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Séance du 9 mai 1985

QUELLE MECANIQUE QUANTIQUE T
POUR LA RESONANCE MAGNETIQUE NUCLEAIRE?

PAR

Rudolf LENK *

ABSTRACT

The recent development of the Nuclear Magnetic Resonance (N.M.R.) domain has obliged
the theoretical physics to elaborate new methods for the study of transitory states and
Irreversibility.

In order to illustrate this kind of problems, we introduce in this paper first the spin
Hamiltonian and the quantum operators. The application of the latter is demonstrated by the
Procedure of the spectral line narrowing.

Next, the quantum theory of irreversibility and spin relaxation is developed using the
non-equilibrium density operators.

Finally, the application of the quantum projectors and the memory function method is also
Presented.

1. INTRODUCTION

Avant 1945, la Mécanique Quantique était orientée vers I’é¢tude des états sta-
tionnaires et des mouvements réversibles, ignorant I'existence des régimes transitoires
et des phénoménes stochastiques et irréversibles. Plus tard, les résultats expérimentaux
Concernant la relaxation des spins nucléaires et le développement récent de la Bio-
Physique ont orienté la microphysique dans de nouvelles directions.

Notons que la Résonance Magnétique Nucléaire (R.M.N.) en régime pulsé
représente un moyen efficace pour créer facilement les états « hors d’équilibre »,
dont le retour vers I’équilibre (la relaxation) est détectable de fagon trés précise.

* Laboratoire de Physiologie Végétale, Pavillon des Isotopes de I'Université, CH-1211 Genéve 4.
T Félix BLOCH (1905-1983) Memorial Lecture.
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La théorie de la relaxation nucléaire a été élaborée a la suite de différentes
approches [1-6]. Il faut souligner que la méthode de la « réponse linéaire » de
Kuso et Tomita [2], originalement développée pour la R.M.N. a ¢été finalement
appliquée a d’autres phénomenes irréversibles.

La R.M.N. concerne le spin des noyaux atomiques qui est un phénoméne
relativiste. Pour éviter I'application de I'équation de Dirac, on peut se placer selon
le point de vue de Pauli, qui traite le spin comme un moment cinétique, sans
s'interroger sur son origine. L’introduction du spin revient a ajouter & une particule
élémentaire un quatriéme degré de liberté [7] et I'état du systéme sera caractérisé
par les valeurs propres de quatre observables indépendantes.

L’interprétation théorique des résultats expérimentaux en R.M.N. est élaborée
a un niveau plus élevé que dans tout autre domaine de la physique moderne. Un
lien étroit existe entre la théorie et I'expérience du fait d’un développement trés
approfondi des procédures théoriques concernant le moment cinétique [8-10].

La premiere étape de la théorie de la R.M.N. est la dérivation de 'Hamiltonien
de spin [11]. Dans cette approche, 'Hamiltonien total, H, est déterminé a I'aide
de quatre contributions principales:

A=H,+8,+8 +0, (1)

ou H, concerne leffet de Zeeman, ﬁ,f la source des radiofréquences excitantes,
H, le réservoir thermique (le réseau) et H,, concerne linteraction du systéme des
spins avec son réservoir, H,, = H), + HJ,.
Généralement, 'Hamiltonien de spin est déterminé par le produit scalaire:
o2 k £(2 2
H= 3% (—1AQ F20 2)
k=-2
ou A est un opérateur tensoriel irréductible d’ordre 2, agissant sur les coordonnées
du spin et F(t) est une fonction tensorielle, dépendante du temps.

2. ETATS TRANSITOIRES DES SPINS

2.1.  Equation de Liouville-v. Neumann. Puisque les états transitoires sont dépen-
dants du temps, la dynamique des spins est gouvernée par I’équation de Liouville-
v. Neumann (LN) dans la représentation de Heisenberg:

hoH, = i[H, H;] (3)

Cette équation est encore réversible par rapport au temps. En utilisant ’'Hamiltonien
total, donné par (1), 'équation (3) devient:

hoH; = i[H,, Az + i[H}, H;] 4)
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ou H est la contribution non-séculaire de I'Hamiltonien de Iinteraction, déterminée
par (2), pour k = +2et +1.

Le premier commutateur de (4) correspond a I'absorption d’énergie des radio-
fréquences (RF) dans le systéme des spins et le second détermine la relaxation.
Dautre part, [H,, H,] = 0, parce que le systéme des spins et le réservoir thermique
possedent un systéme de base commun.

Le cas le plus simple de la dynamique des spins représente la précession de
Larmor. Elle est décrite par I'’équation suivante:

hofd, = i[H, 1] (5)
En résolvant les commutateurs, on obtient finalement :
atfz = 'Y(fxBy_fyBx) = Y(fx B)z (6)

Cette relation représente une description quantique de la précession de Larmor autour
de I'axe z. Ceci est un exemple d’un phénomeéne réversible et conservatif.

2.2, Opérateur densité. Ce formalisme a été introduit en Mécanique Quantique
Par v. Neumann et appliqué a la théorie de la R.M.N. par BLocH [1]. L’opérateur
densité sert 4 déterminer les moyennes des opérateurs quantiques:
(A =TrpA (7
Dans la théorie quantique de la relaxation des spins il y a en principe trois
Categories d’opérateur densité :

a) Avant I'application de I'impulsion d’excitation (fig. 1), le systéme des spins se
trouve & la température du réservoir thermique, T,. L'opérateur densité d’équilibre
Peq est alors déterminé par la distribution de Boltzmann:

Pey = Z " exp(—B,Hj) 8)

Ou Z est la fonction de partition et B, = 1/kT,.

a b c
N
\\ RELAXATION
EQUILIBRE U~ ~ y
gEu 9LOC 7 9NE(t)
FIG. 1. — Trois catégories d’opérateur densité, appliqué dans la théorie de la relaxation,

Concernant a: état de I'équilibre (p,,); b: I'équilibre «local » (py,); c: état de non-équilibre (p,,).

Archives des Sciences, Genéve, 1985. 15
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Dans ce langage, la moyenne de l'aimantation dans la direction z est déter-
minée par

M, = yi() = YR Tr pg, I, 9)
Le calcul de la trace de (9) donne finalement:
M, = C,B,/T, (10)

ou B, est le champ magnétique dans la direction de 'axe z et C, = y2h%I(I +1)/3k
(constante de Curie).

b) L’'impulsion d’énergie conduit a 'augmentation de la température de spin et le
systéme se trouve dans I’état d’équilibre « local » [3], décrit par:

Proc = Z—l exp(_BsﬁZ - Boﬁo - Boﬁin) (11)

avec B, < B,.
Ceci détermine une « moyenne locale »:

<’:f>loc = Tr f)loc ‘;f (12)

c) Apres la fin d’excitation pulsée, les spins relaxent. L’état de non-équilibre est
donc caractérisé par un opérateur de non-équilibre, p,(f) (fig. 1). Par conséquent, la
moyenne d’une observable relaxante s’écrit :

(D) = Tr polt) 4 (13)

L’évolution temporelle de I'opérateur densité est déterminée par I'équation de LN
dans la représentation de Schrodinger :

op(t) = —i[H, pl/h (14)
avec la solution:
pr) = Ult,, 1) plt,) U *(t,, 1) (15)

ou U(t,, t) est 'opérateur unitaire d’évolution dans le temps, avec UU ~! = UU * = |,
[7] détermineé par:

U, , t) = exp(—iHt/h) (16)

Dans cette relation, I'Hamiltonien H est indépendant du temps.
2.3. Opérateur d’entropie. Dans ce langage on peut aussi définir 'opérateur
d’entropie. En utilisant 'expression « classique » pour '’entropie statistique on obtient:
S={)=Trip=—kTrplnp (17)

L’opérateur d’entropie est donné par: f| = — klnp. Ajoutons que l'opérateur
d’entropie obéit a I’équation de LN dans la représentation de Schrodinger.
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2.4. Superopérateurs (tétradiques). L'équation de LN (14) peut étre réécrite a
laide de « superopérateur de Liouville »:

p (18)

ou L ordonne la commutation des opérateurs: L= [H, ..]/h.
La solution formelle de (18) détermine les superopérateurs d’évolution dans le

5,ﬁ=—i

» ~»

temps, f](to, t), par:
p(t) = U, 1) p(t,) (19)
avec U(t,,t) = exp(—ii,(t—to)).
2.5. Propagateurs. En RM.N,, le systéme des spins est irradié par des impulsions
courtes de radiofréquences. En Mécanique Quantique, cette irradiation se traduit par
la rotation du vecteur d’aimantation autour de I'axe défini par la bobine d’excitation

(fig. 2). Ainsi, l'opérateur de rotation autour de 'axe x avec l'angle 9, R,(9), est
déterminé par:

R(9) = exp(—i8T) (20)

D
Y
v
~<

—

-M

X v 2

FiG. 2. — Rotation quantique du spin par une excitation pulsée.
M, : vecteur aimantation a I’équilibre; B,: ch_am_p magnétique directeur;
B, : champ magnétique de I’excitation pulsée.

Souvent, le systéme des spins est irradié par une séquence d’impulsions. Chaque
Impulsion est définie par une rotation et la pause entre les impulsions est carac-
terisée par un opérateur d’évolution dans le temps, U(t). Par exemple « I'écho de spin »
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(refo.calisation de l'aimantation) est produit par une séquence de deux impulsions:
la premiere bascule 'aimantation dans le plan de x/y: M, — M, et la seconde tourne
le spin d’'un angle de 180". L’évolution totale du systéme des spins est déterminée
par un produit des opérateurs, qu'on appelle « le propagateur », P(t), donné dans ce
cas par:

B(t) = U,(t—1) R,(180) U(v) R,(90) 21)

ou 7 est I'intervalle entre la premiére et la seconde impulsion.
En utilisant les procédures habituelles, I'aimantation nucléaire dans le plan x/y,
apres la seconde impulsion, est décrite par:

M (1) = YAKL,(0)) = vh Tr P(0) p, P (1) I, (22)

2.6. « Rétrécissement artificiel » des raies spectrales. Comme on le sait, I'inter-
action dipolaire, caractérisée par I'Hamiltonien H, [11], est souvent plus forte que les
autres champs locaux qui présentent parfois davantage d’intérét. Par conséquent,
il faut chercher une méthode ¢liminant cette interaction troublante. Mathématiquement,
ceci se traduit par 'annulation de la moyenne temporelle de 'Hamiltonien dipolaire:

-I;';‘ = 0. Cette procédure est automatiquement réalisée dans les liquides, ou F(t)

dans (2) représente une fonction aléatoire, avec une moyenne nulle: F‘(tj' = 0.
Dans les solides ou dans les systémes moléculaires avec des mouvements ralentis,
la fonction F(t) ne peut pas étre annulée pendant un intervalle du temps. Mais, en
irradiant 1’échantillon par une séquence d’impulsions judicieusement sélectionnées, on
peut introduire la dépendance du temps dans I'opérateur tensoriel A2 et procéder
a son annulation pendant un certain intervalle.

Pratiquement, ceci peut étre réalisé a I'aide de quatre impulsions (fig. 3), repré-
sentant quatre rotations de 90 de l'aimantation nucléaire dans I'espace [13]. La
premiére impulsion bascule les spins autour de I'axe x dans la direction y: M, - M,
(opérateur R,). Ensuite, aprés un intervalle 21, la deuxiéme impulsion, caractérisée

T 2t _ T

My | My | M

J 4 }
R Ry Ry Ry

FIG. 3. — Schéma de la procédure du « rétrécissement artificiel » des raies spectrales en R.M.N.
Il s’agit de quatre rotations quantiques autour des axes +x, et +y, pendant I'intervalle t, = 61.
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par I'opérateur R _, rétablit lorientation M,. La troisiéme impulsion (opérateur R _))
tourne l'aimantation dans la direction x et finalement la quatriéme (opérateur Ii,,)
rétablit 4 nouveau l'orientation originale M,.

Ceci se déroule pendant l'intervalle « cyclique », t, = 61. Le propagateur corres-
pondant est donné par:

P(t) = Uyv) R, Us2v) R_, U,y(v) R_, U,(27) R, (23)

Démontrons I'application du propagateur P(t) sur la composante séculaire de 'opé-
rateur tensoriel A?) = (I,1,—3I,,I,,). Il est clair que le propagateur laisse le produit
opératoriel [,f, inchangé: P, I,P (1) = I, ,. Par contre, I'application des quatre
impulsions pendant le cycle: t, = 61, conduit au résultat suivant

—— 1 - - [
POLATLP (@) = 3 Talo + Ludy, + Liln) = S L (24)

w

L’application du résultat (24) a lopérateur tensoriel 4® donne finalement
AD" = P AR P*(5) = 0.

Il faut ajouter que le changement de I'axe de rotation, exigé par (23) est
expérimentalement réalisable par le changement de phase de I'irradiation pour chaque
Impulsion individuelle [13].

3. THEORIE QUANTIQUE DE LA RELAXATION DES SPINS

3.1. Théoréme « fluctuation-dissipation ». En RM.N,, tout est déterminé par
Paction des champs «locaux ». Le déplacement chimique, I'interaction spin-spin et
le flux laminaire des liquides contribuent a la création de champs locaux « déter-
Ministes ». Par contre, la rotation fluctuante et la diffusion (translation fluctuante)
Contribuent a la modulation aléatoire (stochastique) des interactions diverses,
Notamment de I'interaction dipolaire.

Les champs locaux déterministes sont a 'origine de la multiplicité spectrale en
l{-M.N., créant ainsi 'effet conservatif. D’autre part, les champs locaux stochastiques
créent leffet dissipatif a cause de la dissipation d’énergie dans le systéme des spins.
Ce phénomeéne définit la relaxation thermique des spins.

La relation entre les phénoménes fluctuants et la dissipation d’énergie est déter-
Mminée par le théoréme fluctuation-dissipation, originalement formulé par CALLEN et
WELTON [14]. La signification de ce théoréme peut étre démontrée de fagon trés
simple, dans le cas ou le systéme conservatif est représenté par une fonction pério-
iiqUe: f(d) = cosd (¢ étant un angle dépendant du temps par la relation:

() = ).



210 QUELLE MECANIQUE QUANTIQUE POUR LA RESONANCE MAGNETIQUE NUCLEAIRE?

Dans un systéme dissipatif, 'angle ¢(t) est une variable aléatoire, dépendante du
temps. On a ici le cas d’'une modulation stochastique d’une fonction périodique ou
d’un « rotateur ». En utilisant la méthode de corrélation [12], on obtient:

C(t) = {cosd(0) cosd(t)) = J cosd, P(P, t) cosd do (29)

Dans cette formule, la fonction de corrélation, C(t), caractérise le processus sto-
chastique en question. Supposons que la variable aléatoire ¢(¢) obéit a la distribution

gaussienne: P(¢, t) = (4nDt)‘% exp(— $2/4Dt) , on a finalement:
C(t) = (41tDt)_% j exp(— ¢?/4Dt) cosd dp = exp(— Dt) (26)

Ce résultat démontre que le passage d’un systéme conservatif @ un systéme
dissipatif transforme une fonction périodique en une fonction exponentielle décroissante.

3.2. Opérateur densité de non-équilibre. Dans le paragraphe 2.2. de cet article,
nous avons introduit frois catégories d’opérateur densité hermitique qui décrivent
successivement les états différents d’équilibre et non-équilibre (fig. 1).

Pour dériver la relation concernant I'opérateur densité de non-équilibre, I'équation
(11) sera réeécrite de la fagon suivante:

ﬁloc =Z" * exp( - Bo(ﬁ + ﬁ)) (27)
ou le nouvel opérateur quantique:

/I = HAZ(BS_Bo)/ﬁo (28)

caractérise la déviation hors de I’équilibre.

Selon la théorie « classique » des processus irréversibles [12, 15], le facteur
(Bs—B,)/B, détermine la « force thermodynamique », F,,, responsable de la relaxation.
Il est clair que pour B, = B,, F,, = 0.

Les phénomeénes irréversibles (relaxants) sont dépendants du temps. Par conséquent,
la température inverse des spins, B,, et la force thermodynamique, F,,, sont aussi
dépendantes du temps. Selon la procédure, développée par ZUBAREV [4], I'opérateur
densité de non-équilibre est décrit par:

[+ ¢]

Pret) = BoProc Fm(t)J J(t) dt’ (29)

=

ou J est 'opérateur quantique de flux thermique.
D’autre part, on prend en considération la relation irréversible suivante:

J=LF, (30)
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Cette relation révéle que le flux de chaleur ou de matiére est proportionnel a la
force thermodynamique F,,. Alternativement, on peut dériver la relation pour la
variation de la composante de I'aimantation nucléaire en fonction du temps [16]:

OM(1) = (M,—M(1)/T, (31)

ou M, est 'aimantation de I’équilibre.
D’autre part, la vitesse de relaxation longitudinale 1/T,, est déterminée par [12]:

/Ty = Z LB, Tr A7) (32)

Pour trouver I'expression « moléculaire » de la constante de proportionalité, L,
1l faut calculer une moyenne de non-équilibre sur 'opérateur de flux, J. L’application
de la formule (29) donne immédiatement :

J(6) = TrJ pt) = B.,Fm(t)fm T T 10c dE (33)

La comparaison de cette relation avec (30) conduit a I'expression moléculaire de la
Constante L:

L= BOJ T T 1o dt (34)
En introduisant (34) dans (32) on a finalement:
1 @© N
/T, = Z(Tr ﬁf)_ij‘ S I 100 At (3%)

Cette relation représente la version moléculaire du théoréme « fluctuation-dissipation »,
disant que la vitesse de relaxation est proportionnelle a I'intégrale sur la fonction
de corrélation quantique, concernant le flux d’énergie, déterminé par J = 0,H,.

3.3.  Application des projecteurs et de la méthode de « mémoire ». Les procédures
de BLocH [1], KuBo et TomiTA [2] et ZUBAREV [4] sont approximatives. Par consé-
Quent, elles sont limitées dans un certain intervalle du temps. L’introduction des
Projecteurs dans la Mécanique Statistique par ZwWANzIG [17] et Mor1 [18] a permis
d’obtenir les équations irréversibles généralisées, valables en tout temps.

Dans ce formalisme, le projecteur p, et le projecteur complémentaire (1—p),
Séparent |'opérateur densité ou l'opérateur d’une observable en deux composantes
(SOUS-espaces) [7].

Dans le cas de la théorie généralisée de la relaxation, le projecteur p sépare
la composante « systématique », M, et son projecteur complémentaire sépare la
Composante aléatoire, M,, de I'aimantation [18]. L’application de cette procédure a
Iéquation de LN donne dans I'espace de Liouville I'équation irréversible suivante:
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t
0, | M(t)) = iQM(t)) — J K(t—s)| M(s)) ds (36)

0
Cette équation est exacte. Elle représente d’une part une généralisation des
équations quantiques de Bloch, d’autre part, elle généralise aussi I'équation de Langevin,
bien connue dans la théorie du mouvement Brownien [19]. Ici, la contribution conser-
vative est définie par le terme: i QM(t)), ou Q représente la matrice des oscillations:

iQ = (M| M) (37)

Le second terme du membre de droite de (36) caractérise la dissipation dans le
systeme étudié. La propriété importante de (36) est que I'atténuation est maintenant
dépendante du temps. C’est-a-dire que cette expression a une forme non-markovienne,
parce qu’elle refléte le passé du systéme [17, 18, 20].

Dans ce domaine, le noyau (kernel) de (36), K(t), est appellé la fonction
« mémoire », déterminé par:

K(f) = (M, ]| G(—1)| M,) (38)

ou | M, = (1—p)| M), est le sous-espace aléatoire de l'aimantation nucléaire, et
G = exp(i(1—p)L).

Compte tenu de son caractére non-markovien, (36) représente aussi le second
théoréme « fluctuation-dissipation ». On peut aussi démontrer que la fonction mémoire
K(t) détermine la fonction de corrélation sur la force aléatoire, F,(t), figurant dans
I'équation de Langevin: m-dv/dt = — [v+ F,(t) [19]. La fonction mémoire a des
valeurs finies dans le cas de l'interaction forte. Si l'interaction dans le systéme est
faible, le spectre de la force aléatoire, F,(t), ressemble au « bruit blanc» et K(t)
est donnée par la fonction delta. Par conséquent, la dissipation devient indépendante
du temps et on obtient de nouveau une équation irréversible markovienne.

Supposons que la fonction mémoire a une forme exponentielle: K(t) = exp(—at).
Dans ce cas, en utilisant la transformation de Laplace, on trouve facilement la relation
irréversible non-markovienne suivante:

A(t) = exp(—at/2) (cos bt + (a/2b) sin b) (39)

ou A(t) est une observable relaxante et b = (1 —a2/4)%.

L’interaction forte, conduisant a la mémoire finie, existe par exemple dans les
systémes macromoléculaires a cause de la coopérativité des chaines [20]. D’autre part,
la présence des phénoménes non-markoviens en R.M.N., avec un caractére oscillatoire
(voir (39)) a été révélée par plusieurs auteurs [5, 6, 21-26].
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4. CONCLUSION

Dans cette contribution nous avons essayé de souligner I'importance de la R.M.N.
pour le développement de certains domaines de la Physique théorique. Pour éviter
les équations relativistes, on travaille avec 'Hamiltonien de spin simple, qui est appli-
cable d’'une part au régime permanent en R.M.N. et d’autre part, aux phénoménes
transitoires et irréversibles. En outre, la théorie de la R.M.N. utilise souvent le for-
malisme de 'opérateur densité a cause de sa transparence mathématique.

L’irradiation pulsée de spins nucléaires est représentée sur le plan quantique par les
Opérateurs de rotation. Pour simplifier les calculs, on utilise aussi le langage des super-
Opérateurs et 'espace de Liouville.

Le but principal de la théorie quantique de lirréversibilité est la création de
Popérateur densité de non-équilibre. L’application des projecteurs conduit a I'équation
irréversible généralisée (non-markovienne) [27]. Cette derniére offre un degré de raffi-
Nement supplémentaire, permettant de rendre compte d’une dépendance du temps
Plus complexe. De plus, I'incorporation d’effets de mémoire revient a reconnaitre
Pexistence d’une durée finie d’une autocorrélation des forces aléatoires: c’est une
Structuration dans le temps des impulsions, des couples et des entrainements d’ensemble
exercés par I'environnement.
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