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QUANTUM KINETICS:
A STRUCTURAL REINTERPRETATION
OF THE QUANTIZATION IN DYNAMICAL SYSTEMS*

CINETIQUE QUANTIQUE: UNE REINTERPRETATION
STRUCTURALE DE LA QUANTIFICATION
DANS LES SYSTEMES DYNAMIQUES

BY

P, B. SCHEURER 2

ABSTRACT

The structural reconstruction, first of Quantum Mechanics, and then, of (Gibbsian) Statistical
Mechanics allows for a structural reinterpretation of the phenomenon of quantization in the more
extended class of the theories of Kinetics. Thus, Quantum Kinetics is based on three structural
characters: 1) the duality between tangent and cotangent bundles on a Differentiable Manifold,
2) the presence of a physical dimension or megethos, and 3) an active projection. Some method-
ological considerations are offered concerning the rather unusual approach to this type of problems.

I. QUANTIZATION: THE STRUCTURAL APPROACH

1. INTRODUCTION

Within the larger framework of a structural reconstruction (1) of the theories of
Kinetics (i.e. of change as motion: kinesis), it is permissible to perform a structural
reinterpretation of the two major scientific revolutions in physics at the dawn of
this century: the Theory of Special Relativity and the Quantum Theory. The result
of such process is that they are dislodged from their majestic epistemic status of
scientific revolutions and reduced to the more modest, yet adequate rank of con-
venient responses to two major deficiencies in Classical Mechanics. The Theory of

! In homage to E.E.G. Stueckelberg de Breidenbach, from whom 1 have learned to conceive
of physics not only as a science, but primarily as a theoria, an invaluable conceptual instrument to
probe reality.

2 Catholic University. Faculty of Science. Department of Philosophy of Natural Sciences.
Toernooiveld, 6525 ED Nijmegen. The Netherlands.
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Special Relativity lifts the ubiquitous ambiguity of Classical Mechanics with regard
to physical time, by the explicit suppression of the classical confusion of the two
different mathematical roles of time, resp. as parameter of evolution and as dimen-
sional coordinate. (2) On the other hand, as will argued here, the Theory of Quantum
Mechanics aims at remedying the inherent incapacity of Classical Mechanics to
treat vectors and covectors as such, i.e. as they are intrinsically, and not merely
in terms of their components in a given frame, which totally blurs the fundamental
duality existing on a differentiable manifold (DM) M between its tangent bundle
T (M) and its cotangent bundle T* (M). This still holds on the mathematical level.
Moreover, the use of the mathematical language of the DM’s to express a physical
discourse also blurs the fact, that in a physical discourse one deals not only with
classical numbers (called c-numbers by Dirac) but also with u-numbers, 1.e. numbers
endowed with a megethos (in homage to Eudoxus), that is to say, with a physical
dimension (for short: phy-dimension). These two facts: 1) the duality T (M)/T* (M)
and 2) the existence of a megethos enable the Quantum structure to manifest itself. By
now it should be clear that quantization is a phenomenon more general than is
usually thought, since it can be found in a priori arbitrary DM’s and/or with quanta
of megethos not restricted only to action. (27)

The following is a brief but illuminating exemplification of the present point
of view. Let

o ——>

d ., . '
1 — v (x(),t) = — —grad
[1] P EO.0 = — eradp

be Euler’s fundamental equation of hydrodynamics (1755 !), with the speed v,
the density p and the pressure p as functions on a streamline of the fluid.

For our purpose, only the total derivative written in its linear operator form

matters:

d dx' ¢ 4]

2] ds dt Ot -0t

Mathematically, this is a trivial expression of the tangent mapping (Leibniz’
chain rule and difference between total and partial derivative).

But its usage within a physical discourse conceals formidable ambiguities, since
the expression covers both the tangent to a relativistic worldline and a Legendre
transform between Quantum Lagrangian and Hamiltonian, leading directly to the
Schrodinger equation! A detailed exposition of the argument is given in (2); it
will therefore suffice to indicate the operations to be performed on [2] as well as
the results.

2

a) Multiply [2] with the factor\/ »? . One obtains:
¢
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d G
[3] 7 = u =5 & re{l,2,3,4}
—— v ¢
with dt = \/] _ Y 4 the proper time, u' = p? and u* = v?
C2 \/1 - 3 I — )
C C

the 4-celerity. This suppresses the confusion in [2] between 7 as a parameter (on the
streamlines) and ¢ as a coordinate.

b) Multiply [2] with the factor — i# (or — ih: no distinction is made here between /
and /). One obtains:

[4] L=vP—-H

the (Quantum) expression of the momentum-energy vector. As v'0; = (7 - grad), the

A

A
rule for treating the vectors intrinsically makes v' to become v* = P/m and gives: (28)

A PE P" A A A
m
whence the Schrodinger equation:
A A A Pi Pk A
2m

c¢) The application of a) and b) combined yields the Klein-Gordon equation:

AA
un pv

[7] —-Hy = —-ih— =u,P* =g, —

dt my

d) The substitution in c) of the use of the spinor tangent mapping for that of the
vector tangent mapping produces the Dirac equation:
A~ . (‘{ A . A
[8] —H()=—1P1(T=);#P“l with Hy y = E, y
T
The aim of the remainder of this paper, is to present a justification of this very
effective structural reinterpretation of quantization in dynamical systems.

2. KINETICS

Kinetics i1s change as motion. Something, call it a physical system, changes
from an actual state (or position) into another one. In some way, the states accessible
to the system virtually form a definite domain, a multiplicity of states, something
like a set, or a field, or a space. In order to be more specific, it is necessary to add
to this domain some mathematical structure: topological space, vector field, lattice,
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phase space, DM, etc., depending on the required specification. Furthermore, the
succession of the actual states in this domain is recorded by means of a parameter of
evolution, a ¢-number, or, as is often the case in physics, a g-number. There too,
more specification may be required: one-dimensionality, continuity or discreteness,
the kind of megethos, etc.

In our case, the specification consists in the fact that motion is described by
differential equations, which in turn implies a deterministic (in the Einsteinian sense
of the word) interpretation of evolution, and which means moreover that motion
is described in terms of the (very rich) structure of a DM. (3) This reading of the
concept of Kinetics completely agrees with Stueckelberg’s preference to speak of
thermokinetics, rather than of thermodynamics. (4)

While physicists are usually concerned with limited but rather well delimited
problems (the negative result of the Michelson-Morley experiment, the black-body
radiation, the spectrum of the hydrogen atom, etc.), the problem here is less sharply
defined, but more fundamental. This explains why the theory related to the problem
is relatively unusual. This resort to an unusual theory, however, can be supported
by referring to Einstein’s distinction (relatively early, in 1919) between two kinds
of theories. (5) There are theories of construction, built up from “a relatively simple
formal scheme”, such as the kinetic theory of gases starting from the hypothesis of
molecular motion; and there are theories of principle, based on “empirically discovered
elements, general characteristics of natural processes, principles that give rise to
mathematically formulated criteria”. Examples of the latter are the science of thermo-
dynamics (starting from the universally experienced fact that perpetual motion is
impossible) and the theory of relativity, with its two postulates. Theories of structure,
however, such as the theory of Kinetics, presented here, demand a third, intermediary
class of theory: indeed, they are theories both of construction, since the structure
constitutes really a “simple formal scheme” and of principle, since the choice of the
relevant structure is dictated by an empirical principle. For Kinetics, indeed, the
structure is that of a DM, and the empirical principle is the very observation of
change as motion. This empirical principle 1s certainly one of those most deeply
rooted in our understanding. It was already very well expressed by Aristoteles’
saying that “Time is the number (or the measure) of motion”. The difference between
this ancient expression and its modern counterpart lies in the fact that the latter
contains a powerful language of structures, of which DM’s structure is among the
strongest. (6)

3. EPISTEMOLOGICAL APPROACH

One of the goals of (6) was precisely to give a detailed exposition of new epis-
temological concepts, born from the present research in (quantum) Kinetics, and
conversely stimulating the development of further research in that area: concepts
such as the language of structures versus the language of forms, the slow emergence
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of structuring reason, (7) the exploration of the field of possibles (see Dirac’s favorite
game: play with formulas and see what comes out of it (8)), the historical distortion
with regard to the structural reconstruction; the dialectic of the seen and the unseen
in the seen, etc. Although it is impossible to do more here than list these topics, it
is necessary to insist on the opposition made in (6) of language and discourse. In the
analysis of physical theories, the coupling of language/discourse is more useful than
that of syntax/semantics cherished by linguists. Thus physical theory is conceived
as a discourse fixed in a (mathematical) language, whose constraints a priori deter-
mine what can and what cannot be said by that language. This opposition between
language and discourse can be reinforced and made even more meaningful by the
consideration of what could be called the double coding. Indeed, from the empirical
data given by observation and experiment to the propositions of a theory, there is,
not as Einstein claimed, a single, but a double jump. (9) First, we code the data into
concepts of a discourse (e.g. into physical entities), and then we recode these concepts
into the (mathematical) entities of some mathematical structure. For example, the
standard opposition between absolute time and relative time concerns the conceptual
level of discourse, while the opposition between parameter time and coordinate time
is relevant to its mathematical coding. Similarly, the duality of the wave-particle
pertains to the first coding, while the formal asymmetry between total derivative
and partial derivative as first observed by Einstein (10) expresses this duality through
the second coding. Within the present point of view of the structural reinterpretation
of Kinetics, quantization and relativization operate only after this double coding,
and thus they represent structural characteristics of a DM, while the physical mege-
thos calibration of the geometrical unit becomes meaningful only on the level of
conceptual discourse. All in all, this situation is very well known to mathematicians
and physicists (11): indeed, the classical question of formalism and its interpretation
is the problem of decoding in reverse. Furthermore, the strategy of the geometrical
process of quantization here advocated closely resembles the fundamental strategy
of B. Kostant and J. M. Souriau (12), except for the fact that their discourse does
not sufficiently respect the demands of elementarity and intuitiveness.

4. INTUITION (Anschaulichkeit) OF THE DUALITY TANGENT vS COTANGENT
IN A DM

After first coding and accepting Newton’s First Law, it is clear that the vector
momentum p is tangent to the trajectory and the position X is fixed by its coordinates.
By second coding, this time on the full structure of a DM, p is coded into the tangent
vector operating on the parametrized curve representing the trajectory, and so
P eT (M). Similarly, x is coded into the numerical functions of the coordinates,
and becomes an element of 7% (M).
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Now in a frame of natural coordinates, the basis vectors of T'(M) are given by

0 ) . ) . . .

~ and the basis covectors of 7% (M) are given by the differentials dx'. The fun-
0x

damental duality between tangent and cotangent, consequently, amounts to the

following condition of “orthonormality™:
[9] < 4. dx) > = of, the Kronecker index.

N A
N OX

o~

This, as has been recognized now for at least 10 years (13), is also the expression of
the (algebraico-geometrical) quantization on any DM (cf. § 6). It is the most elemen-
tary and intuitive way to present the duality responsible for a quantum structure.
At the other, most abstract pole, there is what is (improperly) called Quantum Logic.
The structure of lattices encompasses various sorts of duality present in a large
variety of mathematical structures: in particular in projective geometry, com-
binatorial topology, probability theory, mathematical logic, theory of functional
spaces, etc. (14). Specifically, C. Piron has shown that the structure of a CROC-
lattice provides an adequate foundation of Quantum Physics (15).

S. INTUITION LOST AND REGAINED (16)

At this point, the question why such simple interpretation of quantization was
not seen before imposes itself. Part of the answer is purely historical. Up to the late
forties, the structure of the DM’s was not completed, ans was restricted mainly to
mathematical research. The other important part of the answer, however, is relevant
to the dialectic of the seen and the unseen in the seen, and its corollary: the his-
torically grown distortion between the real course of discovery or invention (or even
creation) and the development along a structure. (It is impossible to give a detailed
account of those marvelous adventures: they will however be told in a forthcoming
essay A critical conceptual History of the Invention of Quantum Mechanics, which
aims at revealing some of the unseen in Jammer’s famous book which bears almost
the same title, except for the word “critical”! (8).) In a nutshell: When rejecting as
inobservable the concept of trajectory in space and time of a quantum particle,
Heisenberg by the same token gave up the (natural) concept of a tangent vector
altogether. However, using differential equations of motion, he could not avoid
having integral curves as solutions of these differential equations.

The impulse in that direction was provided by Bohr’s momentous paper of
1918 on the correspondence principle, in which he made use of the Fourier transform
(see 8 for this, as well as for the rest of this part). In the years 1922-1924, Kramers
took over this Fourier transform and worked out his dispersion relation. In the
famous year 1925, Heisenberg realized that a coordinate x given by a Fourier expan-
sion could no longer pretend to represent an observable position, and thus, it was
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reasonable to give up classical kinematics while retaining the observable dynamical
entities: whence his rejection of the space-time frame as inappropriate for the descrip-
tion of quantum motion, and the concomitant claimed abandonment of all appeal to
intuition. In a sense, Heisenberg was perfectly right. To him, as well as to his German
fellow-scientists, time and space were still the philosophical constructs of Kant:
a priori forms of pure intuition. But now, the rejection of the Kantian space and
time and of the forms of intuition (correct as it may be from the point of view of the
present analysis, 1.e. on the level of concepts), obviously is of no consequence on the
level of mathematical entities: indeed, even Heisenberg continued to work in terms
of parameter, coordinate and the like.

Between 1925 and 1927, Heisenberg’s momentous breakthrough gave way to a
variety of new formalisms (soon recognized as being more or less equivalent):
the first matrix mechanics of Heisenberg, Born and Jordan shared the stage with
Dirac’s g-numbers theory, the Born-Wiener theory of operators (they found the

d
commutator I:lt’tJ = 1, [now advocated by Prigogine as giving a new comp-
¢

lementarity, although he fails to recognize that the Liouville operator L is nothing

but id/dt operating on the phase-space], but incomprehensibly missed the cor-
A

. Y o . "
responding commutator [Tx] = 1), and Schrodinger’s wave mechanics. Then,
0x

while Born gave his probabilistic interpretation of *s, Jordan and Dirac formulated
their respective transformation theories which offered the first acceptable physical
interpretation of all these formalisms. In pursuit of ever more abstraction (Dirac had
already invented his famous ¢ distribution!), J. von Neumann, in 1927, objecting
to the “unlosbare mathematische Schwierigkeiten” of this § function, provided the
by now standard theory of observables as operators acting on the vectors of an
abstract Hilbert space, while Weyl, with his isomorphism, taking the opposite course,
considered the observables as simple functions on phase-space (17). Finally, in 1932,
the same von Neumann, in association, with G. Birkhoff, launched the most abstract
theory of lattices of (physical) propositions.

All this was a far cry from the so simple (and, why not, so naive) intuition of the
duality of T(M) and T* (M) ona DM ! For example, in order to recover the Schro-

A

. 0
dinger picture of the linear momentum P'as — ih pws Dirac had to proceed through
X

the derivative of his ¢ distribution. What a detour! But even Heisenberg, the initiator
of this race toward abstraction, considering the fact that electrons leave traces of a
trajectory in a Wilson chamber, was forced to finally (in 1927) return to some sort
of intuition in his famous uncertainty relations (abbreviated as HUR). To this,
one should add that in the present gauge theories of elementary particles, space
and time play a part more valid than ever.
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[I. QUANTIZATION: MATHEMATICAL LANGUAGE

6. THE FUNDAMENTAL DUALITY ON A DM

Structurally, a DM M (of dimension ») is an atlas of charts, a collection of
differential mappings of overlapping local pieces of M into Euclidean spaces of the
same dimension n, with differential maps to connect the relevant overlapping charts.
Anyway the reader is supposed more or less familiar with such a structure. Of special
interest here is the fundamental duality existing on M between its parametrized curves
and its numerical functions.

Consider the following table:

C: parametrized curve i numerical mapping f (e.g. coordinate x°)
C:R->M ] f: M—->R
1 X i x> f (x)

By convenient equivalence relations one obtains equivalence classes:

v: tangent vector df . differential

Cev ‘ fedf

In a frame of natural coordinates (on a chart), with parameter ¢

AR =T e
v = — =9 — = “dx' ie{1,2,..,n
dt ox' | ’ ox!
~—;  basis vectors of 7' (M) dx': basis covectors of T* (M)

0x l

The combination of both yields the usual derivative
fO C: R->K
t— f {x(1)

Here, one sees a flaw of differential geometry: its multiplicity of formulas for the
same relation:

d
r fFEM®) |imo=Cf) =v(f) = <C,f>=<v,f>=<v,df >

The brackets indicate the contraction of the vector and the covector, which in the
last expression becomes a real product (bilinearity). For the basis vectors of 7 (M) and
covectors of T* (M) one obtains the relation [9] (cf. § 4):

0 . .
[9] < rl dx’ > = 5! the Kronecker index
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7. THE LEIBNIZIAN QUANTUM STRUCTURE (18)

The bracket [9] is already a product expressing the duality between the tangent
and cotangent bundles of M. The more standard formulation of this relation can be
found in terms of a commutator between operators. This may be stated simply in
what can adequately be called the Leibnizian Quantum Structure (or LQS).

Let us firstly remark that the Minkowski World Postulate allows us to always
find a frame in which the system in question is at rest. This means that all change can
always be made uniquely timelike. Thus it is convenient to begin with the one-
dimensional DM R of the parameter ¢ (a c-number). Let f (¢) and g (¢) be two

: L . o d o o .
derivabie functions of ¢, and 7 the derivation operator. It 1s very easy to transform
t

the standard Leibniz’ rule (derivation of the product of two functions) into a com-
mutator of operators. Let

d _df if‘(‘_]
[10] 0 (f-9) = 7 g+ f em

Here we have one differential operator, and two functions, symmetric in their role.
But now, introduce a break of symmetry between fand g. Singularize g as a function
expressing the state of the system, and f as an observable of the system, a charac-

. d
teristic of the system. o also represents such an observable. We now have two
t

characteristics and one state function. It is then possible to conceive of f as an oper-
ator too, a multiplicative operator, or better, a differential operator of degree 0.
Thus we obtain two operators acting on the same function. Taking care to place the
latter always to the right of the operators, one easily obtains:

d d
[11] [E’f] g = — (g

or, dropping the arbitrary function g,

d d
[12] |}l—t ,fi| = = (f) as operators.

Substituting ¢ for f, one gets

d
[13] |:c—i—t ,t:} = 1 (the Born-Wiener relation!)

ARCHIVES DES SCIENCES, Vol. 35, fasc. 2, 1982, 15
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Thus we dispose of three equivalent formulas:

o d d
14 — () =1 /,,,,’[t =1=|—,
ood
with 5 € T (R) and di e T* (R) (19).

Now, it is easy to unfold the manifold M from the parameter manifold. If the para-
metrized curves are chosen so as to be the different axes, then the coordinates x'
function themselves as a parameter on their respective axis.

Thus one obtains

0 , .
[15] I:nw; , x’:l = &4
oxt

where x' is still a c-number.

The proper noun LQS finds its origin in an application of the methodology of
research programs of the late 1. Lakatos. “Leibnizian program” does not mean the
program of the historical Leibniz; it refers to the structural potentialities of this
program, some of which were not even conceived by Leibniz. But by 1677, Leibniz
had almost everything necessary for the development of the LQS. He already had
identified and coined the term function. He knew of operators, using of d for dif-
ferentia and S (transformed later into the integral sign | by Bernouilli) for summa.
He also had correctly obtained the Leibniz’ rule. Still missing, however, was the
recognition of the function as a multiplicative operator and, last but not least, the
real incentive of a puzzling physical problem (as would be the puzzle of the line
spectrum of the hydrogen atom).

Everyone should by now be convinced that the Quantum commutator proceeds
directly from the DM structure. This, together with the fact that the Quantum
commutator is responsible for the existence of the HUR, throws a new light on the
status of indeterminism of Quantum Mechanics. Differential equations of motion
induce (Einsteinian) determinism; but they by themselves also produce the duality
in which the HUR are rooted, and consequently, Quantum indeterminism as well.
This is a real problem for epistemologists which, however, 1 shall not pursue within
this paper.

III. QUANTIZATION: PHYSICAL DISCOURSE

8. INTERVENTION OF THE MEGETHOS

It was already pointed out that Aristotle defined time in his Physics IV as follows:
“Time is the number (or the measure) of motion.” A present day interpretation of
this sentence should insist that Aristotle was indeed right to assert that time is not
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a pure number, a c-number, but the number of something, i.e. a g-number (20).
Up to here, the symbols x, ¢t were only c-numbers; whenever this was not the case,
it was clearly indicated. But now, a g-number is given as both a c-number (its measure)
and a p-unit. For instance, for time ¢, one should read
16] t =t[t] t: u-number

t: c-number

[#] = unit of u (¢) 2D
Using once more Minkowski’s World Postulate, we can restrict the study of change
to the study of something purely timelike. In other words, it will suffice to study first
what happens to the parameter, i.e. on the one dimensional DM R, and then to
unfold the results onto the manifold M by the tangent and the cotangent mappings:

d .0

de: — = V' —
[17] C:t—>x dt ox*

c*: pdx'+>Edt

In so doing, one obtains the relation: (for the sake of simplicity, here M = R)

[17 bis] <5t,dr>=<vaax,%dx>=1

where ¢, x, and v are now megethe. This relation immediately discloses the effect
of duality on the megethos, viz. an inversion relative to the megethos, and for this
reason, it will be noted here a u-inversion. Thus, comparatively, we have:

~| -

[18] c-numbers: inversion (trivial) -

p-numbers: u-inversion L X =1
L "

For example, the unit of the megethos action 1, is the Planck Quantum of action,
written /:

[20] 1

If 1,0, does not have the value 1 as it should, this is only because, historically,
there were more cases of determining “anthropomorphic” megethe and their units.

Now, the megethos interferes with the expressions of the basis vectors and co-
vectors. These must remain c-numbers. Thus, the megethos of the coordinate x'
must be neutralized by a factor A of the same megethos and the fundamental math-
ematical expression [9] must now be read:

0 x/ )
= aey (3)> =

=h=6-10"% CGS.

action
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in order to be adaptable to a physical discourse, while, of course, remaining math-
ematical.

The following table illustrates how to treat u-vectors intrinsically. For instance,
for the linear momentum p, u(p) is “momentum” and must remain so, through
basis and components:

1) Euclidean space p = p'e; all pisinp’

4 N : d :
2) DM, x'ac-number p = p' pw idem
X

; - .0 . _
3) DM, u(x') = “length” p = p'A P n(p'Ad) = “action”
b

3>

B} v 0
4) idem, prepared for Quantum Mechanics p = — (ph) P idem.
v X

This last expression is of the highest interest. There still is no quantum: it only
appears with de Broglie’s relation pA = A. But that pA is a global constant in any
chart of the DM, remains to be shown. Note the superposition of the operators

(clearlyzi: (”;)2 : 1).

v d vt A
5) Quantum Mechanics p = — (—ih ~~;) = e
v ox' v

(imaginary i put for hermiticity)

It is enough now that all the components of p be 0, except for the kth which is equal
to one. Then

[22] P = Pt

This process of reduction to only one non-zero component is here called aciive
projection. The measurement of p requires, in order to produce a physical interaction,
that the apparatus be lined up with the direction of 7. In contrast with this, the
geometrical projection of the momentum onto the axis of a predetermined frame
constitutes a mere passive projection which, physically speaking, is a mere shadow.
The situation is very reminiscent of this old pseudo-paradox: Let a light ray proceed
at an angle of 45° relatively to two orthogonal axes x and y. We know that ¢ is the
speed of light (in vacuo) along the ray. But what is its component along axis x?

The answer is c/\/Z_. This is the value obtained by passive geometrical projection.
But this value is physically invalid. In order to know the real value of the light ray
along x, one must rotate the frame until it coincides with the direction of the ray,
or one must produce another ray along x. In both cases, the answer is the same: c.
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Now, in both cases, one did something physical before measuring, i.e. one did
perform an active projection.

In conclusion, there are three facts which together are required to obtain the
6) Quantum linear momentum (Schrodinger picture)

A ¢
P''= —ih— :
ox'

the duality T (M)|T* (M), the megethos and the active projection.

9. DE BROGLIE RELATION pA = h AS A GLOBAL CONSTANT
(relatively to the manifold space-time)

1) Again, one begins on the one-dimensional parameter. Here we assume the
existence of an unique megethos, time, but rather, for the general case of Kine-
tics, mass.

Assuming moreover there exists a fundamental mass m,, one obtains by u-
duality (1 =h)

action

h h
[23] mo-— =h then -—5 =1, or Eg =h (Einstein)
mg moc

Let it be noticed that, in Mechanics, the p-inversion alters the types of the dual
megethe: energy versus time. Such is not always the case. In Kinematics (which is a
Kinetics as well, albeit of a particular type), as 1, = ¢?, thus both megethe are

2 2
c c : ;
velocities. For v+ — = ¢* makes V, = — to be another velocity: the phase velocity.
v v
There is another anomalous characteristic: the commutator [v, V] = — ic* admits

2
c
5 for its HUR least bound, which is not at all microscopic. Are these facts evidence

for a kind of degeneration of Kinematics compared to the rest of Kinetics (due to its
no rest mass)?

d
Now take the commutator with ¢ a c-number. Then I:EO T ,rot] = hl. In

order to pass to y-numbers for the operators as well, it is convenient to put © = 7,
(confer [16]). One obtains

[24] |:h (—t ,r:l = hl
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Up to the hermiticity (factor imaginary i), this is the standard Quantum Com-
mutator.

2) One proceeds now from the parameter to an axis x. Here, one can use a light
ray along x. As x = tt, one can say that ¢ parametrizes x, and vice versa. Con-
sequently, one can adapt the result on the parameter proper time Eyty = h
both to the axes ¢t and x, and hence

[25] ET = pi =h

3) For a massive particle, the parameter is unfolded into space-time. By derivation
of the relativistic energy (22)

d(p,p*) = 0, then ¢*p - dp = EdE and hence

[26] pV, = E

¢

This is nothing else than [25] divided by a period T.

4) The extension to a configuration space follows immediately.

10. DUALITY ON THE PHASE-SPACE

Up to here, the discussion was centered on the linear momentum as a vector.
In phase space mechanics, it is well known that p is covector. What happens to the
duality in such a space?

A detailed answer is kept for another paper. It can be said, however, that the
symplectic structure of M 2" has probably been overestimated. The 1-forms (both
the canonical Darboux form p,dq' and the other Lagrangian ones (23)) seem to be
of more interest within the present approach: they are elements of T (M "), as
the Liouville operator id/dt is an element of T (M?*"). But the application of the
duality on this pattern has not yet been worked out.

11. PHENOMENOLOGY OF THE VARIOUS QUANTUM KINETICS

We are free to choose the DM and/or the parameter and/or the calibration
of the unit of the megethos. Here is a list of the most usual realizations:
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] B Quant I | HUR
Type of ml::;';l;; 1 DM | Commutator bound m-relation
] | i
I — i )
Quantum | of action | space-time P 1 h pr=h
Mechanics | of Planck 4 . or configuration | —H o X] = =i | de Broglie
‘ space ’
or abstract
space
(Gibbs) of entropy thermodynamic 0 B k* EY = —k
Statistical of Boltzmann space =% 39’ B | = =kl 2 Stueckelberg
Mechanics k
I Quantum of e.m. action space-time ~ | —ieh 1 Up JA=2ug
Electro- of Maxwell 5| = e Bohr Bohr
magnetism 2 o magneton
—_—— I
C
A
)} Quantum kinematical space-time [v, Vo] = —ic®1 c2 ** v, = ¢
Kinematics | of Einstein ¢® | | 27 Brillouin
| | "

\bout the inequality sign, see (24).
“his is not microscopic!

From this table, three theses appear.

IV. CONCLUSION

[. Due to the variety of the megethe, the Quantum Structure is not restricted to
the quantum /% of the megethos action.

II. Due to the value of the bound in Kinematics, the Quantum Structure is not
restricted to microscopicity.

II1. Due to the interdependence of the natural constants (e.g. £ is equal to Av or
kT or ce*r™' = aht™' or ¢*m, or ..),
in Quantum Kinetics there exists an unique megethos.

For the sake of completeness, one should also recall the role of the DM structure
in the Quantum indeterminism.

IV. The Quantum indeterminism is rooted in the determinism of Kinetics itself,
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V. APPENDIX

This could be our conclusion. Some topics presented in (18): Anti-Leibnizian
Quantum Structure, cotangent vectors such as p will not be treated here. (29) One final
comment, however, with regard to an extraordinary case of the unseen in the seen
should be added. In order to restore continuity against quantum jumps, Schrodinger
proposed his famous relation S = K log ¥; but he did not notice that by the same
token, he introduced a probabilistic theory analogous to Boltzmann’s § = —k& log W.
This explains the isomorphism between theories of these two authors; that iso-
morphism has very good reasons. Indeed, action and entropy are extensive entities,
and the independence of events and the separation of the variables calls for a mul-
tiplication of factors. But the only isomorphism between resp. an additive and a multi-
plicative law of composition is the exponential mapping! Without giving any more jus-
tification (here!), we can only list the main stages of the development of the argument.

Boltzmann Schrodinger
canonical ensemble wave mechanics
entropy § = —Klog W action § = —ihlog s
o5 S _ s _
oY ot
0 0
=—k5§10gW = —ih éilogl,ll

whence eigenvalues problem
\

é 5
k —— W=EW h >y = E
09 | o ¥

Sommation over the states

partition function Z (Zustandssumme) different possible realizations ¥
S Ei -
Z =Ye * Y o= [T e dt = 5(1)
e iHnt _ _
or ¥ =) e n  Fourier series

+ w0 _EEnt
or ¥ =3 _c,e h

completeness on a functional space
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mean value of £

-

: J

< E > |

U'd
< E > =

n C log w
ih — lo .
ot g V7

YE ¥
gy

(usually, axiom of the mean value of an
observable)

fluctuations of E

0* |

9

!_
— k2 ((n'f log ¥ = AE?

(possibility to interpret mass
as given by fluctuations!)

then quadratic operator of fluctuations

hyperbolic

e <0

by Stueckelberg’s 2nd b) principle of
equilibrium.

So: reversal of O entails reversal of &

Therefore irreversible evolution

Irreversible evolution is given by a
Ey

factor e * , with 9 < 0 if £ > 0.

This is in accordance with Stueckel-
berg’s arrow of time, given by a factor
e”* with « > 0 whose sign is given
by the two parts of the 2nd principle:

2a) evolution and 2b) equilibrium.

elliptic
dz

h?

(l dr*
d d

ih — —¢e| YV | —-ih— —¢) =0
dt dt

{ -
So:(~ihi —e) Y is the time
dt

+82) Yy =

{ -
reversal of (ihé —e) '4 (26)

Therefore mechanical reversibility

Reversible time must appear in a factor
~iHt
e " . (Cf. Aristoteles: time is

measured by periodical phenomena.)
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Horizontal passage:

W probability - amplitude of probability (Pauli)
W =y (Born) (30)
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In one dimension, all distinctions are blurred:

R~ TR) ~ T*(R)

This is one of the reasons for the delay in the perception of the duality between T'(M) and
T*(M).

For this reason, Aristotle places physics higher than mathematics, and nearer to the study of
Being qua Being. In the same manner, in the present view, physics is more complete in its
description of reality than mathematics.

Cf. (4) Appendix A.l. We speak there of ¢ as the abstract entity. It seems better instead to
speak of intrinsicness.

This brings to mind Pauli’s method to obtain the non-relativistic wave equation. See Pauli
Lectures on Physics. Vol. 5. Wave Mechanics, ed. Ch. P. Enz, MIT Press, Cambridge, Mass.,
1973, p. 1-4.

See V. ArRNOLD, Méthodes Mathématiques de la Mécanique classique, MIR, Moscow 1976,
p. 456 and ff.

This sign is not reversed, as 1 have erroneously written in (18). I thank Prof. Ch. P. Enz for
pointing out this error to me.

| :
Stueckelberg’s natural temperature & = — N with m% < 0 plays here a fundamental heuristic

0 0
role. Otherwise, how can — kT3 5 log W be thought to compare with i Fy log ¢?

PauLl, in (22), betrays in a short sentence an extraordinary insight (p. 4): “The imaginary
coefficient assures that there is no special direction in time; [the non-relativistic wave equation of
¢’] is invariant, under the transformation ¢ — — 1, [then] ¥’ — {’, whereby ¢’ ¢’ remains
unchanged.”

Notes added on proofs:

(27)
(28)

Thus Quantum Kinetics appears as a General Quantum Theory.
The constant /2 contains p by de Broglie’s relation, hence the emergence of a quadratic form!
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(29) Nevertheless, here are the covariant expressions corresponding to the contravariant ones

- <

- = - i . < i\ : - (Vi p? ;
of §8: 1) p = p‘.e‘; 2) p= pl.cl'.\"; Hp = %— dxt; 4) p = (”—1, ':J-dx'; Syp = {-—1\ C.-d.\"

v' h . oA I ; .

= (;) e dx' ; and 6) P, =1 T dx' (quark potential!).

(30) This correspondence plays more fully if the real action S is allowed to become a complex one:
S = 8§, + iS,, with §; mechanical action and S, entropy. This would lead to considering a
complex time too: t = t; + if,, with 7, reversible mechanical time and ¢, irreversible evolutive
time. This study will be presented elsewhere.
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