,
266, 267, 327-333, 338-345, 348,
352-358

analyzers, 32

field, 18

light, 30-32, 331
magnetic, 25-30, 330, 331

Polarized, 13, 15, 23, 25, 28, 29, 31-34, 40,

Polarity, 13-15, 18, 23, 25, 34, 37, 40, 43,

50-57, 60-62, 66, 67, 72, 79, 81, 82,
86, 94, 98, 99, 101, 102, 107,
112-122, 124, 126-134, 137, 138,
143-145, 147, 148, 154, 157-160,
165, 166, 168-176, 179, 181, 183,
185-191, 200, 201, 204-210, 212,
214, 216-218, 220-222, 224, 225,
227-229, 231-234, 236, 238, 239,
241,242, 244-252, 256-258, 260-263,

47, 48, 50, 52, 60, 61, 64, 65, 79, 80,
97-99, 104, 106, 111, 113, 126, 131,
134, 138, 141, 142, 144, 145, 153,
155, 161, 162, 165, 166, 169, 173,
176, 198, 201, 211, 216, 218-221,
232, 240-243, 247, 256, 259, 265,
271, 273, 325-331, 336-341, 344,
345, 349, 350, 352, 353

actin, 168, 344
beams of particles, 30
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bonds, 62, 85
communication, 243
conductivity, 22-25, 329, 330
control, 56
direction, 230
enzymatic reactions, 64, 65
flow, 180
form, 177
gas, 29
genetic expression, 198, 199, 358
growth, 15, 118, 129, 149, 155, 183,
226, 348-351
ionic regulation, 232
light, 32, 47, 124, 158, 174, 209, 210
movements, 126, 266
organelles arrangement, 180
organization, 14, 148, 172, 195, 236,
241, 246
orientation, 104
photons, 45, 329
secretion, 101, 220, 342, 343
spores, 155-157, 187
synapses, 93
translocation-transport, 62, 84, 101,
106, 107, 166, 178, 229, 233-236, 272
Polarizing field, 34
region(s), 265, 356
Polarography, 339
Polaron(s), 24, 51, 56, 68
Polarotropism, 174
Pole(s), 13, 14, 27, 33, 41, 49, 72, 82, 100,
107, 120, 124-126, 128, 130, 150,
158-161, 167, 171, 181-184, 190,
201, 204, 212-215, 217, 219, 220,
224, 229, 249, 254-256, 259, 263,
272, 325, 345, 352-355
north/south, 13, 28, 175, 246, 249, 325
rhizoidal, 158, 204-210, 352
thallic, 181, 204-210, 352
Poleward(s), 125-128, 345
Pollen
grain(s), 161, 163, 175, 205
tube(s), 147, 161, 164, 169, 174, 175,
186
Polyamine(s), 155, 348
Polyglutamic acid, 135
Polymer(s), 15, 64, 67, 68, 78, 112-114,
119, 121, 135, 183, 345

Polymerization, 15, 47, 70, 112-114,
119-121, 128, 131, 134, 179, 344-345
Polypeptides, 45, 55, 68, 196
Polypodial, 133
Polypolarity (also Multipolar), 133, 147,
326, 332
Polyribosome(s), 96, 103, 264
Polysaccharide(s), 64, 134, 153, 175, 187,
206, 237, 355
Pore(s), 75, 79, 86, 87, 99, 123, 124, 155,
160, 211
Porphyrin(s), 42, 60, 74
Positional, 117, 172, 176, 180, 197, 199,
223, 227, 241, 243, 244, 247, 256,
265, 358
control(s), 195, 222, 231, 243
DNA, 198, 199, 336, 358
information, 14, 173, 197, 209, 211,
223, 228, 240, 252, 260
Positive, 18-20, 22, 33, 35, 39, 40, 61, 65,
67, 68,70, 83,87,90,91, 93, 94, 102,
107-109, 140, 142-144, 148, 167,
168, 170, 325-327, 336-340
charge(s), 20, 33, 35, 59, 68, 71, 82, 91,
94, 168, 327-329, 338, 343
current, 161, 175, 194
electric potential, 235
electrode, 209
feedback, 230
gravitropism, 236, 237
hole(s), 22, 108, 109
ions, 236
Positron(s), 17-19, 21, 22, 31, 44, 271, 327,
334
Posterior, 256
pole, 213, 229, 245, 246, 256, 258, 263
region-segment, 244, 245, 250, 251,
257, 258, 261, 262-265, 346
structures, 252, 259, 346
Postsynaptic, 93-95, 180
Potassium (see also K*), 24, 85, 91-94
Potential(s) (see also Electric-), 21, 30, 35,
42,66, 74, 84-86, 88, 90,91, 94, 109,
114, 131-133, 136, 142, 146, 148,
170, 176, 180, 225, 237, 243, 253,
272, 338-341, 346
depolarization, 236, 334, 346
difference(s), 89, 170, 230
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gradient(s), 93, 94, 109, 170
polarization, 340
Prebiotic, 46-48, 57, 73
Precursor(s), 14, 57, 70, 74, 82, 103, 107,
124, 144, 166, 183, 191, 233, 252
Prepolar organization, 218
Pressure (see also Osmotic), 23, 35, 133,
182, 185, 193, 194, 237
Presynaptic, 93-95, 108
Primitive, 39, 73, 74, 108, 132, 137, 190,
265, 266
environment, 46
Probe(s) (see also Fluorescence), 50, 61,
152, 174, 204, 207, 340
Profilin, 114
Promotor, 52, 53, 55
Protease, 194, 259, 337
Protein(s), 13, 15, 34, 38, 45, 50-53, 55-63,
66, 68-83, 86, 87, 89, 94-104, 106,
107, 109-119, 122-124, 126, 129,
131, 132, 134-136, 139, 140, 148,
149, 151, 154, 155, 158, 161-163,
168, 169, 172, 174, 175, 177,
179-181, 198, 203, 204, 214,
218-221, 225, 235, 237, 243, 244,
256-261, 264, 269, 333, 336, 337,
339, 342-346, 350, 353
Proteoglycans, 78, 99, 219
Prothallia, 173, 174, 209
Proton(s), 13, 17-22, 27, 29, 30, 35, 37, 38,
41, 44, 60, 65, 82, 83, 87, 102, 106,
108-110, 132, 140, 142, 143, 167,
168, 175, 176, 186, 220, 230, 235,
271, 325, 333, 338, 339, 341, 343,
349
flow, 22, 176, 339
gradient(s), 82, 83, 102, 108, 235, 237,
335, 339
motor, 167
pump(s), 82, 102, 186, 220, 341
sink(s), 167, 168, 185
Protonema, 172, 173, 208-210
Protonmotive force, 84, 106
Protonophore(s), 108, 346
Protonation, 50, 154
Protoplasm, 13, 34, 72, 129, 133, 159, 165,
194, 205, 211
Protoplast(s), 78, 79, 162, 167, 202, 230,
237

Pseudoplasmodium, 241-243

Pseudopodium-pseudopodia, 126, 133,
134, 136, 138, 326, 342

Pump(s), 82, 93, 102, 106, 154, 158, 186,
220, 231, 341, 355

Purines, 49

Pyrimidines, 49

Pyrite, 108

Quadrupole(s), 38, 326, 331, 333, 340

Quantization, 19, 20, 29

Quantum, 17, 24, 26, 27, 29-31, 67,42, 109,
329, 333

Quantum mechanics, 272, 328, 329, 333

Quantum theory, 29, 333

Quark(s), 19, 20, 329

Quartz crystal(s), 46

Quinone, 42

Racemic, 45-48
Radial, 112, 241, 148, 226, 262, 264, 271
Radiation(s), 17, 21, 25, 30, 33, 45, 47, 48,
67, 327, 331
Reaction
center(s), 110, 111, 343
-diffusion, 247, 249, 250
transfer, 339
Reactivity, 50, 337
Receptor(s), 60, 80-82, 93-96, 101-103, 107,
134, 135, 139-141, 143, 217, 220,
221, 235, 340, 341, 354, 355
Recognition
sequence, 336
system(s), 51, 57, 58, 79, 81, 96, 162
Red light, 89, 142, 174
Redox, 17, 61, 68, 74, 82, 143, 166, 186,
223, 264, 327, 339
Reduction, 54, 82, 84, 90, 91, 109, 110, 264
Regeneration, 13, 92, 132, 170-173, 177,
207, 225, 230, 240, 242, 245-248,
250, 251, 351, 352
Regulation, 51, 54, 86, 91, 114, 148, 157,
162, 184, 188, 189, 203, 350
Relativity, 17
Relaxation, 24, 42, 111, 133, 136, 340
Replication, 52, 53, 74
Reproduction, 172, 197-200, 238, 241
Resistance, 50, 67, 216
Respiration, 82, 103, 106, 166, 187, 188,
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190, 198, 200, 215
Retina cells, 104, 181, 236
Retinal, 89, 341
Retinoic acid(s), 240, 244
Rhizoid(s), 147, 158-160, 164, 168-173,
181, 201, 204-210, 352, 353
elongation, 172
outgrowth, 205, 206, 352
Rhodamine, 152, 153, 155, 156, 174, 188
Rhodopsin, 81, 89, 141
Ribonucleic acid (RNA), 46, 52, 56-58, 70,
96, 124, 161, 166, 198, 199, 208, 214,
257, 336, 345
polymerase, 52, 57
viruses, 57
gradient, 198, 199
Ribosome(s), 58, 72, 83, 96, 97, 124, 172,
198, 199, 205
nuclear cap, 198
Root(s), 147, 163, 181, 185, 209, 210,
229-234, 236, 237, 268, 354, 355
apex, 225, 229, 231
cap, 176, 236, 355
hair(s), 147, 164, 169, 175, 176, 186,
205, 210, 211
meristem, 231
-shoot axis, 224, 225, 230
Rotation, 37, 44, 45, 52, 51, 64, 69, 139,
140, 245, 265, 268, 331, 333
Ruthenium red, 106

Sarcomere(s), 116-118, 344
Sarcoplasmic reticulum, 89, 340
Scaffolding, 70, 112
Scale(s), 18, 46, 82, 99, 100, 244, 327
Scattering, 23, 29-31, 124, 227, 343
Sclerotium, 226
Secretion, 86, 94, 98, 99, 101, 103, 104, 132,
137, 149, 150, 152, 177, 205, 207,
219, 220, 342, 343, 353
Segmentation, 169, 224, 259, 260
genes, 256, 259, 260
Segregation, 189, 200, 218
Self-assembly, 70, 189, 222, 357
Self-electrophoresis, 175
Semiconductor(s), 22, 68, 108, 329
Senescence, 238
Sensor(s), 141, 340, 341, 354, 355

Septation, 158, 181-183, 190, 191, 194, 195,
202, 205,
Sequence(s), 15, 50-58, 81, 86, 87, 94, 96,
97,107,121, 137,157, 165, 184, 196,
204, 220, 226, 231, 256, 258, 336
Serine, 40, 87, 141, 259, 337
Severin, 114, 343
Sex (differentiation-disjunction), 153, 174,
197-200, 358
Shoot, 172, 185, 209, 229, 231-235, 237,
353
apex, 225, 229, 231, 232, 238, 239
axis, 224, 225, 230
meristem, 231
Signal(s), 14, 53, 70, 81, 82, 87, 93, 95-97,
100, 101, 106, 107, 118, 138, 140,
142, 143, 145, 148, 179, 182, 203,
209, 230, 231, 236, 237, 239, 240,
243, 252, 253, 256, 265, 266, 342,
353-355
inhibition, 185
intracellular, 102
morphogens, 240
peptide(s), 82, 88, 97, 106
receptor-recognition, 96, 97
transduction, 79, 350
target protein, 103, 353
Silicon (silica), 22, 108, 184, 330
Simulation, 222
Sink(s), 92, 157, 167, 168, 185, 222, 233,
240
Size(s), 20, 27, 34, 35, 40, 81,93, 117, 137,
148, 149, 157, 161, 170, 173, 177,
182, 185, 189, 198, 200, 225, 228,
229, 240, 247, 250, 262, 331
Sliding, 76, 117, 120, 122, 125, 175, 345
Sodium (see also Na™*), 23, 49, 63, 68, 76,
90-93, 333, 341
Solar, 45, 48, 108, 109, 327, 330
Solitons, 51, 52, 68
Solvation, 333
Sorocarp(s), 241, 242
Sorting, 96-98, 100, 102, 103, 161, 177, 219,
220, 342, 343, 353
-out, 154, 198
Source(s), 22, 30, 45, 47, 48, 61, 92, 107,
132, 140-142, 173, 222, 233, 240,
206, 209, 328, 350
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Spatial, 14, 15, 85, 95, 110, 121, 140-142,
163, 180, 190, 203, 209, 214, 221,
223, 259, 265
asymmetry-symmetry, 69, 271
organization, 112, 239, 259, 348
pattern, 207, 240, 252
polarity, 214, 257, 259
segregation, 183
Spatio-temporal, 73, 325
Spectra-spectrum, 30, 31, 61, 86, 89, 108,
331-333
Spectrin, 112, 114, 221
Sperm, 89, 254, 261-263
cells, 161, 218
Spherical, 34, 40, 63, 68, 69, 108, 131, 147,
149-154, 158, 159, 161-163, 187,
204, 229, 264, 325, 330, 348
bud(s), 149, 157
growth, 157
stage, 154, 325
Spin(s) 17, 22, 25, 27-30, 43, 44, 140, 331,
333
Spindle, 120, 124-128, 345
pole bodies, 151-153
Spiral, 45, 245, 268
Spitzenkorper, 105, 164, 166
Sporangia, 191, 194, 195, 352
Sporangiospore(s)-phores, 157, 163, 352,
354
Spore(s) 13, 155, 160, 169, 172, 173, 181,
187, 190, 191, 194-196, 202-205,
208-210, 224, 228, 241, 325, 348, 349
differentiation, 202
germination, 155, 173, 208, 348
induction, 195
unpolarized, 205

Sporulation

endo-, 190-192, 202

exo-, 192-195, 352
Spreading, 145, 199, 350
Stability, 13, 18, 22, 69, 127, 132, 183, 229
Stars, 25
Statocyte(s), 236, 354, 355
Statolith(s), 168, 236, 355
Stereospecificity, 15, 44-46, 86
Steroids, 63, 78
Stimulation, 90, 92, 141, 148, 227, 235

Stimulus (Stimuli), 22, 86, 95, 139-141,
143, 145, 206, 210, 220, 221, 223,
239, 243, 253, 329, 341, 355
transducers, 236
Stomata, 205, 211
Stress, 115, 126, 147, 149, 182. 186
Structural proteins, 58, 73
Subapical, 155, 165, 168, 169, 173, 175,
235, 349
zone(s), 163, 164
Substitution, 54
Sucrose, 206, 207, 222
Sugar(s), 44-46, 60, 64, 73, 79, 165, 233,
334
Sulfur (SH,, SO,), 38, 84
Superconductivity, 23-25
Superoxide dismutase (SOD), 61, 66
Surface
charges, 237
membrane(s), 73, 81, 90, 91, 101, 177,
333, 337-339
potential(s), 230, 340
proteins, 77, 332, 337, 347
structures, 203
Symmetry, 13, 18, 19, 44, 45, 47, 51, 64,
68-70, 72, 79, 123, 147, 154, 158,
159, 182, 221, 226, 246, 262, 265,
327-330, 334, 336
bilateral, 328
mutant, 268
pattern, 255, 269, 330
radial, 226, 262
spatial, 69
Symport, 82, 167, 168
Synapse(s), 87, 93-95, 105, 122, 178, 180,
181
polarity, 177, 178
transmission, 94, 95, 180
vesicle(s), 90, 94, 177, 178
Synapsin, 94
Synthetic, 23, 52, 74, 77, 93, 109, 110, 166,
185, 198, 235
enzymes, 183
polymers, 67

Target(s), 30, 53, 81, 89, 96, 97, 99, 106,
122, 157, 162, 177, 178, 180, 181,
219, 230, 349, 350
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Targeting, 81, 97, 101-103, 107, 219
signal(s), 97, 103, 106, 353
Tartrate, 44
Taxis (Chemo-, Photo-), 139-144
Taxol, 121
Temperature, 17, 24, 25, 63, 68, 76, 80,
129, 154, 159, 161, 165, 175, 182,
187, 193, 226, 267, 268, 356
Template(s), 35, 52, 53, 55, 57, 58, 69, 122,
132, 243
Temporal, 15, 95, 133, 140, 141, 143, 163,
180, 190, 203, 251
Tetrahedral, 39, 64, 65, 332
Tetrapolarity, 196, 340
Thalli, 181, 204-210, 352
Theory, 14, 17, 20, 24-27, 31, 92, 131, 134,
223, 255, 327, 355
metabolic gradients, 247, 255
Thermodynamic(s), 14, 75, 128, 272, 337,
341
Thiol, 40, 162
Thylakoid(s), 74, 79, 108-110, 143, 343
Time, 17, 18, 30, 37, 51, 70, 72, 87, 92, 94,
96, 98, 102, 112, 124, 125, 139-141,
157, 159, 164, 175, 179, 181, 182,
190, 195, 200, 206, 207, 209, 210,
214, 215, 218, 226, 231, 234, 240,
244, 253, 257, 269, 270, 273, 330,
341
Tip(s), 114, 115, 131, 144, 164, 167-169,
173, 175, 176, 193, 195, 233, 349
acidic, 167, 168
growth, 150, 162, 163, 165, 167, 168,
169, 352
organelles, 167, 173, 178
Tissue(s), 62, 130, 137, 147, 169, 177, 186,
189, 201, 208, 224-228, 230-233,
237-240, 247-250
polarity, 230-234, 261, 262
regeneration, 241, 242, 248
Titanate, 23, 330
Topology, 26, 50, 83, 102, 162, 174, 191,
358
Torque(s), 36, 37, 140
Trace, 108
Traffic (intracellular), 97-100, 122, 148,
177, 256, 343
Tranducers, 109
Trans, 52, 97-101, 103, 260

Transcellular, 104, 137, 154, 168
calcium, 106
electrical potential, 170
ion current(s), 154, 161, 167, 349, 353
Transduction, 140, 142, 143, 236, 338, 348,
355, 358
Transformation, 80, 133, 137, 138, 139,
157, 162
Translation(s), 44, 51, 53-55, 58, 60, 69, 70,
96, 97, 132, 196, 214
Translocation, 51, 52, 54, 82, 83, 85, 96, 97,
106, 107, 123, 132, 169, 203, 204,
236, 239, 333
Transmembrane, 77, 81, 84, 86, 87, 90, 94,
102, 110, 132, 136, 140, 340, 341,
346, 353
domains, 261
potential(s), 89, 107, 339
receptor protein(s), 42, 77, 86, 90, 112
Transmission, 32, 86, 93-95, 105, 107, 343
Transport(s), 24, 60, 62, 78, 79, 82, 83, 85,
86, 89, 94, 97-106, 112, 122, 140,
143, 152, 163, 177-179, 191, 207,
219, 220, 231, 233, 235, 338, 341,
342, 343, 355
Transposons, 55, 336
Treadmilling, 113, 114, 118, 120, 125
Tree, 147
Triaxial patterns, 267-270, 356
Trichoblasts, 205, 211
Trichome, 107, 133, 143, 211
Trigger(s), 90, 93, 203, 215, 233, 239, 243
Triplet(s), 54, 57
Tripolar, 326, 329
Trophoblast, 266
Tropisms (tropic curvatures), 181, 235-238,
354-355
Tropomyosin, 114
Tubular, 70, 99, 104, 163, 252, 340, 341
Tubulin(s), 15, 81, 112, 114, 118-121, 125,
128, 129, 139, 151, 153, 163, 174,
177, 180, 187, 194, 200, 218, 325,
344, 349, 358
a- and B-, 111, 119, 121, 152
gene(s), 151, 187
membrane, 187
mutations, 193
Tumoral cells, 115, 149, 160
Tunnelling, 35, 38, 42, 67, 272, 336
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Turgor pressure, 147, 162, 166, 186, 187,
230

Uncoupling agents, 108

Unidirectional, 15, 90, 97, 107, 111, 115,
119, 120, 132, 136, 182, 345

Unification, 20, 26, 27, 45

Unipolar, 147, 183, 240

Unity, 20

Universe, 17-19, 26, 27, 45, 271, 327, 328

Unpolarized, 28, 62, 205, 212, 329

Uptake, 94, 102, 106, 110, 340

Urea, 115

UV-irradiation, 214, 215, 257, 258

Vacuole(s), 129, 130, 137, 155, 164, 173,
184, 185, 194, 195, 225, 244
Valence, 22, 23, 24, 68, 328
Valinomycin, 107, 108
Vascular systems, 224, 225, 229, 231-233,
237
Vector(s), 26-29, 33, 44, 249, 336, 350, 352
Vectorial, 79, 82, 85, 89, 124, 142, 151, 166,
219, 220
movement, 102, 200, 353
mitochondrion, 106
Vegetal, 212, 214-216, 253, 255
cortex, 214, 261
pole, 190, 212, 253-255, 261, 263, 264,
269
region, 217, 252, 255, 262
Vegetative, 147, 164, 165, 169, 190,
194-197, 203, 208, 226, 229, 231,
238, 239, 241, 352
buds, 239
cell(s), 161, 191, 192, 202, 205, 228
differentiation, 193
growth, 238, 241
pole, 161
Ventral, 231, 256, 263
Vesicle(s), 74, 85, 94, 95, 97-102, 105, 110,
122-124, 137, 151, 153, 155, 157,
161-164, 166-168,173, 175, 177-180,
183, 184, 194, 195, 204, 206, 207,
215, 235, 340, 342-345
membrane, 102, 109, 342
secretion (granules), 101, 207
transport, 151

Vibrating probe (electrode), 154, 168, 194,

207, 230
Villin, 114
Vimentin, 111
Vinculin, 144
Virus(es), 57, 69-71, 117, 219
DNA, 58, 337
form (TMV), 69, 70
RNA, 57
Vision, 89
Vitamin B,, 160
Vitellogenesis, 100
Voltage gradient, 167

Wall(s), 15, 100, 129, 133, 134, 148,
150-153, 155, 157-159, 161, 162,
165-168, 175, 176, 182, 183, 1885,
186, 193-195, 199, 206, 207,
209-212, 224, 225, 230, 236, 237,
256, 267, 341

apical, 164, 166

cell, 64, 79, 149-155, 157, 162, 166, 169,
175, 176, 183-187, 189, 201, 203,
206, 207, 211, 222, 223, 226, 230,
235, 352, 356

vesicles, 167

Water (see also H,O), 17, 34-41, 51, 55,
58-68, 73, 75-77, 104, 110, 155, 159,
169, 175, 228, 233, 246, 268, 325,
327, 332-334, 338, 343, 352

cell, 331
dipolar, 34-38, 332, 333, 338
-splitting, 343
surface-interfaces, 63, 76, 333, 338
Wing, 240, 260, 261, 265
Wound, 176, 250, 251, 341

X-ray(s), 35, 37, 78, 86, 110
Xylem, 233

Yeast(s)
budding(s), 150, 154, 184, 187, 344, 348
cell cycle, 151-154
cell polarity, 152, 161
cytoskeletal network, 342, 344, 348
elongation (fission-), 183, 184
forms, 161-163
mating, 152-154, 195-197
Yellow egg crescent, 216, 261



SUBJECT INDEX 393

Yin-Yang, 13, 138, 148, 271 exclusion (mitochondria), 103-105,
Yolk, 190, 212, 216-218, 269, 270 166-168, 193
Zoospore(s), 134, 169, 195, 204
Zinc (Zn?"), 58, 59, 61, 337 Zwitterion, 41
Zone(s) (cellular zonation), 104, 117, 129, Zygospore, 169
133, 134, 161, 165, 168, 171, Zygote(s), 151, 158-160, 169-171, 184, 195,
173-178, 185, 195, 199, 214, 230, 196, 201, 204-207, 210, 213, 214,
236, 237, 245, 248, 256, 262, 350, 224, 225, 252
352, 356 differentiation, 14

elongation, 230 germination, 205
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Acanthamoeba, 116, 344, 346
Acetabularia, 170, 171
A. mediterranea, 208
A. Wettsteinii, 208
Achlya, 194
A. bisexualis, 165,
A. debaryana, 194
Actinomycetes, 164
Agaricus, 226, 227
A. bisporus, 225, 226
Agrobacterium tumefaciens, 164
Algae, 73, 130, 132, 147, 168, 181, 188, 228,
229, 340, 341, 344, 346, 352, 353
Allium, 211
Allomyces, 147, 166, 181, 192, 194, 195,
197, 199, 200, 204, 205, 349, 358
A. arbuscula, 194, 197-199
A. javanicus (hybrid), 199
A. macrogynus, 197, 199
Amblystoma mexicanum, 262
Amoebae, 133, 134, 136, 138-141, 243, 326
Amoeba proteus, 134, 136, 143
Amphibians, 204, 212, 216, 217, 223, 238,
262-264, 270, 272, 355
Anabaena, 192
Anise, 349
Anthoceros, 225
Aquaspirilla, 267
Arabidopsis thaliana, 355
Arthrobacter, 164
Arthropods, 355
Ascaris, 252
Ascidians, 215, 216, 254, 261, 262, 272
Ascobolus, 56
A. immersus, 56
Ascomycetes, 155, 196
Aspergilli, 193
A. nidulans, 193, 345
A. aureolatus, 193
Azolla, 268

Bacillus, 167, 202
B. brevis, 86
B. subtilis, 182, 191, 267, 356
Bacteria, 41, 53, 55, 60, 103, 110, 130-132,
139, 140, 149, 150, 164, 182, 190,
201, 267, 356
budding, 149, 150
helical, 267, 356
photosynthetic, 110
Bacteriophages (fd, 1), 53, 69-71, 337
Basidiomycetes, 225, 226, 228
Bipolaris, 184
Birds (chick), 81, 121, 146, 181, 217, 265,
266
Blastocaulis, 150
Blastocladiella emersonii, 194
Blepharisma, 268
Boltenia, 216, 254
B. villosa, 261
Botrydium, 169
Botrytis cinerea, 187, 334

Caenorhabditis elegans, 213, 251, 252

Callitriche, 211

Candida albicans, 162, 163, 348

Capsella bursa-pastoris, 225

Caulerpa, 344

Caulobacteria, 201-203

Caulobacter crescentus, 202, 203

Cecidomyids, 214

Chaetophorales, 169

Chaos chaos, 137

Characeae, 168, 338

Chara, 130, 163, 168, 169, 205

Chick, 266

Chironomids, 215

Chlamydomonas, 119, 121, 132, 143, 228,
346

Chlorococcales, 229

Chlorophyceae (Green algae), 119, 130,
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143, 147, 169, 170, 185, 188, 190,
208, 228, 340, 341, 342, 344, 346
Ciliates, 244
Cladophorales, 147

Cladophora glomerata, 207
Clavelina, 262
Coleoptera, 214

Chrysomelid, 214
Coelenterates, 246, 250
Conjugatophyceae, 340
Coprinus, 225, 226

C. cinereus, 226, 352

C. congregatus, 226

C. stercorarius, 225
Corn (see also Zea), 354
Corynebacterium, 164
Cryptogams (see also ferns and mosses),

181, 208 ,
Cyanobacteria (Blue-green algae), 111,
132, 133, 142, 143, 190-192

Dentalium, 253, 269
Desmid(s), 147, 188
Diatom(s), 132, 147, 185
Cymbella, 184
Navicula, 184
Dictyostelium, 116, 118, 134, 242, 243, 346,
347
D. discoideum, 124, 133, 140, 141, 143,
241-244, 347
Dictyota, 205
Diptera, 214, 257
Drosophila, 13,62, 124,213, 214, 216, 217,
256-261, 344, 356
D. melanogaster, 259, 261
Dryopteris, 160, 169, 174
D. filix-mas, 174

Echinoderms (sea-urchin), 89, 120, 126
212, 253, 254, 264, 272

Enteromorpha, 208
Eremosphaera viridis, 341
Equisetum, 160, 205, 209, 210, 224
Escherichia, 88

E. coli, 52, 55, 64, 82, 140, 182
Euglena gracilis, 143
Eukaryotes, 107, 151

Ferns, 147, 160, 173, 174, 189, 190, 210,
232, 238, 268

b

Fishes, 147, 217, 265
shark, 265

Flagellate(s), 99

Flammulina (Collybia) velutipes, 226

Flexibacter, 132

Fomes, 225

Foraminifera, 268

Formica, 214

Frog, 263

Fucales, 201, 352

Fucoid algae, 182

Fucus, 81, 157-159, 204, 206, 208, 210, 224
F. furcatus, 158

Funaria, 160, 163, 164, 173, 209
F. hygrometrica, 160, 172

Fungi, 56, 101, 129, 134, 147, 155, 163-165,

168, 184, 194-196, 225, 340, 341, 352

higher (mushrooms), 227, 354
imperfecti, 155

Globigerina, 268
Griffithsia, 172, 353
G. pacifica, 185

Halicystis, 91
Halobacterium halobium, 110, 142
Hansenula, 64
Human, 133, 266, 273, 334
Hydra, 246-250, 358
H. attenuata, 248
Hydractinia, 250
Hydroids, 170
Hydrozoa, 241, 246, 249, 272

Ilyanassa, 253
Insects, 217, 256-260, 270, 356
Iris, 326

Kloeckera, 187

Laminaria, 224

Leafhoppers (Cicadellids), 215
Lentil, 349

Lepidoptera, 214

Lilium grandiflorum, 161
Lilium longiflorum, 175
Liverworts, 173, 174, 209
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Lymnaea, 269
L. peregra, 268, 269, 356
L. suturalis, 269

Mammals, 212, 266, 356
Marchantia polymorpha, 173, 209
Micrasterias, 147, 188
Molluscs, 212, 213, 252, 268, 269, 272, 356
Monilia, 185, 193
M. fructigena, 105
Monstera, 210
Mosses, 147, 160, 172, 173, 188, 197,
208-211
Mouse, 266, 356
Mucorales, 162, 196
Mucor racemosus, 157, 162
M. rouxii, 162, 163, 348
Mycetozoa, 241
Mycobacteria, 164
Mycobacterium, 164
Mycoplasma, 132, 133
Myxobacteria, 132

Nadsonioideae, 184
Nadsonia, 187
Naegleria, 138, 139
N. gruberi, 138
Nassarius, 253
Neurospora, 118, 165, 196
N. crassa, 56, 102, 108, 129, 155, 156,
165, 167, 187, 193, 195, 349
N. sitophila, 195
Nicotiana tabacum, 239
Nitella, 116, 130, 185
N. axiliaris, 185
Nitrobacter, 150
Nocardia corallina, 164
Nostocaceae, 142

Oedogonium, 169
Oncopeltus, 176
Onoclea sensibilis, 173
Oomycete(s), 166, 349
Oscillatoriaceae, 142
Osmonda, 160

Paracentrotus lividus, 213
Paramecia, 244
Paramecium, 130, 141, 142, 244

Pasteuria, 149
Pea, 234
Pelvetia, 207, 210
P. fastigiata, 207
Penicillia, 193
P. claviforme, 193
Phaeophyceae (Brown algae), 91, 159, 160,
169, 172, 195, 224, 352
Phormidium, 133, 142, 143
P. uncinatum, 132
Phycomycetes, 204
Phycomyces, 352, 354
P. blakesleeanus, 129
Phyllanthes, 238
Physarum, 129, 138
P. polycephalum, 133, 137, 143
Physcomitrella, 209
Pinus sylvestris, 197
Planaria maculata, 251
Planctomyces, 149, 150
Pleurococcoid, 147
Pleurochrysis, 99
Podospora anserina, 196
Polyporaceae, 225
Polyporus brumalis, 226, 227
Prokaryotes, 53, 54, 96, 129, 132, 133, 139,
140, 142, 143, 149, 164, 182, 336
Protists, 107
Protosiphon, 169
Protozoa, 104, 132, 141, 244, 245, 268, 272

Rat, 351

Reptiles, 217

Rhodnius, 176

Rhodophyceae (Red algae), 111, 172, 185,
345, 353

Rhodopseudomonaceae, 110

Rodents, 267

Sabella, 251
Saccharomyces cerevisiae, 150-153, 336,
345, 348
S. uvarum, 152
Saccharomycodes ludwigii, 184
Salmonelia, 131
Saprolegnia, 194
S. ferax, 349
Scenedesmaceae, 229
Schizophyllum commune, 196, 226
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Schizosaccharomyces pombe, 183
Selaginella, 231
Seliberia, 150
Serratia marcescens, 242
Sinapis alba, 239
Slime mold(s), 116, 118, 129, 133, 134,
137-140, 241, 242, 346, 347, 348
Smittia, 257
Snails, 356
Sphacelaria, 172
Sphagnum, 197, 205, 211
Spirillum, 131
Spirochaeta, 131
Spirogyra, 147, 169
Squid, 90, 91, 94, 122, 179
Stentor, 245, 246, 268
Streptomyces, 164
S. streptomycini, 164
Styela, 216, 261

Tetrahymena, 57, 244-246, 268
Torpedo californica, 341
Trichoderma viride, 155, 156, 340
Tubularia, 247

Tunicates, 215, 261

Uromyces appendiculatus, 349

Vaucheria, 147, 169, 195

Viruses, 57, 69, 219

Tobacco Mosaic Virus (TMV), 69
Volvocaceae, 228

Eudorina, 229

Gonium, 229

Pandorina, 229

Volvox, 229

Worms,
Annelids, 213, 249, 355
Nematodes, 213, 251, 252
Planarians, 250, 251
Polychaetes, 251
Sabellids, 268

Xanthophyceae (Yellow algae), 147, 169,
195
Xenopus, 217
X. laevis, 262

Yeast(s), 56, 64,97, 101, 107, 149-153, 161,
162, 181, 184, 187, 196, 326, 345,
347, 348
fission, 183

Zea (see also corn), 231
Z. mays, 354

Zygnematales, 147

Zygomycetes, 196
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