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COMPUTING EXPERIMENTS ON STELLAR SYSTEMS
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Article de Synthese presente ä la 2e Conference de la Societe Europeenne de Physique,
Wiesbaden, octobre 1972.

Zusammenschrift an der 2. Konferenz der Europäischen Physikalischen Gesellschaft
überreicht, Wiesbaden, Oktober 1972.

Star gatherings

Among the various stellar systems observed in space, we may broadly distinguish
between galaxies, galaxy clusters and star clusters. Since the preceding lecture was
devoted to evolutionary computations of galactic disks, the aim of the present
considerations will consist essentially in the study of the dynamical evolution of
clusters by means of numerical methods. The richest star clusters are the so-called

globular clusters, some of them containing up to a few tens of millions of stars;
in our galaxy, they number about 120 and belong to the oldest objects known.
Five billion years is a characteristic figure for their age. In connection with their

name, the globular clusters present a circular or nearly circular image, which is not
always the case of the open star clusters. The latter exhibit a large range of ages,
from million to billion years, the smallest of these clusters reducing to multiple stars.

In a first approximation picture, an isolated star cluster is envisaged as a group
of N point-like stars, held together by their mutual gravitational attraction so that,
from the dynamical standpoint, we are facing straight-away the famous A-body
problem. We know for a long time that this problem can analytically be solved

only for A 2 and investigated in very special cases when A 3; for larger A, we
have to rely entirely on numerical methods and the first attempts in this direction
had to be delayed until the advent of powerful and fast computers.
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Statistical description

Meanwhile, some progress was achieved for large stellar systems on statistical
lines by introducing a continuous distribution function /m(x, v, t) of the positions x,
velocities v and masses m at any instant of time t. The time-variation of fm is then
followed with the help of a Boltzmann equation (1), the r. h. s. of which is given
by the Fokker-Planck expression (2) appropriate to long-range forces.

8fm 8fm 8$ 8fm -(drfm\

where the stochastic variation of fm per unit time, due to the encounters with stars
of mass in', amounts to

(<>cfm\ 3 ,13 3,(—J„, 121

<dv)m. being the average velocity change per unit time of a star of mass m

encountering stars of mass m'.
The self-gravitating property of the isolated system is ensured by requiring

the smoothed-out potential <P (x, /) to obey Poisson's equation

p2 <p 4 n G X m\f m
d3v (3)

m

The integro-differential system of equations (1), (2), (3) non-linear even without
the encounter effect, is far too intricate to be solved in a general way.

The effect of binary encounters undergone by a star passing successively near
other stars, tends to bring the system towards a state of statistical equilibrium; the
associated time-scale is called relaxation rime Trel and shali vary from one piace to
another in the cluster. By comparing Trel averaged over the whole cluster (or a
limited part of it) to the age A of the system, usually obtained from the astrophysical
properties of its brightest stars, one is led to an important distinction. When the
ratio TreljA is much less than unity, the system considered (or part of it) is said to
be relaxed; such is the case, for instance, of the dense central regions of a globular
cluster. If conversely, the above ratio appears to be much larger than unity, the

system is unrelaxed because the encounters have not had sufficient time to influence
its dynamical state; such a situation is expected to prevail in the outer tenuous parts
of any stellar system.

Another characteristic time which we shall evoke sometimes later on is the

crossing-time Tcr, given by the time taken by a star to cross the whole system with
the average (or r.m.s.) velocity of the stars in the cluster. For large systems, Tcr is

shown to be much shorter than Trei
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The full complexity of the general problem embodied in equations (1), (2), (3)
is avoided by laying forward a certain number of simplifying assumptions; this may
lead to some restricted solutions of the problem. In spite of the somewhat crude

nature of the assumptions and approximations made, it has been possible to obtain
by this method a first overall picture of the dynamical evolution of a star cluster.
This evolutionary picture, independent of the initial conditions and later confirmed

by other methods, reveals the development of an increasing central concentration,
together with the formation of an extended outer halo while some stars, having
acquired a high energy through encounters, will escape from the cluster.

The instantaneous evaporation time Tev is defined by

dJL„-m (4)NT1 ev

and if the escape rate dNjdt were constant, Tev would be equal to the remaining
lifetime of the cluster.

Numerical experiments

Twelve years ago, S. von Hoerner (1960), using a 2002 Siemens computer,
was the first to investigate the dynamical evolution of a small star cluster by numerical
simulation and similar attempts by several authors were soon to follow after.

The essential advantage of this method of numerical experiments, as it is also

called, resides in its being free from any simplifying assumptions; given arbitrary
initial conditions, one just has to solve numerically the first-order equations of
(non-relativistic) motion for the N point-like stars composing the system

(i= 1,2,..., N; k 1,2, 3)

to* ^ v xtk ~ xjk—Gym, 5

dt >(-x,|3
(6)

The evaluation of the r.h.s. of (6) requires an increasingly large computing
time Tcp when N becomes large; estimated over one relaxation time of the system,

Tcp appears roughly proportional to N3, so that the method is limited to systems of
a few hundred members, corresponding to small and medium star clusters of galaxy
clusters. N 500 represents an upper limit at the present time (Aarseth, 1971

(1971 b)).
The time-consuming computation of the acceleration (6) for large N leads us

to prefer the use of multistep integration methods, implying high-order difference
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schemes. When two stars approach each other very closely, we must reduce the

time-step in order to follow correctly the variation of the physical parameters
connected with these two stars, but this reduction should not affect the motion of other

stars, following smooth orbits. Consequently, each pair of stars must have its own
individual time-step, adjustable in course of evolution.

The interpretation of the numerical results is a delicate matter; in a comparative
study, carried out by eleven teams, each working with a different computer and using
often different integration methods, the discussion of the results obtained for a

25-body problem under the same initial conditions, showed good agreement at first,
followed by strong divergences as the effect of close encounters became predominant
(Lecar, 1967). We therefore do not obtain a unique solution for the specified set of
initial conditions and the numerical experiments appear to be reproducible only as

long as the motion is dominated by the mean field — grad <P. Alternatively, time
reversal tests usually fail over durations exceeding one or two crossing times of the

system (Miller, 1964).

In such circumstances, it may be asked whether the numerical methods are
doomed to failure.

In reality, this kind of method yields superabundant information; we are not
really interested in the detailed motion of every individual member of the system,
but only in the evolution of the system as a whole. The solution obtained corresponds
to a trajectory in phase space which diverges, on account of the amplifying effect on
the numerical errors due to the close encounters, from the trajectory of the true
solution; it may therefore be looked at as a fluctuation of the true solution and any
such fluctuation is equally acceptable as the true solution, so far as the trajectory
remains inside the phase domain defined by the constants of the evolution. In other
words, so long as the constancy of the total energy of the cluster, of its resultant
angular momentum and of the parameters defining the centre-of-mass motion is

verified with sufficient accuracy, we will be entitled to consider the statistical behaviour
of the system to correspond to its true dynamical evolution.

The numerical experiments simulating the evolution of an isolated star cluster
have all confirmed the main features already disclosed in the statistical calculations
derived from the Boltzmann and Poisson equations: formation in a finite time of a

high-density core, of an extended halo, and slow loss of stars by evaporation.
More precisely, a large fraction of high velocity stars go into the halo along

elongated orbits, later returning towards the central region, but most of the time
is being spent in the halo where the encounters are very rare.

Furthermore, close binary stars or tightly bound subsystems often appear in
the central region of an evolving cluster, where the increasingly high density favours
multiple encounters; such a region thus behaves as a sink of energy. The continual
ejection of stars from the strongly bound central core eventually leads to the appearance

of one close pair at the centre (van Albada, 1968). This might indeed be the
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final state of cluster evolution, since the 2-body system is the only known stable

configuration; the other members would be removed at infinity (Aarseth, 1971 a).

On account of mass segregation, the most massive stars generally tend to gather in
the central core, enhancing binary activity therein.

In reality, a star cluster is never quite isolated; it moves in the gravitational field
of the Galaxy and, when orbiting near the galacitc plane, may also interact with
clouds of diffuse matter. The first of these external influences lowers the energy
threshold beyond which a star may escape from the cluster; while escapers are

generally identified by their positive total energy when the cluster is isolated, we have

rather to consider their Jacobian integral per unit mass in the presence of the galactic
field. Computing experiments by Hayli (1971) and others have shown that the

evaporation time (4) is noticeably reduced by the effect of the galactic field.
On the other hand, the effect of rapidly passing-by interstellar clouds tends to

increase the total energy of the cluster as a result of energy exchange, thus favouring
a gradual disruption of the cluster. This case has also been submitted lately to
numerical simulation (Bouvier and Janin, 1970 b) for a small cluster of 25 stars.
A movie film illustrates the evolution ofthat cluster, either isolated or non-isolated;
in the first case, the formation of the core-halo structure is clearly evidenced, with
rapid creation of a few binaries near the centre, some of which remain stable over
several revolutions while others disrupt by subsequent encounters; in the second

case, the energy transfer from the clouds to the cluster results in a marked inhibition
to the formation of core and halo as well as in the evaporation rate.

The inclusion of both the preceding external influences presents many difficulties;
a recent attempt (Bouvier, 1971, 1972) leads to a lifetime of slightly over 108 years
for a 25-star cluster against its internal dynamical evolution together with the tidal
effects of the Galaxy and of passing clouds.

The most direct information on the time-scale of the dynamical evolution of
open clusters is provided by the observed distribution of the cluster ages (Wielen,
1971), since under the assumption that the rate of formation of clusters has not
appreciably changed in time, the age distribution reflects the finite lifetimes of open
clusters. The evaporation time Tev defined in (4) depends mainly on the median
radius (containing half the mass of the cluster), the total mass M and the total
number of stars N; for actual open clusters, M and N are strongly correlated. The
observed distribution of ages reveals a wide spread which can then be interpreted
as due to the variety of total masses and radii of the clusters.

Simplified methods for large systems

In contrast to small systems which are subject to rather large fluctuations, the
evolution of large stellar systems will remain closer to the statistical expectations
derived from a continuous distribution function but, as mentioned before, we meet
the difficulty of the computing time Tcp increasing sharply with N. In order to reduce
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Tcp, one might be tempted to seek for a method simpler than the direct numerical

integration of the equations of motion, which would keep at least part of the various

simplifying assumptions put forward in the statistical calculations based on the
Boltzmann and Poisson equations. Indeed, in a large system, the gravitational field
acting on a star may be split in two parts: a) the mean smoothed-out field — grad $
due to the bulk of the other stars of the system and which, if acting alone, would
determine the " regular " orbit of the star, b) a small " irregular " fluctuating field
produced by encounters suffered by the star with closely passing-by stars and which
shall gradually alter the parameters of the regular orbit.

Let us consider the motion of a star during a time long compared to the crossing
time Tcr but short with respect to the relaxation time Trei in the cluster; this motion
is then governed by the mean field and the latter can be taken as time-independent;
if it is, furthermore, spherically symmetric, the stellar orbit is then a plane rosette.
Instead of computing the effect of all the stars on the one under consideration as is

implicitly done in the numerical integration, we may proceed to a random selection,
in the sense of the Monte-Carlo tactics (Henon, 1966), with the result that Tcp is

now proportional to N at most.
More precisely, one first selects just one point of the regular orbit and computes

the perturbation only at that point; secondly, one selects just the effect of one field
star and computes the perturbation from the star; finally we multiply this perturbation
by an appropriate factor in order to account for all the orbital points and field stars
which have not been considered.

This will, of course, not give the exact perturbation in the stars motion, but
on account of the random character of the perturbation, noted before while discussing
the interpretation of the numerical results, we are only interested in the statistical
properties such as the velocity moments of 1st and 2nd order. The Monte-Carlo
scheme can also be visualized as a convenient algorithm for the numerical solution
of equations (1) and (2), because of the same basic assumptions made here, namely
that the system can be adequately described by a one-particle distribution function
and that the evolution is due only to binary encounters. Multiple encounters are
ignored, therefore also the formation and disruption of binaries; this omission is

probably not serious when the system is large (Henon, 1971).
Another simplified method for computing the evolution of a large spherical

stellar system has been proposed by Larson (1970). It uses a fluid-dynamical approach
based on the numerical solution of the " moment equations " derived from (1). In
order to take into account the radial energy flow characterizing the cluster's evolution,
the moment equations have to be carried to at least the fourth order before closing
the chain of equations by assuming a relation between the fifth and lower-order
moments. For this purpose, the velocity distribution function is expanded around a
Maxwellian in Legendre polynomials and the relation sought for is obtained by
retaining only the first three terms of the expansion, while the collision terms in the
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Fokker-Planck expression (2) are evaluated on assuming a Maxwellian distribution
for the field stars of mass m'.

Unrelaxed systems

We pointed out before the distinction met when the ratio of relaxation time
Trei vs. age A of the system is either much smaller or much larger than unity. In the

first case, the system is said to be relaxed, in the sense that most of its dynamical
evolution is governed by the encounter effect between member stars whereas, in
the second case, viz. that of an unrelaxed system, encounters have not yet
manifested appreciably their influence on the cluster's evolution. In particular, any
recently formed stellar system will be unrelaxed to begin with, undergoing an initial
phase of orbital mixing dominated by collective motions in a time-dependent potential.

The time-scale Tmix for this initial phase is of the order of a few crossing times

(or average stellar periods), which is generally short compared with Trel, the time-
scale for the " thermalization " due to encounters.

It can be shown that the ratio Trel/Tmix is nearly proportional to Nj\ogN; it
therefore increases with N, so that the initial phase is well separated for large systems.
The orbital mixing phase is described, in terms of distribution functions, by the
collisionless Boltzmann equation, namely (1) with vanishing r.h.s. (also called then

Liouville or Vlasov equation), coupled with the Poisson equation (3). The problem
being still non-linear, progress in analytical solutions is very limited; recourse to
numerical simulation has been successful mostly for so-called stratified systems,
which possess symmetries that make their properties depend only on a single space
co-ordinate. For example, the system can be stratified in planes, all perpendicular to
the x-axis; grouping all the stars of same x-co-ordinate and velocity u along x into
a single object (superstar), we may write the equations of motion of the superstar
labelled i (i 1, 2,..., n) in the usual form

dxi
— u,
dt

(7)

diii
fl;

dt

The N actual stars of the system are thus distributed into n sub-groups or superstars;

if nm is the number of stars having mass m (discrete spectrum), we may assume,
without loss of generality, that each superstar carries the same mass

m

uniformly distributed with a constant surface density a.
The n parallel planes may freely cross each other and the resulting potential

fluctuations are all the more negligible that n is larger, therefore the stellar system
can indeed be regarded as unrelaxed. Owing to the particularly simple expression
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for the attraction between two parallel planes, the computation of the acceleration
in (7) is an easy matter; we just have

a; 2 k G a (n — 2i + 1)

independently of the distance.
Such a plane-parallel system could eventually describe the collective motions

perpendicular to the galactic plane in the vicinity of the Sun.

Starting from any initial distribution of the n superstars, the evolution is computed

according to equations (7) and illustrated in the (x, u) phase plane. Hohl and

Feix (1967) treated the case of the water-bag model, where the superstars are
uniformly distributed in a given domain of the (x, u) plane. As a consequence of the
collisionless Boltzmann equation which expresses the conservation of phase-density,
this domain changes its form but not its volume; the points on the boundary remain
on the boundary and their motion is sufficient to determine the motion of the whole

system. Consequently, if we retain the motion of the boundary only, we shall be led

to a much faster computational method for studying the evolution of a water-bag
model; this method has been successfully applied to the two-stream instability of a

plasma (Roberts and Berk, 1967) and later to a plane-parallel stratified stellar system
(Janin, 1971).

That such a method be equally applicable to a fully ionized plasma and to a

stellar system is not altogether surprising, since both these domains are basically
connected to the same law of force, proportional to the inverse square of the distance;
nevertheless, some essential differences do exist also, on account of the sign of the

force, viz. repulsion between electrons, attraction between stars.

Similar considerations may be carried out for spherical systems, the superstars
being now concentric shells of given radius, r, radial velocity u, on which the actual
stars move in any direction with a given tangential velocity n; here too, the acceleration

is fairly easy to calculate and such a model has been used to describe the initial
evolution of a spherical star cluster (Henon, 1964). Furthermore, the spherical
water-bag has been studied by Bouvier and Janin (1970 a) with the use of a suitable

representation in two-dimensional varieties of the (r, u, v) space. As for the plane

case, the system evolves towards a quasistationary state made up of a central core
surrounded by some filamentary structure corresponding to high energy halo superstars.

Large relaxed spherical systems

Consider further a spherical stratified system; if it consists, for instance, of
2000 shells each of them loaded with 500 stars of equal mass, it will picture a spherical
unrelaxed system containing a million stars. One could then think of adding a slight
perturbation to the velocities of each shell (superstar) in order to obtain statistically
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the same results as would be anticipated from random encounters between
neighbouring stars. This point of view, adopted lately by Spitzer and Hart (1971 a),

should then allow us to follow the dynamical evolution of a relaxed spherical
cluster much larger than one could deal with by using the direct ,/V-body problem
integration 500); the irregular variation of the gravitational field, owed to stellar

encounters, is taken care of by perturbing the velocity of each superstar over specified
time-intervals.

This is achieved by means of a simplified Monte Carlo scheme designed to give,
with the minimum of computations, results consistent with the average values per
unit time of the velocity moments du, (du)2. More precisely, while Henon (1967)
selects all the variables characterizing a binary encounter at random, except the

impact parameter p, chosen so that the mean values <du>, <(du)2> per unit time,
integrated over all />'s, are correctly given, Spitzer only selects the velocity of a

certain star randomly, the values of <du>, <(du)2> being then averaged over all
the other variables defining the encounters undergone by that star. The procedure
requires that specific velocity distributions be assumed; in most situations, a Max-
wellian distribution will be sufficient. The results obtained by this method, at least
in the case of equal stellar masses and with a convenient choice of the time interval
between successive velocity perturbations, may be taken as a general confirmation
of Larson's approach discussed before, based on small deviations from the Max-
wellian distribution, together with large velocity anisotropics in the halo. The present
numerical models are probably more realistic than most previous ones, although it
has not been possible to carry through the computations for systems with as many
stars as are found in galactic nuclei or in many globular clusters.

Concluding remarks

All the different methods reviewed here contain many approximations and

assumptions, some of which remain controversial; nevertheless, it is satisfying to
note that they agree on general features characterizing the overall picture of the

dynamical evolution of a stellar cluster, mainly the separation into a central
contracting core and an outer halo, together with some evaporation. The contraction
of the core towards some kind of singularity is more rapid in cases where the stars
have unequal masses, because the relaxation effect or tendency towards energy
equipartition slows down the more massive stars which form a rapidly contracting
core at the centre (Spitzer and Hart, 1971 b).

The core contraction accelerates in time, but the rate of this contraction appears
to be sensitive to external perturbations such as passing clouds; the dynamical
evolution of the 25-star cluster, alluded to previously, had shown a slowing down
of the building of the core-halo structure in presence of clouds. Moreover, the mass
loss of stars due to their internal evolution could also interfere, but presumably
without changing the nature of the evolution (Spitzer and Chevalier, 1972).
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The cause of this accelerated contraction may eventually be found in some

instability of the system, similar to the gravo-thermal instability of an isothermal

sphere (Lynden-Bell and Wood, 1968); the inner part of the sphere behaves as a

medium of negative specific heat; by contracting, it gets hotter, transferring heat
to the outer region (halo), but nonetheless the temperature difference between

centre and edge increases and accelerates the evolution. At some finite time, the
central density becomes singular.
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