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STELLAR MODEL COMPUTATIONS
FOR DETERMINING MASS AND AGE OF STARS

BY

M. PATENAUDE ! and P. BOUVIER?

SUMMARY

A condensed version of a recent work on stellar model computation is given here, stress being
laid on the computational methods used. The basic program is that of the Goettingen team (R. Kip-
penhahn et al.) to which a certain number of minor modifications were applied.

RESUME

Nous présentons ici une version abrégée d’un travail récent sur le caleul de séquences évolu-
tives de modéles stellaires, en insistant plus spécialement sur la technique des méthodes utilisées.
Le programme de base est celui de I'équipe de Goettingen (R. Kippenhahn et al.), auquel ont été
apportées quelques modifications de détail.

1. INTRODUCTION

Stars evolve over a very long time scale, spending most of their life consuming
some nuclear fuel during quasi static phases of evolution. In the main sequence stage
in particular, where hydrogen is transmuted into helium in the innermost region of
the star, it is customary to divide the star into three main regions, namely the atmos-
phere, the outer envelope and the inner core. Owing to different physical properties,
each of these three regions has to be described by its own set of basic equilibrium
equations together with an appropriate integration method.

The initial data for any model are the overall chemical composition of the star
and its total mass M: quantities such as the total radiated power or luminosity L
and the radius R will appear here as free parameters of the stellar model. The most
directly observable quantities are L and the effective temperature 7.4 related to R
and L by the black-body relation

L=4nR*c T

L Université de Genéve, Observatoire, CH-1290 Sauverny.
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where ¢ is Stefan’s constant. In practice, many steps have to be overcome when pas-
sing from the truly observed magnitudes and colour indices to the quantities L, T,4.

The purpose of building a model star is to get an idea of the internal structure
of the star and to ascribe to it a representative point in the colour-magnitude or
Herzsprung diagram (L, T.;). However, since the effect of nuclear burning is to
gradually change the chemical composition and the internal structure as well, we
are therefore faced with a whole evolutionary series of models, to which shall cor-
respond an evolutionary track in the (L, 7,4) plane.

Let us now turn to the study of a stellar model, divided into the three afore-
mentioned main regions.

2. MODEL ATMOSPHERE

The atmosphere comprises the outermost layers and is usually very thin, com-
pared to the star’s radius R; we may locally describe the atmosphere by a simplified
model consisting of a plane-parallel layer of gas subject to a constant gravity

M
g =G RZ
and pervaded by a constant net outward radiative flux F.

Moreover, a temperature T can be defined at any level as the temperature which
would warrant a local thermodynamic equilibrium state within any volume element
located on that level. A slight vertical displacement downwards —dr corresponds
to an increase

dt= —kpdr

in optical depth 7, where p is the density and x a mean absorption coefficient,
depending on the local physical conditions (p, T) and the chemical composition.
The model atmosphere thus defined will then provide us with a temperature-
depth law
T=T(; R L) ¢))

for assumed values of the parameters R, L corresponding to a given representative
point of the model in the (L, 7,.4)-plane.

Since the pressure P varies rapidly in these outer layers, it is advisable to adopt
log P as the independent variable and consequently to write the hydrostatic equilib-
rium equation in the form

K P
—— = 2.30258 — (2)
d log P g

where k is usually given by opacity tables in terms of p, T for a known chemical
composition. The equation of state of the atmospheric partially ionized gas mixture
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and the law (1) allow us to express x in function of 7, P and consequently to integrate
(2) through the atmosphere.

The integration, necessarily numerical, is carried out by a predictor-corrector
type of method from the “outer edge” © = 0 where

1
T=T(@O;RL), =-§aT4(0;R,L)

down to the “photosphere” T = 7 defined by
T(t; R, L) = T,z (R, L)

and often chosen as the bottom of the atmosphere.

3. STELLAR ENVELOPE

The envelope extends from the photosphere down to a “fitting level” located
at a distance r = ry from the star’s centre, such that the mass contained within rp
amounts to a certain fraction g of the total mass. We must choose g in such a way
that the two predominant elements, H and He, be completely ionized at r = rg
where convection, if present, should have become adiabatic. On the other hand,
gr must not be taken too small, in order to ensure that all sources of radiant energy
remain inside the core r < rp. The compromise value adopted by Hofmeister-
Kippenhahn-Weigert (1964) * of ¢ = 0.97 means that only 3% of the mass (but
something like 40% of the radius) are contained in the envelope.

The basic equations take here into account: the hydrostatic equilibrium, the
mass variation (M, being the mass inside the sphere of radius r) and the temperature
variation. With log P as independent variable they read

dlogr rP

dlog P GM.p (32)
dlog M, _ _ﬁi{’ (3b)
d log P G M?

dlog T

d_gg_P =V (3¢)

where the 7-gradient yp may take, in a first approximation, the value appropriate
either to radiative energy transfer (f = p,,q) Or to convective energy transfer
(F = Peony): both values depend on the opacity x, in addition, p_,,, contains also
the rather uncertain parameters of the so-called mixing length theory.

* Quoted further as H K.W.
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We notice further that the elements A and He, usually partially ionized in a
large part of the envelope, tend to become fully ionized at the botton M, = M and
this is reflected on the equation of state linking P, p, T.

Starting from the photospheric conditions

r=R, M, =M, T,=T(RL), P=P(;R,L)

we integrate the three ordinary differential equations (3) by a predictor-corrector
method to obtain, for any given R, L, the three fit-values (rg, Pr, Tf) at the fit level
M, = gy M. Further, we still have L, = L, = L at r = r, since all the sources of
radiant energy were located below the envelope.

Eliminating formally (R, L) between these 4 fit-values leads to 2 relations bet-
ween the latter and considering only neighbouring points in the (log L, log T.4)
plane, these relations may be taken as linear, namely

log rg oy log Pr + B, log Tp + 7, (4)

log Ly = o, log Pp + B, log Ty + 7,

and 3 integrations of the envelope will be sufficient to determine the 6 coefficients
o, B, 7.

As evolution proceeds, the representative point of the model moves in the
(log L, log T.;) plane; the technique of (H.K.W. 1964) based on the subdivision
of that plane into small triangles having two of their sides parallel each to one of the
axes log L or log T, permits to reduce to a minimum the number of necessary
integrations through the envelope.

This is important, because the complicating features presented by the partial
ionization of the medium and the non-adiabatic character of the convection, if
any, require a long computing time.

4. INNER REGION

In the inner region, the elements H, He are, in the rule, totally ionized, although
it may happen that the gas becomes partially electron-degenerate. Further, if con-
vection is present, it will be considered as adiabatic with p = p_4 throughout the
convective core if one neglects, in first approximation, any overshooting at the edge
of that core.

The new feature here is that L, is no more constant, and we now have to envisage
the following four basic equations, written with M, as independent variable.
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or _ 1 (5a)
oM, 4nrip

P GM,
oM, " anrt -
0T GM,T

oM, " " anrp’ &
oL, cT J0P
NV ALY PP ¥ o)

In (5¢) we shall let p = p_,q Or p = p,4 according to the dominant mode of energy
transfer. In the energy equation (5d), the functions ¢ (rate of radiated energy),
o (thermal dilatation coefficient), ¢, (specific heat at constant pressure) all depend,
like p,.4 OF Faq in (5¢), on the physical conditions prevailing in the medium. More-
over, (5d) contains the time explicitly, so the equations (5) build a system of partial
differential equations, we are faced with an initial value problem and a boundary
value problem as well. As long as we start from an initial main sequence state, where
the chemical composition is still uniform throughout the star as the thermonuclear
reactions are on the verge of ignition at the centre, matters are greatly simplified:
the evolution begins very slowly so that the 2 terms of (5d) containing ¢ explicitly
remain still negligibly small and the first time step ¢+ — ¢, can be chosen fairly large.

At any epoch ¢ = ", the equations (5) have to be integrated inwards from the
fit-level M, = M in the relevant model, where the linear boundary conditions (4)
were obtained from the integrations through the atmosphere and envelope at given
R, L. To avoid possible divergences, we do not carry the integration right down to
the centre, but to a very small fixed mass level M, where the 4 dependent variables,
r, P, T, L, are determined from the central values (P,, T,) with p = p,_, by first order
expansions in M,.

The equations (5) have first to be converted into finite difference equations, both
in ¢t and M,. According to Henyey (1964) one adopts, for reasons of numerical
stability against short-period perturbations, an implicit and asymmetrical difference
scheme At = " — "', index n — 1 pertaining to the preceeding formerly com-
puted known model.

On the other hand, we divide the inner model into m concentric shells labelled
j=1,2,...m where j = 1 denotes the outer fit-level and j = m the centre.

The physical quantities r, P, T, L, undergoing considerable variation inside the
model, accuracy reasons lead us to replace them by the respective logarithmic
variables x, p, 0, s which vary much more smoothly, and take instead of M, a dimen-

\

sionless variable such as & = In (1 ——]‘j) in order to obtain a finer mass-level distri-

bution near M. All these new variables remain finite in the interval
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0<M, <M <M.<M

and it is to them that we apply now a centered difference scheme, where the values
at two consecutive levels j, j + 1 appear symmetrically.

Symbolically, the equations (4), (5) together with the four central conditions
at j = m, are of the form

B, (p1, 01, X1, 51) =0 k=12
Gi(pjs Ojaxjss_j,pj-e-l, 0j+1’xj+lﬂsj+l) =0 _] = 1,2,...,]’)’1 - 2;i = 11,...,4 (6)
Ci(pm—l’Om—lsxm—_hsm—lapma Bm) = 0 § = 1: 94

Starting from a preliminary approximative model, therefore not satisfying
equations (6) exactly, the Henyey relaxation method consists in finding the corrections
needed in order to have

B,+8B, =0, G, +3G, =0, C;,+8C;,=0

Expanding to first order quantities, these conditions give rise to a linear alge-
braic system of 4m — 2 equations yielding the 4m — 2 corrections é p;, 6 0;, 0 x;,
0s;(j=1,..,m;éx, = s, = 0) expressed in terms of the preliminary model
quantities. Now, m is usually larger than 100, but the particular echelon-structure
of the matrix of the algebraic system simplifies greatly the resolution.

With the new values p; + J p; etc. at level j, one may repeat the procedure
until all corrections remain below a certain preassigned value. Note also that the
improvement of the model by successive iterations also reflects itself on the fit-values
at j = 1, therefore on the initially chosen R, L values.

The model obtained at time t"=¢" " ! + A ¢ will serve as preliminary approxi-
mate model for the construction of the model at time " ! unless one prefers to
extrapolate linearly in time from the two preceeding ¢", "~ ! models. At each epoch

t = t", the chemical composition is readjusted, from the preceeding value, at epoch
Pl

5. GRID RESOLUTION CRITERIA

One of the important items in carrying out such a program resides in the
accuracy limits to decide upon, in connection with the choice of the time and mass
steps. Thus, over a mass step 4 {; = {;,; — &;, we should require that, in absolute
value, the change in variables 4 p;, 40, ... between two consecutive levels in a
model built at time ¢, have both an upper and a lower bound. Since the step 4 ¢;
entails a change in all the local variables, we may expect that only certain of these
changes might be retained. For example, it happens in practice that the bounds
imposed on 4 p;, A4s; are indeed quite sufficient to ensure the limited variations
of 40, 4 x;.
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Similarly, the limitations on the abundance changes of hydrogen, helium and
carbon usually suffice to keep the overall chemical composition within reasonable
limits. As regards 4 &; itself, one often prefers limiting 4 M,/M, together with
A M,/M. All these variation limits are chosen somewhat arbitrarily at first, and may
be revised when the model, having evolved, exhibits a markedly different inner
structure.

The choice of the time step A4 ¢ is related, apart from accuracy requirements,
to the convergence of the iterations performed in the Henyey method. Consider
the maxima | 8 P |maxs | 6 0 [maxs | 8 X [maxs | 8 5 |max Of the absolute values of the res-
pective corrections 6 p;, d 0;, 6 x;, 6 s; obtained at each level j after the first iteration
in Henyey’s method. The largest of these maxima (GKOR) is then tested against a
fixed chosen value GKGRM:

If GKOR . GT . GKORM

one steps out of the HENYEY subroutine to go back to the main program where, in
case the model is not the initial one (viz AGE > 0), the time step 4 t should be
halved. The value of GKORM is to be chosen the smaller, the faster the evolutionary
phase comprising the model considered and in connection with this, it appeared
useful to control also the run of the central density.

If GKOR . LT . GKORM

at the first iteration, we go on performing successive iterations until all corrections
are brought down below a preassigned value, such as 10™%; usually in fact, they
become less than 10~ ° after 5 or 6 iterations.

On the other hand, accuracy reasons force us to adjust the time-step 4 ¢ so that
the relative decrease in hydrogen abundance, due to nuclear burning, is kept small
(a few percent).

Once hydrogen has become exhausted in the stellar core and goes on burning
in a surrounding shell, the core contracts and the outer envelope expands markedly;
consequently, the representative point of the star in the colour-luminosity diagram
moves rapidly to the right, towards the region of subgiants, and in order to keep
then a sufficiently dense network of evolutionary tracks, it is often advisable to set
an upper bound B to the surface-temperature variation | 4 log T, | when passing
from model at time """ to model at " = """ + A ¢t.If ever | 4 log T,z| > B,
then 4 7 is to be halved.

All these various control criteria render the running of the program rather
cumbersome.

We produced a dozen evolutionary tracks over a massrange 0.9 < M << 10 M
at a given initial overall chemical composition, and also other tracks for a compo-
sition with reduced abundance of heavy elements (on the whole 23 tracks). Each
track, extending from the zero-age main sequence to the subgiant stage, involves
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over a hundred models. For models of low mass, complicating features of the input
physics such as partial ionization, ionization pressure, electron-degeneracy, non-
adiabatic convection in the envelope, tend to increase the computing time as com-

pared to that of a high mass evolutionary track. As an average figure of the com-
puting rate, we can mention about 20 seconds per high mass model and 30 seconds

per low mass model on a CDC 3800 computer, or, roughly speaking, one hour or
so of computing time for a single track.
In addition, a separate program enabled us to obtain, from these evolutionary
tracks, a family of isochrones or lines of equal age; the construction of an isochrone
of given age entails interpolating linearly in log M between two evolutionary tracks

and in time along any given track.
This double network or grid of tracks and isochrones covering a large area of
the (log L, log T 4)-diagram, illustrated by the figure, enables us finally to ascribe

a mass and an age to any star of known representative point.
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Grid of evolutionary tracks (dashed lines, labelled by log M/M_) and of isochrones

(full lines, labelled by log of age in years). AM,,, is the difference in bolometric magnitude
between the star’s magnitude and that on the zero-age main sequence for same Teq.
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