Zeitschrift: Archives des sciences [1948-1980]
Herausgeber: Société de Physique et d'Histoire Naturelle de Geneve

Band: 26 (1973)

Heft: 2

Artikel: A fitting procedure for conductive opacity in a stellar medium
Autor: Bouvier, P. / Patenaude, M.

DOl: https://doi.org/10.5169/seals-739923

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-739923
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

A FITTING PROCEDURE FOR CONDUCTIVE OPACITY
IN A STELLAR MEDIUM

BY
P. BOUVIER and M. PATENAUDE

Observatoire de Genéve

ABSTRACT

An expeditious although sufficiently accurate procedure is proposed here to include the con-
ductive opacity into the overall opacity of the stellar medium, according to the most recent advances
in the theory of electron conduction. The method has been successfully tested in a case where pre-
viously tabulated opacity values were available.

RESUME

Un procédé rapide mais suffisamment exact est proposé pour inclure, dans I'opacité globale du
milieu stellaire, 1'opacité conductive telle qu’elle résulte des versions les plus récentes de la théorie
de conduction électronique. Cette méthode a été correctement vérifiée dans un cas ou I’'on disposait
de valeurs d’opacité préalablement tabulées.

1. CONDUCTION VERSUS RADIATION TRANSFER

The radiative energy transfer inside a star is connected to the opacity of the
stellar medium by the well-known expression for the radial energy flux
4acT® dT

Frad=_3 N
PKg dr

(1)
where a, ¢, p, T have their usual meanings and x,, denotes the mean radiation
absorption coefficient per unit mass. Consequently,

4acT?

- 3 pKrad

(2)

)“rad

may be called the radiation conductivity coefficient.
On the other hand, the radial flux of energy transported by electron conduction
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dT
Fcond = - lcond T (3)
r
enables us to define the thermal electron conductivity coefficient A_,,4 to which cor-
responds, in the sense of relation (2), a coefficient of conductive opacity

4acT? @)
KC n = 5 3
ond 3 P }“cond
When both these modes of energy transfer are simultaneously at work, the
fluxes (1) and (3) should be added, therefore also the conductivities, so that the
overall opacity k will be given by

(5)

Insofar as the mean free path of the photons is distinctly larger than that of the
electrons, as it occurs in the interior of main sequence stars, the conductive transfer
is quite inefficient when compared to radiative transfer. Now, if the density increases
and the electron gas becomes degenerates, the lower momenta states will all be
occupied, thereby hindering electron scattering. At high degeneracy, conductive
transfer shall predominate so that, according to (5), k = K_,,q and the opacity is
essentially conductive.

In the stellar medium, electrons will undergo collisions with ions (e-i collisions)
and with other free electrons (e-e collisions); for high degeneracy of the electron gas,
the electrons tend to build a continuous sea of uniform negative charge, unsuitable
for scattering and moreover in a (e-e) scattering, the final quantum state of both
electrons must be unoccupied, not only that of the single electron involved in a
(e-i) scattering. For such reasons, only (e-i) interactions were considered in the early
treatments of thermal eiectron conduction (MESTEL, 1950); nevertheless, the method
is incorrect with a partially degenerate medium and LaMPE (1968a4) has shown that
(e-e) interactions should be retained even in highly degenerate plasmas.

2. ELECTRON CONDUCTION IN THE STELLAR MEDIUM

The stellar medium is usually regarded as a gaseous mixture of non degenerate
ions and of free electrons which may present any degree of degeneracy. The gaseous
character of the plasma implies weak coupling between the particles; the potential
energy of any particle in the plasma remains much smaller than its average kinetic
energy.

For the sake of clarity about the later developments, we shall recall concisely,
in the present section and the following one, the main features of the conduction
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theory in the light of the recent advances of LAMPE (19684, 19686) and HUBBARD-
LAMPE (1969).

Owing to their large mass M, the ions do not contribute appreciably to the
conductive energy transfer, so that they may be considered in local maxwellian
equilibrium, described by the familiar distribution function of positions and momenta

_ n; _ p’
7m0 = i (- saper) ©

where the ion concentration n; and temperature T both depend on x, ¢.
The electrons, of mass m and assumed non relativistic, will be distributed in
phase space according to a nearby Fermi-distribution

fex,p, 1) = £, p%0) + £V (x,p, 1) (7)
where
0 = 2 oo (L — ) 1] @
¢ h? 2 mkT

¥ being the degeneracy parameter depending, like 7, on x, .

The perturbation term f,‘") is due to the temperature gradient FT imposed on
the medium by the energy flux, together with the electric field E required to ensure
the average electric neutrality.

The distribution functions just introduced are normalized to the concentrations:

_[fi,e (X, p, t) d3p = ni,e (X, t) (9)
In the first-order perturbation theory, (7) will currently be written in the form

h3
fox,p, ) = £ [1+(1 = —2"fe(°))4’(X,P, n] (10)
h3
where 1 — 5 £,(® is the probability for the perturbed electron to find itself in a state

unoccupied in the equilibrium distribution.
The evolution of f, (x, p, t) in time is governed by a Boltzmann-type of equation

Df, of.
= (— 11
Dt ( at) coll. ( )
the 1.h.s. of which can be written,
af. af® e R
VT _E’. 12
ot +0 ) dT m ov ()

where e E’ is the total force acting on an electron, due to the electric field E and to
the pressure gradient VP:
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1
eE' =e¢eE + — VP (CHapmaN and COWLING, 1961).

;

The r.h.s. of (11) describes the stochastic variation of f, on account of e-i and
e-¢ encounters; it includes the sum of two contributions, each of them represented
by a multiple integral over the initial momenta and the parameters specifying the
encounter. The cross-sections for both types of collision are calculated in the Born
approximation with a shielded Coulomb field and, in view of the e-e collisions, care
is taken of energy as well as momentum exchange during the collision (dynamical
shielding). Keeping also in mind the exclusion principle for the possible electron
states, one finally gets for the r.h.s. of (11) the form proposed by Lenard and Balescu
(LAMPE, 1968a).

Replacing f, by its value (10) and neglecting terms quadratic in £,**), we may then

write, symbolically,
o)
( o/ ) = L(9) (13)
ot

coll

where L 1s a linear functional transformation of the unknown function .

3. POLYNOMIAL SOLUTIONS

To solve this Boltzmann (or Lenard-Balescu) equation (11), linearized in @
according to (10), (12), (13), it is sufficient (CHAPMAN-COWLING, 1961) to retain for
@ an expression linear both in ¥V log T and E’, viz.

¢ (x,p, 1) = AP*)(p/m)-(V T/ T) + D(p*) (p/mkT) - e E’ (14)

A, D being two unknown scaiar functions of the electron’s momentum modulus.
Going back with (10), (12), (14) into (11), one obtains, after equating separately
the coefficients of ¥ T/T and E’, two linear integral equations, one for A (p?), the
other for D (p?).
Following here the Champan-Enskog method of resolution, we expand 4 and D
in polynomial series of the form

(e o]

A(p®) = _Zo a;P;(p*), D(p*) = _ZO d;P;(p*) (15)
j= J=

where the P;(p®) are expected to build a complete set of orthonormal functions.

As a matter of fact, the eigenfunctions of the operator L are unknown in general;

but in case of a nondegenerate electron gas, the orthogonality relations appearing

in the problem lead us to choose the Sonine polynomials for the P;(p?), in spite of

the fact that these polynomials, multiplied by the spherical functions Y (0, ¢)
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only coincide with the eigenfunctions of L for a very restricted type of interaction
between the plasma particles (JANCEL et KAHAN, 1963).

Other polynomials must be found for a degenerate electron gas, suggested by the
orthogonality relations and LAMPE (1968a) gives the explicit form of such poly-
nomials in the case of a highly degenerate electron gas.

Anyway, the integral equations for 4, D will then yield a system of order n — oo
of linear algebraic equations for the a;, d; respectively:

n

ajkaj=0!k, ZaJkd_’=5A (16)
=0 j=0

J

Approximate solutions of (16) will be found by truncating the sums to a finite number
n of terms and with a suitable choice for the P; (p*) we may expect the approximate
solutions a;(", d," to converge rapidly towards the exact solutions a;, d;asn — oo.

4. THE FIRST TWO POLYNOMIAL APPROXIMATIONS
FOR THERMAL CONDUCTIVITY

The energy flux carried by electron conduction is equal to

1
2 m?

F = £ pPpdp (17)
Substituting £,**) by its expression in (10) and eliminating further E’ between (17)
and the condition that the electric density current vanishes in the medium, it becomes
possible to express F in the form (3), written as

F=—-lVT

where the value of the thermal conductivity A = A™ depends of the order » to which
the algebraic system (16) has been truncated.
With n = 1, one obtains (LAMPE, 1968a) in terms of some Fermi functions,

128 w2 m/k\®
A = T(ﬁ) (21F5/2—25 F§/2/F1/2)2 TS/au (18)
further, when n = 2;
. 2
2) (1) a;z '
A = o 1 — (19)
Qg1 a3

the a;, are collisional integrals containing the physics of the problem; the contribu-
tion of the e-i collisions can be expressed through Fermi functions F, () of integer
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and half-integer order; it also contains a logarithmic factor 0,; brought in the (e-i)
scattering cross-section by the shielding effect. As for the contribution to a;, from the
e-e collisions it is much more difficult to evaluate and it also contains a similar colli-
sion logarithm 4,,.

Relying on the numerical values given by LANDSHOFF (1949) for the matrix
elements included in the a; pertaining to a non degenerate plasma made up of
electrons and single ions of isotopic number Z, we verify that

A2 =24 if Z = 1 (hydrogen)
and A = 3.1 if Z = 2 (helium)

Furthermore, when Z becomes large, the (e-e)-collisions contribution decreases and
if we neglect it, retaining only the (e-i)-interactions, then 1?) — 6.5 2(1),

Moreover, the introduction of a third polynomial solution appears unnecessary,
since it only results in a correction less than 8 per cent (HUBBARD and LAMPE, 1969).

On the other hand, if the electron gas is highly degenerate ({y > 1), we may adopt
part of the Lorentz approximation to evaluate the (e-i) contribution to aj, namely
that the maximum energy transferred in a (e-i) collision remain much less than kT.
Consequently the exact value of the thermal conductivity is then already given by the
one polynomial solution to an accuracy of 1 per cent, independently of the (e-¢)
encounters.

We now turn back to expression (18) for A‘!’; the element a,, has the form

Ay = Ayrei T Ay1ee
where a, ,.;, itself sum of three terms (LAMPE, 1968b) is proportional to
ZEW) 0, T

with Z as a mean isotopic number for a mixture of different ions of species «:

nZ =Y n,2Z? (20)
n,, n, being respectively the electron and ion concentrations.
Further
10 25 F? o
EW) = [2F\Fyjp — — FoFsp + — =2 (1+e7)7] (21)

while a,, ee is proportional to

n (W) b, T°'*

where n () may be written, after an integration by parts,

2

n() = °f vdVin(l +e"’“V2) f[ew 4 1]_l dw (22)
o o]
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Putting all this into (18) allows us finally to write for the first polynomial approxima-
tion of the thermal electron conduction

g2 (21 F5,3 —25F33/F1,2)* T2
S4n./2me*  ZEW) 0. + 4n(Y) 0.,

The calculation of A*) according to (19), requires still the evaluation of the elements
a,,, a,,, which is quite difficult with regard to the e-e terms (LAMPE 1968b).

10—

(23)

4. OPACITY TABLES

On the basis of the results recalled in the previous sections, HUBBARD and
LAMPE (1969) managed to compute conduction opacity tables for hydrogen, helium,
carbon and two special mixtures, one for a typical red-giant core (X,,=0.98, Xy
=0.015, X,=0.005) and the other for a solar-type star.

The density range runs from 107°7° to 10"® gcm ™3, the temperature-range
from 10? to 10° deg K but the log x values have been computed, in function of log p,
log 7, only within the domain of validity of the theories underlying the above results,
in particular for weakly coupled and non-relativistic electrons.

In the stellar evolutionary calculations which we intend to carry out, at first
during the core hydrogen-burning phase from the zero age main sequence to the red
giant tip, we shall have to interpolate the opacity at each stage, between two of four
opacity tables corresponding to decreasing hydrogen abundances. These four tables
we have selected among those given by Cox and STEWART (1969); they are related to
the mixtures named MAS II, CS XII, CS XIII, CS X1V characterized respectively
by the hydrogen abundances X = 0.70, 0.50 . 0.20, 0.00.

The Cox-Stewart tables contain, in function of log p and log T values of the
radiative opacity (without and with the effect of lines) and of the effective opacity
(log k) by including the electron conduction according to the MEesTEL (1950) and
LEe (1950) theory where e-e interactions were ignored.

More recently, PAczynskl (1970) and DEMARQUE and HEASLEY (1971) have
been using the radiative Cox-Stewart opacities together with the conductive Hubbard-
Lampe opacities, but we cannot use their results because of the unknown procedure
which they applied to combine opacities pertaining to different chemical composi-
tions.

The direct calculation of A from the expressions (19) and (23) is most unwieldy
on account, partly of uncertainties in the evaluation of 0,, and partly of the extreme
sensitivity of the factor (21 Fs5,,—25 F 3 12/Fy,2)* appearing in (23) to the accuracy
adopted for the numerical values of the relevant Fermi functions.

3
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By way of short cut, we propose here an approximate method to include system-
atically for any degree of degeneracy, the Hubbard-Lampe conductive opacities into
the four afore mentioned Cox-Stewart tables which we need in our evolutionary
computations.

5. A METHOD FOR INCLUDING CONDUCTIVE OPACITY AT ANY y

We retain the fact that we have at our disposal a conductive opacity table 7
established for a given chemical composition denoted symbolically by x,, and giving
the values of log k.4 in terms of log p, log T as usual.

Keond = K(F‘U ¥ i XO)

and the corresponding degeneracy parameter i can always be calculated from the
basic relation

P(‘!’s T; XO) = H, mH ne

b |
= :—?mH(Z mk)* /2 F , () T?/2 (Z%&) (24)
where, apart from the well known universal constants m, my, and k, n, is the free
electron concentration already present in (20), p, the mean mass number per free
electron and X, the relative abundance by mass of the element (Z,, 4,).

Instead of deriving y from given p and 7, let us from now on regard  and T
as the independent variables; then we may obtain p for the given composition ¥,
and ¥, T values from the relation (24) and further, interpolating in table 7, the
opacity value

K(p(W, T x0)s T, Xo) = ko = k(. T5 Xo)

Keeping first the same 7-value, we may similarly obtain by interpelation in 7, other
values for x, and then start the same procedure again for another value of T, thus
building gradually a limited table 7, extrapolated from . in the  range of interest.

The problem is now to find out the conductive opacity x; = k (y, T; x,) for
another chemical composition y; not too widely different from y,, and for which we
have no table 7 ,. To attain this end, let us consider the opacity ratio

K1 _ #e(xo) A(Y, T xo)
Ko Me(x1) AW, T: x4)

deduced from (4) and (24) at given ¥, 7. We now require that, in passing from y,
to xy, the mean isotopic number Z defined by (20) should not vary appreciably.

By examining the form of the coefficients a; (LAMPE, 1968b) occurring in
expression (19), it is easy to see that they have the general form

(25)
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(4 Z +Bjp) T3/?

where the chemical composition appears mainly in Z, although also in a;, but there
only through the collision logarithm 0,;. Neglecting this last dependence, we will
assume that a;,/a, , a,, is a slowly varying function of Z and that, in first approxima-
tion, 2*)/AM) is practically independent of chemical composition. Then the A ratio
in the r.h.s. of (25) can be taken as that of the A’_, equal, according to (23), to

AW, Tixe) _ Zi W) 0 (P, T) + 4n(¥) O (¥, T)
AW, Tox)  Zol(W) 0, (Y, T) + 4n(¥) 0. (¥, T)
where Z,, Z, are the mean Z values for each of the chemical compositions, & (),

n () are given by (21) and (22) and the dependence of 6,; on y has been dropped.
In a wholly ionized medium, we recall that

(26)

X.Z
-1 = £ 27a
1, ; A (27a)
XZ:
Z‘ue—l = Z (27b)

z Aa

Let the composition yx, be, for sake of definiteness, such that u, (x;) > t. (Xo)s
therefore also Z, > Z,. Owing to the positive character of the quantities &, n, 0,
it is apparent from (26) that

AW, T, Z
< (W Xo) -

—_— <
AW, T x)  Zg
so that, in consequence of (25),

He(xo) _ K1 Zy e (¥o)
Be(x1) Ko Zopte(x1)
the bounding values being all the more close to each other that the chemical compo-

sitions are more similar. Let us denote by x ;and x| the opacities obtained by equating
the k-ratio to its lower, respectively upper bound:

ki _ He(xo) (284)
Ko pe(Xl)
ﬁ _ Zy e (x0) (28b)

Ko a Zo pe (1)

The i-ratio could only attain its upper bound, according to (26), if the Z are
large or if the e-e contribution becomes very much smaller than the (e-i) contribution.
In fact we are dealing here with Z's fairly close to unity and the e-e contribution is
never negligible, even to high degeneracies (LAMPE, 1968a).
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Therefore we shall try to approximate the conductive opacity x, either by
or by the mean of log «,, log k; preferentially weighted in favour of log ;.

6. TESTING THE METHOD

As a preliminary test, let us apply the procedure in a case where previously
tabulated values exist for both chemical compositions envisaged; for example pure
hydrogen (x,) and a solar composition (x,) as used by HUBBARD and LAMPE (1969)
in connection with a paper of BAHCALL, BAHCALL, SHAVIV (1968) dealing with the
solar-neutrino problem and involving several possible solar models. Retaining more
specially model C, the composition yx; is defined by Xy = 0.764, X, = 0.221,
X = 0.015 ()X, heavy element abundance).

Adopting the same distribution of heavy elements as the one determined by
LAMBERT and WARNER for the solar photosphere (1968) we find, from the relations (27)
applied to composition y,,

u,! =0.882, Zu,' = 1.073 (29)

By the way, the MAS Il mixture used in one of our interpolating tables for
stellar evolutionary computations, is a little less hydrogenrich (X;=0.70) than the
Bahcall-Shaviv models, but the heavy element distribution (¥=0.02) appears to be
very close to that of Lambert-Warner; the carbon is equally abundant and the
oxygen is slightly more abundant in MAS II. We have, for the MAS II mixture,

ol =0.850 Zuo! = 1.068

Let us choose for log T the three values 6, 7, 8 and for log { the three values 0,
1, 2; the Hubbard-Lampe opacity table for hydrogen 7, yields, by linear interpola-
tion, the log x, values for the densities p, (, T); whence table 1 containing the values
of log k, written just under those of log p,

TABLE 1

6 0.791 1.105 1.358
3.328 2.844 2.401
7 2.291 2.605 2.858
2.511 2.046 1.629
8 3.791 4.105 4.358
1.654 1.216 0.809

values of log p, (above) and log x, (below) in terms of log T, ¢
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Keeping the same  and T-values, we pass from p, to p, with the values (29)
for chemical mixture y,, viz.
logp, = logpy, + 0.055

the new densities p, leading, as one interpolates in the Hubbard-Lampe opacity
table 7, for solar composition, to values of log x, and the table 2 contains, similarly
to table 1, the log p, and log x, values for composition y;,.

TABLE 2
v
0 1 2
log T
6 0.846 1.160 1.413
3.294 2.813 2.378
7 2.346 2.680 2913
2.475 2.043 1.600
8 3.846 4.160 4413
1.617 1.179 0.776

values of log p, (above) and log Kk, (below) in terms of log 7, ¢

If 7, did not exist, we could always calculate x; and k; by the relations (28),
viz. in the present case,

logk, =logk, —0.055
logr, = logk, +0.031

and the mean values «,, x, defined by

_ 1 ’ "
logk, = E(log K, +logk,) (30a)

. 1 , _
logk, = 5(log:r<1+log Ki) (30b)
become here
logk, = logk, —0.012
logk, = logk, —0.034

In the following table 3, we have collected the values of log x, and log x; since
it turns out that, among various approximations to log k,, log x, leads to values in
closest agreement with the interpolated values given in table 2.



130 A FITTING PROCEDURE FOR CONDUCTIVE OPACITY IN A STELLAR MEDIUM

TABLE 3
0 1 2
6 3.294 2.810 2.367
3.273 2.789 2.346
7 2.477 2.012 1.595
2.456 1.991 1.574
8 1.620 1.182 0.775
1.600 1.161 0.754

values of log Kk, (above) and log k; (below) in terms of log T, ¢

Comparing tables 2 and 3, one verifies that the relative deviations (k, —k,)/k,
all remain below 3 per cent; the approximation log « is still fairly good, (k; — i)/,
never exceeding 7.5 per cent and if we content ourselves with an accuracy of 109,
log k; or log x, may also be used.

This preponderance in the choice of log x, is again apparent if one considers the
Hubbard-Lampe table .7 ,, as connected to a slightly different chemical composition,
like those of the other Bahcall-Shaviv solar models.

7. CONCLUSION

In conclusion, as we pass from one particular chemical composition y, for which
we do have a table 7, of conductive opacities, to another y,, not too different from
1o but for which an opacity table .7, does not exist, we may approximate the con-
ductive opacity k, by the mean value x, defined by (305) or, in terms of (30a), (28), by

1,z
He(1o) Log 1 K (Xo) 1)
te(xy) 4 Zop(3y)

. 3
logk, = logky + Zlog

The procedure just described is easy to apply and avoids a considerable amount
of calculations; it appears to us to be more expeditious than the limited fitting
formulae of the type used by SWEIGART (1973) for the HUBBARD-LAMPE (1969) and
the CanuTO (1970) data. According to the previous test, the method is quite accurate
and we should recall that, in most cases which we are facing, conductive opacity is
only part of the overall opacity (5).
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In our stellar evolutionary computations, we have to interpolate, as mentioned
before, over a 4-fold grid of opacity tables 7 ,, 7 ,, 9 5, 7 4, corresponding to che-
mical compositions y, 2, X3, X4 With decreasing values of Xy (section 4).

These tables contain separately the radiative opacities and on the other hand,
we have the Hubbard-Lampe conductive opacities for pure hydrogen (7 ,) and pure
helium (7 5). We apply the foregoing method in passing first from pure hydrogen to
composition y, to get the conductive opacities k, which we combine, using (5), to
the radiative opacities of table 7, thus obtaining a table 7, of overall opacities
where the electron conduction is taken care of according to the Hubbard and Lampe
results.

Similarly, we pass from composition y, with table 4 ; to composition x, (not
too different from y,), thus constructing a table 4, of overall opacity. It will not be
necessary to distinghuish here between composition y, and pure helium so that,
starting from y, and table 7 5 we first combine the radiative opacity from 7, with
the conductive opacity from J s, getting the overall opacity table 4, for composi-
tion y,. Then we pass on to y, for which a table 7 ; will be similarly established and
as a matter of verification, we could pass from y; to x, in order to confirm table 7 ,.

Interpolation over the 4 fold grid 9, 7, 7 ; 7 4 will enable us to compute, at
every stage of evolution, the overall opacity including electron conduction according
to the latest improvements. Insofar as we dispose of appropriate radiative opacity
tables, the procedure can readily be extended to the core helium burning stage.
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