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Séance du 9 mai 1985

QUELLE MÉCANIQUE QUANTIQUE t
POUR LA RÉSONANCE MAGNÉTIQUE NUCLÉAIRE?

PAR

Rudolf LENK *

ABSTRACT

The recent development of the Nuclear Magnetic Resonance (N.M.R.) domain has obliged
the theoretical physics to elaborate new methods for the study of transitory states and
irreversibility.

In order to illustrate this kind of problems, we introduce in this paper first the spin
Hamiltonian and the quantum operators. The application of the latter is demonstrated by the
procedure of the spectral line narrowing.

Next, the quantum theory of irreversibility and spin relaxation is developed using the
non-equilibrium density operators.

Finally, the application of the quantum projectors and the memory function method is also
Presented.

1. INTRODUCTION

Avant 1945, la Mécanique Quantique était orientée vers l'étude des états sta-
bonnaires et des mouvements réversibles, ignorant l'existence des régimes transitoires
et des phénomènes stochastiques et irréversibles. Plus tard, les résultats expérimentaux
concernant la relaxation des spins nucléaires et le développement récent de la Bio-
Physique ont orienté la microphysique dans de nouvelles directions.

Notons que la Résonance Magnétique Nucléaire (R.M.N.) en régime puisé
représente un moyen efficace pour créer facilement les états « hors d'équilibre »,
dont le retour vers l'équilibre (la relaxation) est détectable de façon très précise.

* Laboratoire de Physiologie Végétale, Pavillon des Isotopes de l'Université, CH-1211 Genève 4.
t Félix BLOCH (1905-1983) Memorial Lecture.
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La théorie de la relaxation nucléaire a été élaborée à la suite de différentes

approches [1-6]. Il faut souligner que la méthode de la « réponse linéaire » de

Kubo et Tomita [2], originalement développée pour la R.M.N. a été finalement

appliquée à d'autres phénomènes irréversibles.

La R.M.N. concerne le spin des noyaux atomiques qui est un phénomène
relativiste. Pour éviter l'application de l'équation de Dirac, on peut se placer selon

le point de vue de Pauli, qui traite le spin comme un moment cinétique, sans

s'interroger sur son origine. L'introduction du spin revient à ajouter à une particule
élémentaire un quatrième degré de liberté [7] et l'état du système sera caractérisé

par les valeurs propres de quatre observables indépendantes.

L'interprétation théorique des résultats expérimentaux en R.M.N. est élaborée
à un niveau plus élevé que dans tout autre domaine de la physique moderne. Un
lien étroit existe entre la théorie et l'expérience du fait d'un développement très

approfondi des procédures théoriques concernant le moment cinétique [8-10].
La première étape de la théorie de la R.M.N. est la dérivation de l'Hamiltonien

de spin [11]. Dans cette approche, l'Hamiltonien total, H, est déterminé à l'aide
de quatre contributions principales :

H Hz + Hrf + H0 + Hin (1)

où Hz concerne l'effet de Zeeman, Hrf la source des radiofréquences excitantes,

H„ le réservoir thermique (le réseau) et Hin concerne l'interaction du système des

spins avec son réservoir, Hin H'in + H
Généralement, l'Hamiltonien de spin est déterminé par le produit scalaire :

H "f (-l)"Âl2>FL2l(t) (2)
k=-2

où Â est un opérateur tensoriel irréductible d'ordre 2, agissant sur les coordonnées

du spin et F(t) est une fonction tensorielle, dépendante du temps.

2. ÉTATS TRANSITOIRES DES SPINS

2.1. Equation de Liouville-v. Neumann. Puisque les états transitoires sont dépendants

du temps, la dynamique des spins est gouvernée par l'équation de Liouville-
v. Neumann (LN) dans la représentation de Heisenberg :

h d,Hz i [H, tfz] (3)

Cette équation est encore réversible par rapport au temps. En utilisant l'Hamiltonien
total, donné par (1), l'équation (3) devient:

hÔ,Hz i[Hrf,Hz] + i [/?;'„, Êz~] (4)
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où H'[n est la contribution non-séculaire de l'Hamiltonien de l'interaction, déterminée
par (2), pour k ±2 et +1.

Le premier commutateur de (4) correspond à l'absorption d'énergie des radio-
fréquences (RF) dans le système des spins et le second détermine la relaxation.
D'autre part, [Hx, H0] 0, parce que le système des spins et le réservoir thermique
possèdent un système de base commun.

Le cas le plus simple de la dynamique des spins représente la précession de
Larmor. Elle est décrite par l'équation suivante :

h d,rz i ul /j (5)

En résolvant les commutateurs, on obtient finalement :

8tlz Y(fxBy-fyBx) y(fxB)z (6)

Cette relation représente une description quantique de la précession de Larmor autour
de l'axe z. Ceci est un exemple d'un phénomène réversible et conservatif.

2.2. Opérateur densité. Ce formalisme a été introduit en Mécanique Quantique
Par v. Neumann et appliqué à la théorie de la R.M.N. par Bloch [1], L'opérateur
densité sert à déterminer les moyennes des opérateurs quantiques :

<Â> Tr p Â (7)

Dans la théorie quantique de la relaxation des spins il y a en principe trois
catégories d'opérateur densité :

a) Avant l'application de l'impulsion d'excitation (fig. 1), le système des spins se

trouve à la température du réservoir thermique, T„. L'opérateur densité d'équilibre
Peq est alors déterminé par la distribution de Boltzmann :

peq Z"1 exp( — ß0/?z) (8)

°ù Z est la fonction de partition et ß„ l/kT„.

EQUILIBRE

\ RELAXATION

5*eq jv 5>NE<t)

Dg. 1. — Trois catégories d'opérateur densité, appliqué dans la théorie de la relaxation,
concernant a: état de l'équilibre (pe,); b: l'équilibre «local» (pl0C);c: état de non-équilibre(p„J.

Archives des Sciences, Genève, 1985. 15
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Dans ce langage, la moyenne de l'aimantation dans la direction z est
déterminée par

Mz yh(J;} yh Tr peq îz (9)

Le calcul de la trace de (9) donne finalement :

Mz Cu BJT0 (10)

où B0 est le champ magnétique dans la direction de l'axe z et C„ y2h2I(I + l)/3/c

(constante de Curie).

b) L'impulsion d'énergie conduit à l'augmentation de la température de spin et le

système se trouve dans l'état d'équilibre « local » [3], décrit par :

ploc Z"1 exp( —ßstfz - ß0/?0 - ß„//J (H)

avec ßs < ß0.

Ceci détermine une « moyenne locale » :

(Ace Tr ploc Â (12)

c) Après la fin d'excitation puisée, les spins relaxent. L'état de non-équilibre est

donc caractérisé par un opérateur de non-équilibre, p„e(t) (fig. 1). Par conséquent, la

moyenne d'une observable relaxante s'écrit :

<Â)„e(t) Tr pJt) Â (13)

L'évolution temporelle de l'opérateur densité est déterminée par l'équation de LN
dans la représentation de Schrödinger:

8,p{t) -i [H, p]/h (14)

avec la solution :

p(t) Û(t0,t)p(t0)Û+(t0,t) (15)

où Û(t0, t) est l'opérateur unitaire d'évolution dans le temps, avec ÛÛ Û Û + 1,

[7] déterminé par :

Û(t0,t) exp( — iHt/h) (16)

Dans cette relation, l'Hamiltonien H est indépendant du temps.

2.3. Opérateur d'entropie. Dans ce langage on peut aussi définir l'opérateur
d'entropie. En utilisant l'expression « classique » pour l'entropie statistique on obtient :

S <fj> Tr f|p - kTrplnp (17)

L'opérateur d'entropie est donné par: r) —klnp. Ajoutons que l'opérateur
d'entropie obéit à l'équation de LN dans la représentation de Schrödinger.
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2.4. Superopérateurs (tétradiques). L'équation de LN (14) peut être réécrite à

l'aide de « superopérateur de Liouville » :

ô, p — iL p (18)

°ù L ordonne la commutation des opérateurs : L [H,
La solution formelle de (18) détermine les superopérateurs d'évolution dans le

temps, Û(t0, t), par:

p(t) U(t0,t)p(t0) (19)

avec Û(t.,t) exp(-iL(t-t0)).

2.5. Propagateurs. En R.M.N., le système des spins est irradié par des impulsions
courtes de radiofréquences. En Mécanique Quantique, cette irradiation se traduit par
la rotation du vecteur d'aimantation autour de l'axe défini par la bobine d'excitation
(fig- 2). Ainsi, l'opérateur de rotation autour de l'axe x avec l'angle 9, Rx(9), est

déterminé par:

Rx(9) exp( — i9/x) (20)

z

Fig. 2. — Rotation quantique du spin par une excitation puisée.
M, : vecteur aimantation à l'équilibre ; B„ : champ magnétique directeur ;

ß, : champ magnétique de l'excitation puisée.

Souvent, le système des spins est irradié par une séquence d'impulsions. Chaque
mpulsion est définie par une rotation et la pause entre les impulsions est caractérisée

par un opérateur d'évolution dans le temps, Û(t). Par exemple « l'écho de spin »
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(refocalisation de l'aimantation) est produit par une séquence de deux impulsions:
la première bascule l'aimantation dans le plan de x/y : Mz -* My, et la seconde tourne
le spin d'un angle de 180°. L'évolution totale du système des spins est déterminée

par un produit des opérateurs, qu'on appelle « le propagateur », P(t), donné dans ce

cas par :

P(t) Û2(t-x) R2(m') Û2(x) «,(90°) (21)

où x est l'intervalle entre la première et la seconde impulsion.
En utilisant les procédures habituelles, l'aimantation nucléaire dans le plan x/y,

après la seconde impulsion, est décrite par :

M"xy{t) yh(Jxy(t)) yh Tr P(t) p„ P +(t) fxy (22)

2.6. « Rétrécissement artificiel » des raies spectrales. Comme on le sait, l'interaction

dipolaire, caractérisée par l'Hamiltonien Hd [11], est souvent plus forte que les

autres champs locaux qui présentent parfois davantage d'intérêt. Par conséquent,
il faut chercher une méthode éliminant cette interaction troublante. Mathématiquement,
ceci se traduit par l'annulation de la moyenne temporelle de l'Hamiltonien dipolaire:

Hd ' 0. Cette procédure est automatiquement réalisée dans les liquides, où Fit)
dans (2) représente une fonction aléatoire, avec une moyenne nulle : F(t) ' 0.

Dans les solides ou dans les systèmes moléculaires avec des mouvements ralentis,
la fonction F(t) ne peut pas être annulée pendant un intervalle du temps. Mais, en

irradiant l'échantillon par une séquence d'impulsions judicieusement sélectionnées, on

peut introduire la dépendance du temps dans l'opérateur tensoriel Â[2) et procéder
à son annulation pendant un certain intervalle.

Pratiquement, ceci peut être réalisé à l'aide de quatre impulsions (fig. 3),

représentant quatre rotations de 90 de l'aimantation nucléaire dans l'espace [13], La

première impulsion bascule les spins autour de l'axe a dans la direction y. Mz -» My

(opérateur Rx). Ensuite, après un intervalle 2t, la deuxième impulsion, caractérisée

Fig. 3. — Schéma de la procédure du « rétrécissement artificiel » des raies spectrales en R.M.N.
Il s'agit de quatre rotations quantiques autour des axes ±x, et ±y, pendant l'intervalle tc 6x.
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par l'opérateur R-x, rétablit l'orientation Mz. La troisième impulsion (opérateur R_y)
tourne l'aimantation dans la direction x et finalement la quatrième (opérateur Ry)
rétablit à nouveau l'orientation originale Mz.

Ceci se déroule pendant l'intervalle « cyclique », tc 6x. Le propagateur
correspondant est donné par :

P(t) Û4(x) Ry Û3(2t) R_y Û2(t) R.x Ûi(2x) Rx (23)

Démontrons l'application du propagateur P(t) sur la composante séculaire de
l'opérateur tensoriel Â(02) {ÎJ2 ~ 3/zl/z2). Il est clair que le propagateur laisse le produit
opératoriel ÎJ2 inchangé: P(t)f1f2P +(f) /,/2. Par contre, l'application des quatre
impulsions pendant le cycle : tc — 6x, conduit au résultat suivant

p{t)tjzlp +(t) » (fxlrx2 + rjy2 + tjz2) ± rj2 (24)

L'application du résultat (24) à l'opérateur tensoriel Â{02) donne finalement

Ipi'0 P(t)Â{2) P+(t) 0.

Il faut ajouter que le changement de l'axe de rotation, exigé par (23) est

expérimentalement réalisable par le changement de phase de l'irradiation pour chaque
impulsion individuelle [13].

3. THÉORIE QUANTIQUE DE LA RELAXATION DES SPINS

3.1. Théorème «fluctuation-dissipation ». En R.M.N., tout est déterminé par
l'action des champs « locaux ». Le déplacement chimique, l'interaction spin-spin et
Ie flux laminaire des liquides contribuent à la création de champs locaux «
déterministes ». Par contre, la rotation fluctuante et la diffusion (translation fluctuante)
contribuent à la modulation aléatoire (stochastique) des interactions diverses,

notamment de l'interaction dipolaire.
Les champs locaux déterministes sont à l'origine de la multiplicité spectrale en

R-M.N., créant ainsi l'effet conservatif. D'autre part, les champs locaux stochastiques
créent l'effet dissipatif à cause de la dissipation d'énergie dans le système des spins.
Ce phénomène définit la relaxation thermique des spins.

La relation entre les phénomènes fluctuants et la dissipation d'énergie est déterminée

par le théorème fluctuation-dissipation, originalement formulé par Callen et
Welton [14]. La signification de ce théorème peut être démontrée de façon très

Slmple, dans le cas où le système conservatif est représenté par une fonction
périodique: /(cj)) cos<)> (4> étant un angle dépendant du temps par la relation:
'MO a»).



210 QUELLE MÉCANIQUE QUANTIQUE POUR LA RESONANCE MAGNÉTIQUE NUCLÉAIRE?

Dans un système dissipatif, l'angle 4>(t) est une variable aléatoire, dépendante du

temps. On a ici le cas d'une modulation stochastique d'une fonction périodique ou

d'un « rotateur ». En utilisant la méthode de corrélation [12], on obtient:

C(t) <cos<t>(0) coscJ)(f)> cos<j>0 P(<t>, r) cos<(> dcj) (25)

Dans cette formule, la fonction de corrélation, C(t), caractérise le processus
stochastique en question. Supposons que la variable aléatoire 4>(r) obéit à la distribution

gaussienne: P(<j), r) (47iDt)~2 exp( — <\>2/4Dt), on a finalement:

C(f) (4rxDt)~ï exp( —<})2/4Dt) cost)) d(j) exp( —Dt) (26)

Ce résultat démontre que le passage d'un système conservatif à un système

dissipatif transforme une fonction périodique en une fonction exponentielle décroissante.

3.2. Opérateur densité de non-équilibre. Dans le paragraphe 2.2. de cet article,

nous avons introduit trois catégories d'opérateur densité hermitique qui décrivent
successivement les états différents d'équilibre et non-équilibre (fig. 1).

Pour dériver la relation concernant l'opérateur densité de non-équilibre, l'équation
(11) sera réécrite de la façon suivante:

ploc Z-Uxpi-MÊ + Â)) (27)

où le nouvel opérateur quantique :

Â f?z(ßs- ßo)/ß0 (28)

caractérise la déviation hors de l'équilibre.
Selon la théorie « classique » des processus irréversibles [12, 15], le facteur

(ßs — ß0)/ß„ détermine la « force thermodynamique », Flh, responsable de la relaxation.
Il est clair que pour ßs ß„, Fth 0.

Les phénomènes irréversibles (relaxants) sont dépendants du temps. Par conséquent,
la température inverse des spins, ßs, et la force thermodynamique, Fth, sont aussi

dépendantes du temps. Selon la procédure, développée par Zubarev [4], l'opérateur
densité de non-équilibre est décrit par :

PJt) ßoPloc F,h(t) J(t') df (29)

où J est l'opérateur quantique de flux thermique.
D'autre part, on prend en considération la relation irréversible suivante :

J LFlh (30)
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Cette relation révèle que le flux de chaleur ou de matière est proportionnel à la
force thermodynamique Flh. Alternativement, on peut dériver la relation pour la
variation de la composante de l'aimantation nucléaire en fonction du temps [16]:

d,M2(t) (M0-M2(t))/Tl (31)

°ù M0 est l'aimantation de l'équilibre.
D'autre part, la vitesse de relaxation longitudinale 1/T,, est déterminée par [12]:

1/T, Z L/(P„ Tr Hl) (32)

Pour trouver l'expression « moléculaire » de la constante de proportionalité, L,
il faut calculer une moyenne de non-équilibre sur l'opérateur de flux, J. L'application
de la formule (29) donne immédiatement :

J(t) TrJ pjt) ß0FJt) <J J(t')>loc df (33)

La comparaison de cette relation avec (30) conduit à l'expression moléculaire de la
constante L :

L ß0 (J /(!')>.„c dt' (34)

En introduisant (34) dans (32) on a finalement :

l/T1 Z(TrH20)-2 (J J(t')>loc dt' (35)

Cette relation représente la version moléculaire du théorème « fluctuation-dissipation »,

disant que la vitesse de relaxation est proportionnelle à l'intégrale sur la fonction
de corrélation quantique, concernant le flux d'énergie, déterminé par J c,Hz.

3.3. Application des projecteurs et de la méthode de « mémoire ». Les procédures
de Bloch [1], Kubo et Tomita [2] et Zubarev [4] sont approximatives. Par conséquent,

elles sont limitées dans un certain intervalle du temps. L'introduction des

Projecteurs dans la Mécanique Statistique par Zwanzig [17] et Mori [18] a permis
d'obtenir les équations irréversibles généralisées, valables en tout temps.

Dans ce formalisme, le projecteur p, et le projecteur complémentaire (1— p),
séparent l'opérateur densité ou l'opérateur d'une observable en deux composantes
(sous-espaces) [7].

Dans le cas de la théorie généralisée de la relaxation, le projecteur p sépare
la composante «systématique», Ms, et son projecteur complémentaire sépare la

composante aléatoire, M„, de l'aimantation [18]. L'application de cette procédure à
' équation de LN donne dans l'espace de Liouville l'équation irréversible suivante :
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dt I MM MMM K(t — s) | Ms(s)) ds (36)

Cette équation est exacte. Elle représente d'une part une généralisation des

équations quantiques de Bloch, d'autre part, elle généralise aussi l'équation de Langevin,
bien connue dans la théorie du mouvement Brownien [19]. Ici, la contribution conservative

est définie par le terme : i QM(t)), où O représente la matrice des oscillations :

M (M | M) (37)

Le second terme du membre de droite de (36) caractérise la dissipation dans le

système étudié. La propriété importante de (36) est que l'atténuation est maintenant

dépendante du temps. C'est-à-dire que cette expression a une forme non-markovienne,

parce qu'elle reflète le passé du système [17, 18, 20],
Dans ce domaine, le noyau (kernel) de (36), K(t), est appellé la fonction

« mémoire », déterminé par :

K(t) (Ma\Ô(-t)\Ma) (38)

où | MJ (1— p)\M), est le sous-espace aléatoire de l'aimantation nucléaire, et

G exp(i'(l — p)L).

Compte tenu de son caractère non-markovien, (36) représente aussi le second

théorème « fluctuation-dissipation ». On peut aussi démontrer que la fonction mémoire

K(t) détermine la fonction de corrélation sur la force aléatoire, Fa(t), figurant dans

l'équation de Langevin: m-dv/dt — Ç R+ Fa{t) [19]. La fonction mémoire a des

valeurs finies dans le cas de l'interaction forte. Si l'interaction dans le système est

faible, le spectre de la force aléatoire, Fa(t), ressemble au « bruit blanc » et K(t)
est donnée par la fonction delta. Par conséquent, la dissipation devient indépendante
du temps et on obtient de nouveau une équation irréversible markovienne.

Supposons que la fonction mémoire a une forme exponentielle : K(t) exp( — at).

Dans ce cas, en utilisant la transformation de Laplace, on trouve facilement la relation
irréversible non-markovienne suivante :

A{t) exp( — at/2) (cos bt + (a/2b) sin bt) (39)

où A(t) est une observable relaxante et b (1 — a2/4)2.

L'interaction forte, conduisant à la mémoire finie, existe par exemple dans les

systèmes macromoléculaires à cause de la coopérativité des chaînes [20], D'autre part,
la présence des phénomènes non-markoviens en R.M.N., avec un caractère oscillatoire

(voir (39)) a été révélée par plusieurs auteurs [5, 6, 21-26],
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4. CONCLUSION

Dans cette contribution nous avons essayé de souligner l'importance de la R.M.N.
pour le développement de certains domaines de la Physique théorique. Pour éviter
les équations relativistes, on travaille avec l'Hamiltonien de spin simple, qui est applicable

d'une part au régime permanent en R.M.N. et d'autre part, aux phénomènes
transitoires et irréversibles. En outre, la théorie de la R.M.N. utilise souvent le

formalisme de l'opérateur densité à cause de sa transparence mathématique.
L'irradiation puisée de spins nucléaires est représentée sur le plan quantique par les

opérateurs de rotation. Pour simplifier les calculs, on utilise aussi le langage des

superopérateurs et l'espace de Liouville.
Le but principal de la théorie quantique de l'irréversibilité est la création de

l'opérateur densité de non-équilibre. L'application des projecteurs conduit à l'équation
irréversible généralisée (non-markovienne) [27]. Cette dernière offre un degré de

raffinement supplémentaire, permettant de rendre compte d'une dépendance du temps
Plus complexe. De plus, l'incorporation d'effets de mémoire revient à reconnaître
l'existence d'une durée finie d'une autocorrélation des forces aléatoires: c'est une

structuration dans le temps des impulsions, des couples et des entraînements d'ensemble

exercés par l'environnement.
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