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DIRECT RELAXATION OF A LOCAL
MOMENT SPIN TO THE LATTICE

BY

Y. YAFET

Bell Laboratories, Murray Hill, New Jersey 07974

ABSTRACT

Two new relaxation processes of a localized spin moment in a metal are considered: A one-step
process in which the local spin is flipped while a conduction electron is scattered without flipping
its spin, and a two-step process involving first a change in a local moment by two h units, and
subsequently an exchange scattering which flips another local moment by h in the opposite direction.
Both processes occur in third order of perturbation theory under the combined action of s-d mixing
and spin-orbit interaction. The calculated values of the relaxation time for Mrt and Cr in Cn are
in good agreement with the measured values.

Measurements [1, 2] of the resonance linewidth in solutions of 3d local moments
in the noble metals have provided experimental values for the relaxation time T2

in the bottlenecked regime. Given the fact that the g values of these local moments
are very close to the g value of the host conduction electrons, Hasegawa's equations

[3] predict that at low concentration the spin-lattice relaxation time Tl, which
determines the rate of loss of Zeeman energy by the spin system, is very nearly
equal to the linewidth T2.

Previous discussions of the spin-lattice relaxation have been confined to a two-
step process in which, first, the local moment and a conduction electron mutually
flip their spins under the effect of exchange (Tsil and Tis being the corresponding
spin-flip times) and second, the conduction electron spin relaxes with a characteristic
time Tsl to the energy reservoir provided by the kinetic energy of the conduction
electrons. This second step occurs under the influence of the spin-orbit interaction.
When the system is bottlenecked (Tsl)}Tsll) and when the local moment susceptibility

dominates over the Pauli susceptibility, the effective spin-lattice relaxation
time resulting from this process is

1 TSä 1

—— (I)T T Teff ds * si

In this note [4] we point out the existence of two alternative relaxation processes
which do not involve the time Tsh namely process 1: The local moment spin flips
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by one h unit, the Zeeman energy being transferred in a single process to the

kinetic energy of a conduction electron without involving a change in the latter's
spin, and process 2: Which is a two-step process, first the local moment spin flips
by two h units while a conduction electron is scattered with a change in its own
spin in the opposite direction, and second, the conduction electron restores its

spin to the original direction by exchange-scattering against another local moment.
The net change in the local moment spin system is thus one h unit.

Both processes 1 and 2 occur in third order of perturbation theory under the

combined action of the s-d mixing and the spin-orbit interaction. Denoting by
T(m and the corresponding spin-lattice times, the total relaxation rate is

1111T T t(I) T(2|1 1 1 eff ' di 1 dl

and is to be compared with the experimental linewidth. The orbital moment is assumed

quenched here so that all the relaxation proceeds via the spin-orbit coupling.
Experimentally [1], a temperature independent contribution to the linewidth

has been observed. The times T(dl] and 1^' depend on temperature as T~1 so

that they are not related to any temperature-independent broadening and the

interpretation of the latter is still open. An outline of the calculation of T(^ and
T(dl} follows.

The system is described by the Anderson hamiltonian including the conduction
band energy Hs, the full energy of the 3d ion, Hd (including the electron-electron
interaction), the s-d mixing interaction Hsd, and the spin-orbit interaction Hso.
The unperturbed hamiltonian is Jif0 Hs + Hd and the perturbation is

Hsd + Hso. Since we require orbital quenching of the localized state, our
calculation will be valid for an S state of Hd; if we were to include crystal field
effects we could also treat orbital singlets [5], Here we deal only with the S state

case so that our calculation is applicable to Mn in the noble metals in the limit
where the level width is small compared to the Coulomb energy.

a. Calculation of Let | 6Sm >, where m — 5/2 to + 5/2, denote
the state of the local moment and let | k a > denote the conduction electrons states.

We are interested in transitions that flip the local spin alone, i.e. transitions from
the initial state | 6S,„ > \ k a > \m, k a > to the final state | m ± 1, k' cr >.
These transitions occur in third order of H', with Hsi acting twice and Hs0 acting
once. For instance, a conduction electron | k a > jumps (by Hsd) onto the impurity,

then one of the electrons on the impurity flips its spin (Hso) and finally one of the
electrons on the impurity comes off (Hsd) with the same spin as the incident electron
and goes into the conduction band state | A:' cr >. The matrix element for this
transition is:
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<in — \, k' a \ H' \ »•></' | H' | s)<s | H' \ m, k <r>

M (m — 1, k'a\ m, ka) Y —=—= — ~~ (3)H (E(m, ka) — Er( (E(m, ka) — Es)

where the sum is over all possible intermediate states. It is sufficient to compute
the m -* m — 1 transitions since the m -> m + 1 transitions can then be obtained

by time reversal.
There are three types of terms in Eq. (3) corresponding to the three possible

positions of Hso in the product of factors. Note that if Hso is at the right or left
positions it acts on the 6S, j 5/2 state and gives [6] a *P, j 5/2 state which,
having the same number of electrons as the 6S state, is separated from the latter by

an exchange energy f. In terms of the Slater integrals F2 and FA for the free ion,

f has the value [6]

1 10
/=_F2+—F4 (4)

On the other hand if Hso is in the middle position, Hsd acting on the 6S state changes
the number of d electrons by ± 1 so that the corresponding excitation energies are
U + the energy needed to promote an electron from the Fermi level to the local

moment, and t/_, the energy needed to promote an electron from the local moment
to the Fermi level.

The transition rate from | m to | m — 1 is given by

H7,,,-1,„ ^ I < I M (W - 1, k'a- m, ka) \2>kX (Npal (c,))2 kB T (5)
" a ~ - o,

where < )t denotes the average over k and k' at the Fermi sphere (free electron

conduction band), pa, (eF) is the density of conduction band states at the Fermi
level per atom, for one spin direction, and N is the number of atoms in the crystal.

The spin-lattice relaxation rate is [7]

1

_ 0
^ Wm_Um ,)2

T(},> 2 YE2
m

where the factor 2 takes into account the transitions m -* m + 1. We omit the
details of the calculation of JVm_1 m, which will be published in a more comprehensive

paper, and give only the final result. Defining the quantity C,

C —- k2A2 kB T (7)
n Ii

where X is the spin-orbit constant of the 3d state, and A the virtual level width,
which is proportional to the square of the s-d mixing interaction, we find for the

relaxation rate:
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T jV 25

1 C 20 8 /1
u\ui + J~2\U

(8)

b. Calculation of T(dl\ The transitions from the state | m, k to the state

| m — 2, k't are calculated in the same fashion and the transition rates Wm_2 m

are given by an expression analogous to Eq. (5). To obtain the corresponding
relaxation rate we note that the relaxation process is completed only when the

conduction-electron spin is restored to its original value, i.e. after a subsequent
transition | m — 2, k't -» | m — 1, k" ^ occurs. Since this transition occurs

via the exchange coupling which is large compared to X, the rate-determining matrix
element is Wm_2 m but the net change in the Zeeman energy is that of one spin
moment instead of two. The relaxation rate is then

as follows from Eq. (6) for equally spaced spin levels. Making use of the calculated
values of we find:

c. Calculation of Tsl. Even though the calculation of Tsl (transitions
j m, k t -> | m k't » and of the corresponding Teff has previously been done [8]

in the Hartree-Fock (HF) approximation, we do it over by perturbation theory
for purposes of comparison. The matrix element M (m, k' m k t) is calculated

according to Eq. (3) and after averaging over k and k' the rate T~sll (which is

proportional to the atomic concentration of 3d impurities, c) is found. To compare
with the HF value of asf given in Reference [8] we use the relation T~J (cvF/Q) asf
where vF is the Fermi velocity and Q the atomic volume. To compare with Tdl we
use the relation Teff Tsl [2c S (ST 1) / 3pat (eF) kB T] which follows from Eq. (1).

We find: (1) The value of osf calculated from perturbation theory is equal to
the limiting value of the HF result for small (A/U). This limit is obtained by letting
sin2(5t « A2/Ul and sin2<5^ » A2/U+ in the ///expression of Reference [8]. Thus
the HF result, which is valid in the limit (A/U) 1, reduces correctly to the
perturbation result which is valid in the opposite limit, (A/U) « 1. (2) The perturbation

(9)
Tlft 4 Y.EJ

m

(10)
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calculation shows that the enhancement factor (1 — U/0l.bUsp)~
1 relating to A, the

off-diagonal component of the spin-orbit interaction in Reference [8], owes its

origin to those terms in Eq. (3) where Hso is at the right or left position in the third
order matrix element so that one of the energy denominators in Eq. (3) is /. This
is shown by first, verifying that it is these terms which give rise to the partial cross

section aod which depends on A in Reference [8], and second, by examining the limit
of aod when A << U. This limit is:

The quantity Usp is to be identified with U+ + t/_ and the difference

t/J(1 — Uorb (1/7) F2 + (10/21) Fa, calculated from Referncee [8] is precisely
equal to ß. This identification of the origin of an enhancement factor in the HF
calculation with a group of terms in the perturbation expansion is illuminating and

it provides a satisfactory bridge between the two calculations.
From the calculation of Tsh the following expression for Te/f (TJTds) T'J

is found:

where C is the constant given by Eq. (10).

d. Comparison with Experiment. Because of the fact that the portion of the

linewidth that is proportional to T had previously been thought to arise exclusively
from the Tsl process, all of the temperature-dependent linewidth has been

interpreted [1,2] as a Tsl process. However all three processes, Tsh Tdy and Tdl(2)

give linewidths proportional to T so that only their combined effect given by Eq. (2)
is obtained from the temperature-dependent linewidth. Thus the value 1 /Tsl
4.8 x 107 sec ~ '/ppm deduced [1] for Cr in Cu is actually an apparent rate, given
by the sum \jTapp l/T„ + Xr (1/7^+ 1/T<%) where Xr (TJTJ. The
deduced spin-flip cross section is not the true cross section of the impurity for flipping
the electron spin but differs from it by a factor R,

which is directly obtainable from Eq's. (8), (10) and (12) when the values of U+,
t/_, and ß are known.

The only S state ion with which we can compare our theory is Mn2 + Shana-

barger [2] measured the T dependent part of the width and found 1 /y (T2)app
0.96 gauss/ppm. The corresponding value of the apparent spin-flip cross section is

(ID

R TeffIT, i +2frrs,(i/r(d11) + i/r(di)) (13)
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(asf)apP 1-27 x 10" 18 cm2 /?<Tsywhere aJf is the true conduction electron spin-
flip cross section.

To calculate asf and R we need to know the quantities /, A, U+, U_, and /.
The value of /. for the Mn2 + ion is [9] 330 cm-1. The value of A for Mn in
Cu has not been measured, but for Ni in Cu the measured value is [10] A ~ 0.3,
and for 7V in Cu, the estimated value is [11] A 1.0 eV. For Mn, we estimate
A 0.55 eV.

The values of U+ and U_ are estimated from the measured [12] saturation
moment of Mn which is («* — «|) Hb 4-0 Hb ar>d from the assumed total number
of d electrons on Mn in solution, + n^, which we estimate to range between

5.0 and 5.4. Use of the Lorentzian approximation for the virtual level gives then
the quantities U+ and t/_. Finally we take / j.{U+ + UJ) which is a value
close to but smaller than the 6S — AP separation in the free ion.

With these values of the parameters the three relaxation times Tsl, T(Jt\ and

T j2) as well as the corresponding asf and the factor R have been calculated. The
results are shown in Table 1. It is seen that the calculated asf does not vary much
as in + ni varies between 5.0 and 5.4, even though U + and £/_ vary appreciably.
At fixed in and n^, if A is allowed to change, the resulting asf varies as zl-2 and R

does not change. This follows since U + U_ are proportional to zl when in are
fixed.

The agreement between the calculated (osf)app and the experimental value of
1.27 x 10-18 cm2 is too close to be meaningful since the actual state of the Mn ion
is probably not so close to the perturbation limit. Agreement within a factor of 2

should be considered good.
Finally, the case of Cr can be qualitatively compared with the present theory.

The measured value is [1] (osf)upp 3.6 x 10-18cm2 and the value of asS, using

only the process, and calculated in Flartree-Fock approximation is 8

2 x 10-18cm2. A factor R between 2 and 3 gives qualitative agreement, but Cr is

probably less close to the perturbation limit than Mn, and in any event a separate
calculation would have to be made for Cr since it is not in an S state in the ionic
limit.
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Table I

Calculated valuer of sf and (sf)app Rsf for Mn in Cu

U IcV] U- [eV] swn IIa? asf [cm' iasflapp [cm-

5 4 1 46 3 60 2 53 3 12 4 22 x 10-^ 1 32 V 10-18
5 2 1 74 2 68 2 21 2 77 4 92 x 10-19 1 36 x 10"18
5 0 2 12 2 12 2 12 2 68 4 62 x lO"19 1 24 x 10" 18

The values assumed for the local moment parameter are: n* — n, 4 0; A

0 55 eV\ and the values of + n listed in the first column. The values of U + and

l/_ then follow from the virtual level description, ß is taken to be X (C/H + t/_)
The measured value of (oSf)app is 1 27 x 10~18cm2.
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Increasing the input value of /if — wj, will give a smaller calculated value of (sy) app.

DISCUSSION

Monod: Is the mechanism by which you have this spin-flip of the local moment and no spin-flip
of the conduction electron just like the one that Giovannini calculated in the anomalous Hall effect,
and which boils down to a spin-orbit interaction in which it is the spin of the magnetic impurity
and the orbit of the conduction electron 0

Yafet. If you want, yes.

Monod. You have an interaction X* I S which does the same thing as Yafet says.

Orbach: Is that a spin-other orbit that you are talking about 0 This I thought was a spin-orbit
on the same ion.
Giovannini: This effective interaction can have various sources, and one is the one that has been
described by Yafet, which gives the same functional form for the interaction.
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