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RELATIVISATION: UNE REINTERPRETATION
STRUCTURALE DE LA RELATIVITE RESTREINTE !

RELATIVIZATION: A STRUCTURAL REINTERPRETATION
OF THE SPECIAL RELATIVITY

PAR

P. B. SCHEURER *

ABSTRACT

A structural reconstruction of the Theory of Special Relativity (T.S.R.) is proposed, which
allows a simple reinterpretation of it, and provides an extension to any differentiable manifold
(DM). Ubiquitously in Classical Mechanics time functions ambiguously in two different réles: both
factor of evolution and dimension. By coding time into two distinct mathematical entities: parameter
and coordinate, confusion is structurally suppressed. Relativization of a DM incorporates its par-
ameter as a new coordinate and supplies a new parameter of evolution. Such are time and proper
time in Einstein’s T.S.R., but this mathematical process is by no means restricted only to space
and time.

Le point de vue adopté ici de la reconstruction structurale (1) des théories de la
cinétique, c’est-a-dire du changement en tant que mouvement (en grec: kinésis)
décrit a I'aide d’équations différentielles, par conséquent a I'aide d’une structure de
Variété Différentiable (V' D), permet une réinterprétation structurale des deux grandes
révolutions qui ont ébranlé la physique a I'aube de ce siécle, la Théorie de la Rela-
tivit¢ Restreinte et la Théorie Quantique, en les rabaissant au rang plus modeste
mais plus juste de réponses a deux insuffisances majeures de la Mécanique Classique.
La premiere, en effet, leve 'ambiguité entretenue partout par la Mécanique Clas-
sique & propos de la grandeur temps, en supprimant explicitement la confusion
entre deux roles mathématiques différents attribués a cette méme grandeur: le
temps comme paramétre d’évolution, a distinguer du temps comme coordonnée
dimensionnelle. Quant a la seconde, elle supplée au défaut originel de la Mécanique

1 Cette communication est étroitement associée avec celle sur la réinterprétation structurale
de la quantification dans les systémes dynamiques, qui la précéde juste dans cette méme revue
(p. 197-216). On évite les redites autant qu’il se peut.

2 Catholic University. Faculty of Science. Department of Philosophy of Natural Sciences.
Toernooiveld, 6525 ED Nijmegen. The Netherlands.
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Classique de ne pas traiter les vecteurs et covecteurs (et donc aussi les (co)tenseurs)
intrinséquement, en tant que tels, mais de les traiter comme des tableaux de compo-
santes dans un référentiel donné. Mais de la sorte, la dualit¢ fondamentale qui
existe dans une VD M entre son fibré tangent 7 (M) et son fibré cotangent 7% (M)
se trouve complétement oblitéréc. Ceci vaut déja au plan mathématique. Une autre
conséquence s’ensuit quand ce langage mathématique des VD est utilis€ pour un
discours physique. Alors, on n’a plus affaire seulement a des c-numbers, des nombres
classiques, mais on traite avec des p-numbers, des nombres munis d’une dimension
physique, d’une phy-dimension (pour ne pas confondre avec la dimension géomé-
trique de la VD), ou méme mieux, en hommage a Eudoxe, d’un mégéthos. Lorsqu’on
écrit un vecteur dans une VD euclidienne, p. ex. la vitesse ¥ = v'¢é,, ce sont bien
les composantes »' qui portent le méme mégéthos « vitesse » que le vecteur intrinséque
v. Mais quand on exprime le méme vecteur v dans le systéme de coordonnées natu-
relles adaptées a une carte d’'une VD, et qu’il faille donc 'écrire 7 = v pl il est
clair que si les coordonnées x' portent un mégéthos « longueur », il faut que la compo-
sante v', par compensation, porte celui de « vitesse » X « longueur », afin que le
vecteur intrinséque v (composante et base) maintienne le sien. Ces deux faits: dualité
T (M)/T* (M) et existence d’un mégéthos, associ€s a une projection active, suffisent
a rendre compte de la structure de la Mécanique Quantique. Mais d’ores et déja,
il devrait apparaitre clairement que la quantification est un phénomeéne beaucoup
plus général, a priori adaptable a des V' D arbitraires et a des quanta qui ne soient pas
seulement d’action (variation du mégéthos unité). (2)

On peut donner une illustration bréve, mais combien éclairante, du point de vue
présenté ci-dessus. Soit I'’équation fondamentale de I’hydrodynamique (Euler, 1755):

—

1 —
[1] % v(x(D,1) = — ; grad p

ol v la vitesse, p la densité et p la pression sont des fonctions sur une ligne de courant.
Seul le premier membre nous intéresse ici, et encore sous sa seule forme d’opérateur
linéaire. En effet:

[2] 4 _ao 0

Mathématiquement, depuis la chain rule de Leibniz (dérivation d’une fonction
de fonction) et la différence opérée au 18¢ siécle entre dérivée totale et dérivée
partielle, il n’y a rien 1a que de trivial. Mais sur le plan du discours physique, il en
va tout autrement. Les ambiguités se cachent si bien dans I’expression [2], qu’elles
n’avaient pas encore été débusquées. En fait, celle-ci contient aussi bien I'expression
relativiste d’une ligne d’Univers (courant dans I’espace-temps) que celle d’une trans-
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formation de Legendre entre opérateurs Lagrangien et Hamiltonien quantiques, qui
méne tout droit & I’équation de Schrodinger.

En ce qui concerne le premier point, c’est avec raison que Stueckelberg (3)
commence a lever 'ambiguité en recourant au vocabulaire latin de Newton et parle
en termes de fluxion totale (ou hydrodynamique) et de fluxion partielle. La fluxion
totale est ainsi composée de la fluxion partielle et du courant convectif sur la ligne
de courant passant par x. Celle-ci, dite encore orbite ou trajectoire, est solution de
I’équation différentielle:

jzt . .
[3] clzr (1 =o' (z(1),1) avec x'=z(), ie{l,2,3}
C

c’est-a-dire en fait que la trajectoire est une courbe dans R® paramétrée par le temps 7.
Conséquemment, il récrit [2] pour une fonction d’arguments x et ¢ comme suit:

df ~ g

[4] G = GO | = @S+ ) (k)

z(t)=x
ol I’on substitue d’abord Z (¢) & x pour le calcul, revenant a x une fois le calcul fait.
Mais il convient d’aller plus loin. Pour la ligne de courant Z (¢), le temps ¢ est
pris comme parameétre d’évolution. Tandis que dans la fluxion locale, qui représente
le taux de variation au point fixe X, indépendamment du courant, il est clair que le
méme temps ¢ fonctionne maintenant comme une coordonnée supplémentaire, et
que donc le paramétre d’évolution s’est incorporé¢ a la variété espace en I’agrandissant
d’une dimension. L’ambiguité maintenant se révéle: la méme grandeur, représentée
par la méme lettre 7, joue deux rdéles fondamentalement différents dans la structure
d’une V' D. L’ambiguité sera donc levée par la donnée de deux grandeurs physiques
« temporelles » distinctes, dénotées par deux lettres différentes: soit ¢ pour la coor-
donnée, qui restera le temps, et T pour le paramétre, qui deviendra le temps propre.
Nous sommes en effet passés a la structure d’espace-temps physique de la Théorie
de la Relativité Restreinte. Il suffit pour le voir de multiplier la formule [2] par le
1
facteur \/ﬂ"v_i. Il vient:

1 s —
C2

d 0 2
[5] — = u* a—,,ue{l,2,3,4} avec dt = \/1_1)_ dt,
X

dt i c?

) v c
uw=—-- e u" =

T v
Ji-5 Ji-5

soit I’expression du vecteur tangent a une ligne d’Univers!
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On comprend mieux ’obtention de ce facteur bien propice si I'on procéde dans
le sens opposé. On part de ’espace-temps quadridimensionnel, pourvu de la métrique
de Minkowski:

2

[6] ds* = c*dt* = c*dt* — dxdx' = *di® (l - 7))
Avec le dernier terme, on indique déja qu’'on s’est livré a une opération supplé-
mentaire: on a choisi la quatriéme coordonnée, le temps, pour paramétriser des
courbes dans la sous-variété restante, I’espace. On introduit ainsi un feuilletage dans
I’espace-temps, dont chaque feuille est constituée par « I'espace physique R*® a un
temps ¢ donné ». De la sorte, on feuilléte également la métrique de ’espace-temps,
comme indiqué en [6]. 11 est facile de tirer le rapport entre ’ancien paramétre temps
propre t et le nouveau paramétre temps ¢ (donc de passer de relativiste a classique!).
Il vaut:

dt 2
7 2 o
(7] . \/1 4

On remarquera d’ailleurs que la distinction entre les parameétres 7 et ¢ n’est obtenue
que par le recours explicite a ’espace, qui permet de lever la « dégénérescence ».
En effet, dans le référentiel ou le systéme physique se trouve en repos, ce qu’il est
toujours possible de déterminer en accord avec le « postulat du monde » de Min-
kowski, la confusion ne peut étre levée. C’est d’ailleurs cette situation qui se trouve a
I'origine de I'ambiguité discutée.

Pour étre complet, on donnera ici seulement un traitement rapide du second
point, relatif a la quantification. Les raisons de notre maniére de procéder sont
explicitées dans (2).

Prenons i’expression [2] et multipiions-la par ie facteur — i/ (ou —ii, mais nous
ne distinguerons pas davantage):

{ : 0 )
[8] _in S o=y (—ih ;) — ih :Jr

dt 0x; ot

C’est I'expression (quantique) du vecteur énergie-impulsion, ce qui donne un sens
plus profond a la transformation de Legendre entre Lagrangien et Hamiltonien.
Il est évident en effet qu'on peut poser la relation entre opérateurs linéaires (4):

[9] L=v-P—-H

Heuristiquement alors, si 1’on traite 9, = (v - grad) intrinséquement, comme il se
doit, on obtient une forme quadratique:  (13)



DE LA RELATIVITE RESTREINTE 221

A AN, AkAi A Ai
[10] 2T = v'-P‘=gikPP avee o = L.
m m

et par conséquent on tombe immédiatement sur 1’équation de Schrodinger:

S
2m

On peut méme faire davantage, et combiner ensemble les deux facteurs \/ e

et —ih: il vient tout naturellement I'équation de Klein-Gordon:

A d A P* P

[12] — Hy, = —ih = - ihu*o, = u,P* =g, —— avec Hyp = Ey
at my

De la méme fagon, utilisant 'application tangente spinorielle au lieu de la vectorielle,
on obtient I'équation de Dirac (5):

A d A A
[13] — Hy, = —ih o= ihy*d, = y,P* avec Hyy = Eyx

En voici assez pour cet exemple, d’une richesse de structure (linéaire) a peine soup-
¢onnable a priori.

En fait, on peut appeler, pour des raisons historiques, relativisation le processus
purement mathématique d’incorporation du paramétre d’évolution dans une VD
d’une dimension de plus que la VD dans laquelle on plonge les arcs paramétrés. Le
processus inverse d’utiliser une coordonnée comme paramétre de feuilletage d’une
V'D en sous-V'D d’une dimension de moins existe tout aussi bien, on vient de le voir.
C’est en fait une pratique courante en mathématiques de traiter de la sorte le systéme
différentiel correspondant a la donnée d’un arc paramétré d’une VD M" ou a celle
d’un champ de vecteurs X sur une telle variété. En effet, on associe volontiers a un
tel champ de vecteurs X les arcs paramétrés (par le paramétre ¢, un c-nombre) plongés
dans M", dont le vecteur tangent est en chaque point le vecteur X. (6) Dans une carte
locale de coordonnées naturelles x‘, au lieu d’écrire le systéme différentiel de I’arc
paramétré
dx' (1)

= =X'(x*@®) ie{l,2,...n}

[14]

on le récrit en incorporant le paramétre ¢+ comme x"*1éme coordonnée d’une VD
M" x R sous forme d’équation d’une (bi)caractéristique:

ARCHIVES DES SCIENCES, Vol. 35, fasc. 2, 1982. 16
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dx' di 9 Jxntd

[15] = =T T

C’est exactement la maniére dont nous procédons depuis des années pour traiter la
Relativité Restreinte de I’espace-temps. Au lieu de I’axiome de Newton (en fait,
dans les Principia, a la fois la premiére définition et la premiére loi):

. Ix' (1
[16] pF=m 535}[(_) ie{1,2,3)
[¢

on peut introduire I'axiome de Newton-Einstein:

- d ot dr

p' m p* my

sous forme de (bi)caractéristique, qui procure un schéme structural commun a la
dynamique de Newton comme a celle d’Einstein. Pour Newton, la VD est I'espace
physique R?, le paramétre, le temps ¢ qu’accompagne la masse invariante m; pour
Einstein, la VD est 'espace-temps R® x R, le paramétre, le temps propre t qu’accom-
pagne la masse au repos invariante m,. A priori, on peut étendre le jeu a une 5¢,
voire a une n-¢me dimension arbitraire.

Comme en cinétique les symboles représentent des p-numbers, des mégéthe,
il importe d’introduire une constante d’homogénisation phy-dimensionnelle dont
le mégéthos est le rapport de ceux des coordonnées et du paramétre. Dans le cas de
I'espace-temps physique, cette constante posséde la phy-dimension d’une vitesse.
Elle est définie pour toute carte, c’est-a-dire, physiquement parlant, pour tout sys-
téme en repos, en tout lieu et en tout temps. Cela suffit pour rendre compte du second
postulat de la théorie d’Einstein sur 'indépendance de la vitesse ¢ de la lumiére (le
phénoméne dont la vitesse de propagation dans le vide est précisément égale a la
constante d’homogénisation) par rapport a la vitesse de toute source lumineuse en
mouvement uniforme. Quant au premier postulat de relativité, celui de I’extension
de la relativité a toutes les sortes de phénomeénes, donc a toutes les formes d’énergie:
inertielle, électromagnétique, etc., il est assumé par le recours a la dynamique pour
la fixation de la métrique de la nouvelle VD obtenue par incorporation du paramétre.

En élaborant sa thése sous notre direction, notre collaborateur P. Kroes (7)
nous a objecté qu’il ne suffisait pas de distinguer entre temps parameétre et temps
coordonnée pour établir complétement le schéme structural commun aux dynamiques
de Newton et d’Einstein, mais qu’il fallait encore préciser comment on passait de la
métrique de M" a celle de M" x R. Constatant pour notre part qu’il fallait également
interpréter physiquement les nouvelles rotations introduites grace a la coordonnée
nouvelle (qui sont les transformations de Lorentz pour la Relativité Restreinte),
nous nous sommes rendu a cet argument, pour constater que le probléme était déja
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résolu depuis longtemps par A. Lautman, d’une part, sans que nous en ayons eu
connaissance auparavant, et de fait par nous-méme ¢galement, par notre fagon
de recourir 4 la transformation de Legendre pour dériver la relation fameuse E=mc?.
En effet, si, par homogénisation, x* = ct, alors p* = c¢m. D’autre part, pour une
seule particule, la transformation de Legendre L = pp' — H peut s’écrire en co-
yecteur impulsion-énergie: Ldt = p,dx' — Hdt, on, par conséquent, p, = — Hje.
De 14, on tire tout a la fois H = ¢*m, et également I’hyperbolicité de la métrique
selon la 4¢ composante ct. Car il se trouve alors que, de la (bi)caractéristique [17],
par un simple calcul de proportions, on peut tirer (8):

(18] dJ?" _ paxt dxtdx, i

3

P p.p" p'dx, m

ou le produit p,dx" est le covecteur impulsion-énergie, de phy-dimension « action »,
dx,dx" est la métrique, et le rapport dx’/p' mérite donc d’étre dénommé « passion ».
On a la relation importante suivante:

[19] action X passion = métrique

Ainsi la signature de la métrique doit figurer dans celle de la 1-forme d’impulsion-
énergie p,dx* = pdx' — Hdt. Ceci est valable en général pour un espace de confi-
guration de dimension n quelconque (9).

Quant au remarquable travail de A. Lautman, qui date de 1946 (10), ce n’est
gucre avant 1980 que nous en avons pris effectivement connaissance, grice a une
réédition. Notre ignorance de ce travail, d’ailleurs, est partagée par presque la
totalit¢ des physiciens, car Lautman écrit en philosophe des sciences.

Tout comme nous, mais en définitive, avant nous, Lautman oppose dans son
mémoire « deux sortes de propriétés sensibles du temps, celles qui se rattachant aux
notions de dimensions et d’orientation sont des propriétés géométriques du temps,
et celles qui, se rattachant a la notion d’évolution, déterminent en particulier les
propriétés dynamiques des corps» (p. 257). Plus loin, il oppose encore « temps
coordonnée » a « temps parameétre » (comme nous, donc) (p. 272), et « temps repére »
a « temps facteur d’évolution » (p. 277). Mais cette dualité, nous dit encore Lautman,
« existe déjd au niveau des mathématiques pures, indépendamment de tout souci
d’application a 'univers. (...) Le temps physique sous toutes ses formes n’est que la
réalisation sensible d’une structure qui se manifeste déja dans le domaine intelligible
des mathématiques. » (p. 266)

Il n’est pas dans notre intention de refaire ici la démonstration de Lautman:
qu’on se reporte pour cela a la référence indiquée. Elle tourne essentiellement autour
du traitement de la résolution tant des équations aux dérivées partielles du premier
ordre par la méthode des caractéristiques de Monge que de celle des équations
différentielles (totales). Pour les premiéres, en effet, leur intégration se raméne a
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celle des équations différentielles qui définissent leurs courbes caractéristiques, donc
a un processus semblable a I'intégration des secondes. Dans les deux cas, on est
confronté a deux entités mathématiques distinctes: les champs de vecteurs, d’une
part, et les courbes intégrales d’autre part, les uns et les autres relatifs aux équations
différentielles considérées, et porteurs de la différence entre conception dimension-
nelle et conception paramétrique du temps.

Dans le champ des applications au discours physique, la relativisation rend
compte, bien siir, de son premier modeéle historique einsteinien. La Théorie de la
Relativité Restreinte se rameéne en effet entierement a la relativisation de l'espace
physique tridimensionnel et du paramétre temps en une VD d’espace-temps quadri-
dimensionnelle. Comme la démarche historique d’Einstein est bien différente de la
reconstruction structurale que nous proposons, se pose naturellement la question
de son succés. Notre réponse, ici-méme, ne peut étre que succincte, pour des raisons
de place disponible.

Einstein n’a pris au sérieux I'approche quadridimensionnelle de Minkowski
qu’avec 'attaque du probléme de la généralisation de sa premiére théorie de la rela-
tivité. Mais, aprés de nombreuses tentatives infructueuses en sens contraire, il avait su
se convaincre de s’appuyer sur la base siire de I’électromagnétisme de Maxwell et de
remettre en question la mécanique et la cinématique classiques. Nous savons aujour-
d’hui exprimer les équations du champ de Maxwell structurellement, par une 2-

dx" A dx’,p,ve{l,23,4},

e
forme différenticlle sur la VD d’espace-temps, soit - B,
¢

elle-méme dérivée extérieure de la 1-forme d’énergie-impulsion électromagnétique

. . € ’ .
(de mégéthos «action », soit: - A,dx". Les transformations de Lorentz laissent
¢

invariantes aussi bien la 2-forme que la 1-forme. Par le postulat de relativité, il doit
en aller de méme pour la I-forme d’énergie-impulsion inertielle p,dx”. On a déja
montré antéricurement {11) que cettc invariance suffit précisément a détermincr
complétement la transformation de Lorentz, qui devient purement cinématique du
fait que de la (bi)caractéristique [17] on dérive immédiatement la proportion:

dt m
[20] — = —
dt moy

Cette transformation est bien une rotation dans une métrique hyperbolique en t.

C’est donc I’électromagnétisme qui fixe la quadridimensionnalité de 1’espace-
temps (alors que la (bi)caractéristique [17] peut s’étendre a n quelconque). En effet,
les équations de source sont données par la 2-forme Hodge-étoile duale de la 2-forme
de champ, ce qui fixe n a 4. (12). Ainsi la variété espace-temps quadridimensionnelle
est liée étroitement a I'interaction électromagnétique. Ceci n’est plus nécessairement
vrai si I'on tient compte d’autres interactions, p. ex. les interactions faibles.
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Une autre manifestation possible de la relativisation semble intervenir dans les

travaux en cours de notre collégue A. G. M. Janner sur les cristaux incommensurables.
Ce serait 1a le fait nouveau que les positivistes inductivistes exigent d’une nouvelle
théorie avant de la considérer sérieusement. Cependant, I’accroissement de cohérence
qu’apporte cette reconstruction structurale devrait au moins satisfaire les empiristes
logiques. Quant aux structuralistes (bourbachiques), ils devraient étre heureux du
succes de cette dérévolution d’une théorie jusqu’ici jugée hautement révolutionnaire.

Nos remerciements chaleureux vont a notre ami et collégue A. G. M. Janner,

pour ses conseils toujours avisés, tant de forme que de fond. Nous remercions éga-
lement notre ancien assistant et ami P. A. Kroes, dont les remarques et critiques nous
ont souvent servi d’aiguillon.

(1)

(2
(3)

(5)

(6)
(7N
(8)

9

NOTES ET REFERENCES

La reconstruction structurale apparait comme une « sophisticated rational reconstruction »
par rapport & I. Lakatos. Elle évite les entorses & I'histoire, parfois scandaleuses, qui entachent
le modele original de Lakatos.

Voir ! pour plus de détails sur la quantification. Nous préparons une étude plus approfondie sur
ce sujet: « Sur deux insuffisances majeures de la Mécanique Classique: Relativité et Quanta ».
E. C. G. STUECKELBERG DE BREIDENBACH et P. B. SCHEURER, Thermocinétique phénoméno-
fogique galiléenne, Birkhduser Verlag, Basel und Stuttgart, 1974, p. 80.

P. B. SCcHEURER, « Leibnizian Quantum Structure, Irreversible Dynamics, Quantum Kine-
matics, and all that », Arch. Sc. Genéve, 34, n°® 3 (1981), p. 383-388.

Il y a plusieurs fagons de tirer une racine carrée d’une forme quadratique. En voici trois d’une
utilisation courante en physique:

| dz|? = dzdz pour les complexes

[ dx #
ds = \/g'uu dxtdxy = B ds
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Il y a lieu de symétriser la (bi)caractéristique en y incorporant la deuxieme loi de Newton
Ft = dpt/dt:

dv dph ixy dpt def — 9y dE, dS (Eg)

PO T gFR g (ixg) FE =9y Ey(dmgldT) S, (dmy/d=)

avec S (E,) 'entropie de I’élément de systeme et &, la température naturelle propre de Stueckel-
berg (%= —1/T, ou T est la température absolue), un parametre d’évolution isomorphe a un
temps imaginaire: & = —if. Formellement donc, dS/dt = —9,dE,/dt > 0 relie 'augmen-
tation de ’entropie & celle de la masse propre, une interprétation qui s’impose naturellement
en thermodynamique relativiste. On retrouve la correspondance structurale entre action et
entropie en tant que deux réalisations physiques différentes de I'information.

On peut méme s’essayer a la métrique sur Pespace des états de la Mécanique Classique, d’élé-

ment (pt, ¢%, 1), i€ {1,2, ..., n}.

; ; 2o Pt
do? = dy® + dg* — ¢*dr?  avec yi = p
0
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RELATIVISATION: UNE REINTERPRETATION STRUCTURALE

le cone isotrope « lumiére » de cette métrique généralise 1'équation elliptique de l'oscillateur
harmonique. On trouve en effet:

(7\0/}30)2 F2 4+ ¢ %? = |
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La constante / contient p par la relation de Broglie, d’ol le passage a la forme quadratique !
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