Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 25 (1972)

Heft: 1

Artikel: Le massif d'Ambin et son cadre de schistes lustrés (Alpes franco-

italiennes): évolution métamorphique

Autor: Gay, Marc

Kapitel: II: Les minéraux et leur relations

DOI: https://doi.org/10.5169/seals-739367

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

et les facteurs des transformations minéralogiques et éventuellement chimiques occasionnées par le métamorphisme alpin, et accessoirement par le métamorphisme plus ancien, déjà mis en évidence dans le groupe de la Clarea.

II. LES MINÉRAUX ET LEURS RELATIONS

A. Introduction

Les diverses espèces sont considérées successivement dans un ordre arbitraire et étudiées du triple point de vue des caractères spécifiques, de la répartition dans l'espace et des relations avec les minéraux contemporains ou postérieurs.

Les propriétés optiques simples ont été déterminées à l'aide de la platine universelle, en lumière blanche ou monochromatique (λ =589 m μ), les indices de réfraction grâce à une technique appliquant le principe de la dispersion chromatique. Les investigations radiocristallographiques ont mis en jeu un appareillage Philips: diffractomètre à compteur de Geiger et chambre Debye-Scherrer de 114,8 mm de diamètre. Quant aux analyses chimiques, elles ont été réalisées suivant la méthode par voie humide en usage au laboratoire de Lyon (voir notamment P. Davoine, 1967), et parfois avec le microanalyseur à sonde électronique Cameca de l'Ecole des mines de Saint-Etienne (Davoine et Poyet, 1970); on peut considérer que le matériel utilisé dans le premier cas était pur, en dehors de quelques exceptions qui seront mentionnées le moment venu.

B. QUARTZ

1. Types et caractères spécifiques

a. Quartz détritique

Il subsiste dans toutes les formations sédimentaires depuis le groupe d'Ambin jusqu'aux calcschistes inclus. Sa présence peut se manifester par une hétérogénéité granulaire, spécialement lorsque les éléments mono ou polycristallins sont noyés dans une matrice plus fine; elle peut encore être révélée par une forme esquilleuse ou arrondie, épargnée par la recristallisation, ou préservée en filigrane par un ciment de nature différente (phyllites, aegyrine, tourmaline, hématite). Dans le groupe d'Etache, les golfes de corrosion de certains éléments quartzeux témoignant d'une origine rhyolitique.

b. Quartz de recristallisation métamorphique

La recristallisation se traduit par une jonction des individus qui restent en général modérément engrenés; en outre, dans les termes les plus siliceux, le quartz

Tableau 1. — Synopsis stratigraphique (Gay, 1970)

	Lithologie actuelle	Lithologie initiale	Age proposé
Série des Schistes Schistes	Fond de calcschistes. Micaschistes albitiques. Métabasites, prasinites et glaucophanites. Serpentinites.	Marnes. Tufs acides. Gabbros, dolérites et laves en coussins. Péridotites et serpentinites.	Tertiaire
əupiti	Fond d'anhydrite, gypse et cargneules. Métagrès, schistes sériciteux et dolomies.	Anhydrite. Grès fins, pélites et dolomies.	Keuper
s calcareo-dolom et salifère	Calcschistes noirs. Marbres chloriteux. Brèches blanches. Calcaires marmoréens phylliteux et brèches	Marnes. Calcaires marneux. Brèches calcareo-dolomitiques. Calcaires marneux et brèches calcareo-dolomi-	Eocène Crétacé sup. Paléocène Malm Lias
Eusemple	noirs. Calcaires et dolomies massifs. Schistes verts, dolomies gréseuses, calcschistes et brèches noirs.	tiques. Calcaires et dolomies. Argilites, dolomies gréseuses, calcaires et brèches calcareo-dolomitiques.	Trias moyen Werfénien
Quart-	Quartzites ayant accidentellement à leur sommet un ciment d'aegyrine.	Grès quartzeux localement cimentés par du sel, à leur sommet.	Werfénien
Groupe d'Etache	Alternance de métaconglomérats et de schistes sériciteux.	Conglomérats fins et pélites micacées.	Néopermien D. saalienne
Groupe d'Ambin	Fond de micaschistes albitiques à horizons de métaconglomérats (à la base notamment). Leptynites alcalies. Prasinites et glaucophanites. Forte discordance	Grès et conglomérats grossiers. Tufs rhyolitiques. Tufs ou sills basiques.	Stéphano-permien ~ D asturienne ou sudète
Groupe de la Clarea	Fond de micaschistes albitiques, et de gneiss rélictuels. Amphibolites partiellement transformées en glaucophanites et prasinites. (Faciès polymétamorphiques).	Grauwackes. Tufs ou coulées basiques.	Anténamurien

est exsudé sous forme de minces lentilles concordantes avec la schistosité cristallophyllienne. La suite de ce chapitre montrera qu'il y a eu plusieurs générations successives de quartz métamorphique, mais il convient dès maintenant de noter qu'en dehors de quelques exceptions, le tissu formé dans une roche à un moment donné reste indifférent à l'évolution ultérieure; lorsqu'il réagit, apparemment sous l'influence d'une déformation intense, c'est pour faire place à un matériau de grain plus fin et régulier.

c. Quartz des fractures tardives

2. Répartition

Le quartz est toujours abondant dans les paradérivés du groupe de la Clarea, dans ceux du groupe d'Ambin, dans le groupe d'Etache et les quartzites, enfin dans les leptynites alcalines et dans les micaschistes de la série des Schistes lustrés.

Il est constamment présent dans les formations carbonatées, aussi bien dans les schistes lustrés, où ses grains sont toutefois clairsemés, que dans les termes de l'ensemble calcaréo-dolomitique où la teneur est assez variable.

Il est un constituant habituel mais accessoire de toutes les amphibolites, glaucophanites et prasinites; dans ce groupe pétrographique, seuls les métabasaltes et métadolérites de la région d'Ulzio en sont totalement dépouvus, comme les serpentinites.

3. Relations avec d'autres minéraux

La plupart des relations observées sont le fait d'un remplacement plus ou moins poussé du quartz. Un autre minéral s'insinue dans les fissures créées par un éventuel éclatement des grains ou entre les éléments d'un tissu recristallisé, au point que ses sections ont en lame mince la structure d'une dentelle parfois très fine. C'est le cas de l'albite, de la calcite, et de l'ankérite, chaque fois qu'elles sont prises dans un fond siliceux, de l'aegyrine accompagnée d'un peu d'hématite dans les croûtes ferrugineuses de l'ensemble calcaréo-dolomitique, de l'épidote et du sphène dans un échantillon de schiste lustré. Pour ces trois dernières espèces, la dentelle se dessine par endroits sur un fond carbonaté, mais les larges plages de calcite ont alors des limites totalement indépendantes de celles des cellules, preuve qu'elles se sont subsittuées au quartz initial (planche 3, a). Ce type de relation peut également rendre compte de la forme de certains individus ou amas pyriteux, apparemment déterminée par des espaces intergranulaires (partie supérieure du groupe de la Clarea). Les éléments quartzeux isolés de la sorte sont progressivement arrondis par la corrosion et réduits au rôle de simples inclusions; le processus est particulièrement net dans l'exemple des carbonates, et surtout du plagioclase. Finalement, le quartz est inclus dans des poeciloblastes variés: muscovite tardive (schistes lustrés), stilpnomélane dans les rares échantillons où ce minéral est largement cristallisé, amphibole sodique, épidote et lawsonite supposée (ensemble calcaréodolomitique), sphène, apatite (groupe de la Clarea). L'ordre de cristallisation peut être indiqué par l'allongement des inclusions parallèlement à une foliation à laquelle l'hôte s'est surimposé ou par l'orientation optique commune de plusieurs inclusions voisines; ailleurs (ensemble calcaréo-dolomitique), la forme et la dimension des grains de quartz englobés par l'amphibole bleue et par la lawsonite présumée sont en harmonie avec les variations pétrographiques et granulométriques d'une matrice plus ou moins gréseuse.

Les relations avec le grenat sont en général du même type. Toutefois, elles sont souvent compliquées par une concentration anormale du quartz occupant les jours de la structure poecilitique, les vides laissés par des formes imparfaites ou polycristallines, les extrémités des lentilles déterminées par l'écartement des phyllites; dans ces zones, le plagioclase et les micas n'ont plus qu'une importance accessoire, sans être totalement exclus. Il est impossible de dire si le quartz est contemporain des grenats, ayant profité des espaces créés par la croissance de ceux-ci, ou s'il représente l'ancien fond étiré et drainé d'une partie de ses composants; il faudrait savoir si la déformation des phyllites est une conséquence de la cristallisation des grenats ou d'une compression ultérieure.

Le microscope a enfin montré que le quartz des fractures tardives peut être associé à de petites mouches de chlorite oxydée (groupe d'Ambin) ou pris entre deux générations de calcite (ensemble calcaréo-dolomitique).

C. MICROCLINE

1. Types et caractères spécifiques

a. Microcline détritique

Une telle origine est suggérée par la taille des individus, susceptibles en particulier de figurer parmi les éléments des conglomérats les plus fins, et par leur forme relativement globuleuse ou plus rarement esquilleuse. Ces microclines sont moirés ou quadrillés, et souvent troublés par une fine pigmentation brune.

b. Microcline de recristallisation métamorphique

Les plages en sont xénomorphes, parfaitement incorporées au tissu de la roche où elles s'engrènent avec le quartz. Lorsqu'il y apparaît, le quadrillage dû aux mâcles est d'une exceptionnelle netteté.

Pour les microclines des quartzites triasiques, 15 mesures de l'angle des axes optiques également réparties entre 5 échantillons ont donné les résultats suivants, sans faire apparaître de différence significative entre les grains recristallisés et ceux qui ne le sont pas:

2 VNg valeurs extrêmes: 82 et 114° (13 valeurs > 90°) moyenne: 98°

Les résultats obtenus de la même façon pour les leptynites alcalines sont tout à fait comparables:

2 VNg valeurs extrêmes: 82 et 104° moyenne: 98°

2. Répartition

C'est dans les leptynites alcalines que le microcline est le plus significatif, en raison de sa fréquence et de son abondance; il se rattache alors au second type. On note encore sa présence parmi les éléments détritiques des quartzites et, tout à fait accessoirement, des conglomérats d'Etache; il y a en partie recristallisé. Enfin, dans les galets quartzo-albitiques du groupe d'Ambin, certains fantômes pourraient être ceux d'un feldspath potassique.

3. Relations avec d'autres minéraux

Le microcline détritique est souvent l'objet d'une altération sériciteuse irrégulière; corrélativement, il peut être remplacé en bordure, d'une façon plus ou moins confuse, par de l'albite. Les fractures ou clivages ouverts par la cataclase sont cicatrisés par du quartz.

Dans les leptynites alcalines, les lames de mica blanc prennent une forme singulière lorsqu'elles sont inscrites dans le contour des cristaux de microcline: elles sont profondément découpées, ajourées même, suivant les deux directions des mâcles de leur hôte; dans ces conditions, il est peu probable que le feldspath soit antérieur.

D. PLAGIOCLASES

1. Types et caractères spécifiques

a. Plagioclase détritique ou magmatique

Son identification est souvent possible en dépit d'une décomposition totale de la substance initiale. Ainsi, certains produits d'origine éruptive gardent la trace d'une structure tout à fait significative (microlitique, porphyrique, doléritique); dans les leptynites alcalines, une structure interne (notamment des mâcles polysynthétiques) est encore indiquée par l'orientation et la distribution des paillettes sériciteuses d'altération.

b. Plagioclase granoblastique

On désigne ainsi un type de plagioclase dont les cristaux xénomorphes se mêlent à ceux du quartz pour former un fond granoblastique homogène.

Les mesures réalisées avec une platine universelle font en réalité apparaître deux variétés distinctes, susceptibles de coexister:

- albite An 0 à An 8 (moyenne de 35 mesures: An 3); 2 VNg compris entre 74 et 98° (moyenne de 20 mesures: 81°);
- oligoclase An 13 à An 25 (moyenne de 26 mesures: An 15); 2 VNg compris entre 82 et 102° (moyenne de 13 mesures: 88°).

La mâcle de l'albite est fréquente dans les deux variétés; elle peut être exceptionnellement combinée à la mâcle de Carlsbad dans le plagioclase le plus sodique, et à celle de la péricline dans l'autre.

c. Albite poeciloblastique

Elle paraît toujours surimposée à un fond préexistant, mais avec plus ou moins de facilité si l'on en juge par la forme et par la charge d'inclusions très variables de ses cristaux; on peut ainsi reconnaître quatre types morphologiques correspondant à des cristaux progressivement mieux individualisés, car plus compacts et mieux purifiés de leurs inclusions: interstitiel, amiboïde, ocellaire et autoblastique. L'albite est du type interstitiel dans les formations amphiboliques; elle prend une forme amiboïde lorsqu'elle se trouve sur un fond riche en quartz, ou au contraire dans un matériau de composition minéralogique hétérogène; l'habitus ocellaire le plus caractéristique est lié aux supports phylliteux; le type autoblastique ne se rencontre pour sa part que dans les roches carbonatées où il n'est d'ailleurs pas exclusif.

La teneur en anorthite (résultat de 142 mesures à la platine universelle) est comprise entre 0 et 9% et reste inférieure ou égale à 6% dans 96% des cas; elle est en moyenne de 2,5%. L'angle des axes optiques, 2 VNg, varie de 72 à 88°; il est compris entre 74 et 84° pour 92% des mesures; sa valeur moyenne est de 79°. D'une formation à l'autre, il n'y a pas de variation évidente de ces propriétés.

On peut grossièrement estimer à 50% la proportion des individus qui présentent la mâcle de l'albite; quelques uns sont-simultanément ou indépendamment mâclés Carlsbad. Dans les calcaires et dolomies, on reconnaît également la mâcle du Roc Tourné et toutes les combinaisons possibles entre les trois types.

d. Albite des fractures tardives

Subautomorphe, éventuellement mâclée albite et/ou Carlsbad, elle est parfois le siège d'une pigmentation brune qui peut déborder légèrement les limites de la fracture pour envahir le plagioclase du fond.

2. Répartition

Le plagioclase résiduel se trouve dans des matériaux initialement détritiques (faciès micaschisteux du groupe d'Ambin) ou éruptifs (leptynites alcalines; basaltes, dolérites et gabbros de la série des Schistes lustrés).

L'oligoclase et l'albite granoblastique sont localisés dans la zone profonde du groupe de la Clarea; dans les faciès gneissiques, les deux variétés coexistent fréquemment, apparemment en équilibre; dans les amphibolites, au contraire, la variété la plus calcique est seule présente.

L'albite poecilobastique est très largment répandue et figure au rang des constituants majeurs dans les formations suivantes: micaschistes de la partie supérieure du groupe de la Clarea, du groupe d'Ambin et des Schistes lustrés; leptynites alcalines; roches basiques de toutes natures et de tous niveaux. Elle est également présente, mais en quantité très variable, dans la majorité des roches de l'ensemble calcaréo-dolomitique. A la base du groupe de la Clarea, elle est rare, au contraire, réduite à de simples festons autour des autres plagioclases. Le groupe d'Etache et les quartzites sont presque totalement dépouvus de ce minéral, de même que les schistes lustrés; les serpentinites n'en ont pas du tout.

3. Relations avec d'autres minéraux

a. Plagioclase détritique ou magmatique

L'albite et la lawsonite jouent tour à tour un rôle essentiel dans le remplacement de ces anciens plagioclases. Dans les micaschistes et les leptynites alcalines du goupe d'Ambin, c'est l'albite qui constitue le fond de l'altération; elle est chargée de quartz et de paillettes sériciteuses dont l'orientation et la répartition sont dans une large mesure déterminées par les éléments de la structure cristalline antérieure (clivages et mâcles polysynthétiques). C'est encore elle qui domine dans les gabbros (série des Schistes lustrés) incluant cette fois du mica blanc et de l'épidote. Dans les formations doléritiques et basaltiques, la lawsonite est la substance fondamentale des feldspaths épigéniques; glaucophane, épidote, albite, chlorite et mica blanc sont les principaux éléments de son cortège.

b. Plagioclase granoblastique

Il est l'objet d'une altération d'intensité très variable, souvent totale, à la faveur de laquelle se forment les minéraux suivants: albite, séricite, épidote. Cette dernière, peut-être un peu plus abondante dans les amphibolites que dans les gneiss, indique de toutes façons un plagioclase relativement calcique; elle est sous forme de prismes ou de bourgeons kélyphitoïdes (page 52 et planche 3, e, f). La séricite se trouve exclusivement dans les faciès gneissiques, seule ou en compagnie de l'épidote, sans qu'il y ait de relation quantitative évidente entre les deux minéraux; ses paillettes envahissent indifféremment l'albite et l'oligoclase anciens, en commençant souvent par la bordure, et s'orientent grossièrement sur la direction des clivages ou des mâcles. Dans les amphibolites, l'albite nouvelle s'accommode de la place disponible entre les cristaux de hornblende et se distingue avec peine du plagioclase précédent; dans les gneiss, où elle constitue cependant de simples festons autout de ce plagioclase, elle est plus

facile à reconnaître en raison de son caractère poeciloblastique. Son importance n'est pas proportionnelle à celle de ses compagnons car le sodium libéré par l'altération peut trouver une place dans le glaucophane; ainsi, la part de l'albite peut être réduite à presque rien dans des gneiss dont le feldspath a été pourtant totalement séricitisé.

c. Albite poeciloblastique

Certains minéraux semblent trouver au sein des cristaux d'albite des conditions uniques ou au moins particulièrement favorables à leur développement. Ces minéraux peuvent être apparemment indépendants de toute espèce préexistante. C'est le cas, peu fréquent, du mica blanc, essentiellement concentré dans le plagioclase sodique (faciès à tendance prasinitique du groupe d'Ambin), ou celui, peu différent mais tout aussi rare, de l'épidote, dont les granules recristallisent en une constellation de petits prismes chaque fois qu'ils sont pris dans l'albite (prasinites de la série des Schistes lustrés). Mais ce sont le plus souvent des produits d'altération qui présentent une telle particularité. Ainsi, la chlorite brune remplace plus facilement la chlorite banale incluse (partie supérieure du groupe de la Clarea et faciès basiques du groupe d'Ambin). Dans les laves en coussins, les traînées de sphène se transforment en rutile en traversant les ocelles feldspathiques. Généralement, lorsqu'elle recoupe une travée phylliteuse, l'albite englobe simplement les aiguilles de rutile liées au mica, mais elle peut déterminer une augmentation considérable du nombre de celles-ci. L'exemple le plus frappant est celui des amphiboles dans quelques prasinites amphiboliques: l'actinote se développe de préférence, sinon exclusivement, aux dépens des cristaux de glaucophane qui se trouvent en contact avec l'albite, au point même de se limiter, dans les cas d'inclusion partielle, à une fraction du cristal; elle est alors le seul, ou au moins le principal produit d'altération, et présente un faciès caractéristique: faisceau d'aiguilles plus ou moins serrées, respectant la forme antérieure (planche 3, b); plus rarement, le rôle est tenu par de la hornblende bleu-vert. Toutes ces relations suggèrent une syncristallisation, ou à la rigueur une antériorité de l'albite.

Celle-ci est manifestement antérieure à la chloritisation (ou contemporaine) là où elle contient la totalité, ou presque, du glaucophane présent dans la roche, et où ce glaucophane est indemme de toute corrosion. Elle doit également précéder la biotite verte comme en témoigne l'observation suivante, faite dans les micaschistes albitiques de la série des Schistes lustrés: les porphyroblastes, indéniablement surimposés aux lames de mica blanc, n'interrompent pas la frange de biotite verte de ces dernières.

En règle générale, la calcite s'introduit dans les fissures et les clivages de l'albite (planche 3, d) qu'elle peut même envahir plus largement; la forme de ses plages est alors en partie déterminée par les directions cristallographiques de son hôte (planche 3, c); plus rarement, c'est l'ankérite qui se comporte de cette façon. Dans deux échantillons dolomitiques, l'un du Trias, l'autre des brèches liasiques, le plagioclase est affecté par un système de fractures emplies de mica blanc.

Dans les filonnets, l'albite peut être accompagnée par un peu de chlorite brune, et coexiste fréquemment avec un des carbonates précédents, placé en position centrale.

E. MICAS BLANCS

1. Types et caractères spécifiques

a. Muscovite phengitique

Il s'agit d'un mica parfaitement incolore, d'habitus lamellaire, du type $2M_1$ si l'on en juge par le seul radiogramme de poudre disponible. Le tableau 2 donne la composition chimique et les propriétés optiques d'un échantillon de ce mica (valeur de 2 VNp = moyenne de 6 mesures sur des cristaux différents).

Tableau 2. — Composition chimique et caractères optiques d'une muscovite phengitique

Echantillon 3 192: ancien gneiss à deux micas et grenat, altéré par le métamorphisme alpin, partie inférieure du groupe de la Clarea (quartz, muscovite phengitique et grenat rélictuels, albite, séricite, glaucophane, épidote, calcite, sphène, rutile). x = 962 250, y = 327 700.

Analyse nouvelle A. Germanique, Lyon, 1968. F non dosé.

	déraux ydes	Nombres d'atomes sur la base de 24 (O, OH)		
SiO_2 Al_2O_3	46,99 33,14	6,248 1,752	8,00	Si Al ^{iv}
		3,419		Alvi
TiO_2	0,76	0,079		Ti
Fe_2O_3	1,44	0,143	2.06	Fe+3
FeO	0,25	0,031	3,96	Fe+2
MnO	0,00			Mn
MgO	1,45	0,287		Mg
CaO	0,72	0,103		Ca
Na_2O	1,38	0,367	2,13	Na
K_2O	9,82	1,659		K
$H_2O +$	4,37	3,862		ОН
H ₂ O—	0 10	5.		
Total	100,42			

 $2VNp = 37^{\circ}$

Ng = $1,599 \pm 0,002$; incolore

 $Nm = 1,596 \pm 0,002$; incolore

Np = $1,569 \pm 0,002$; incolore

 $Ng - Np = 0.030 \pm 0.004$

Le terme de muscovite phengitique est justifié par la nécessité de marquer une différence entre ce type, et le suivant dans lequel une fraction plus importante de l'aluminium est remplacée par le silicium dans les sites tétraédriques, par le magnésium et le fer dans les sites octaédriques.

b. Phengite

Ce deuxième type est caractérisé par une couleur verte, parfois à peine distincte en lame mince, mais toujours évidente sur une masse de mica. Les cristaux sont en moyenne un peu plus épais que ceux du type précédent.

L'angle des axes optiques, 2 VNp, a fait l'objet de 75 mesures dans 13 échantillons intéressant la presque totalité des faciès, à l'exception du groupe de la Clarea; il est compris entre 23 et 48°, mais dans 88% des cas se situe dans l'intervalle défini par les valeurs 29 et 36; il est en moyenne de 33°.

Les indices et la biréfringence ont été déterminés dans deux échantillons:

(micas	Ech. 4263 chiste albitique, ipe d'Ambin)	Ech. 5061 (schiste, groupe d'Etache)
Ng	$1,608 \pm 0,002$	$1,618 \pm 0,002$
Nm	$1,600 \pm 0,002$	$1,614 \pm 0,002$
Np	$1,575 \pm 0,002$	$1,579 \pm 0,002$
Ng - Np	0.033 ± 0.004	$0,039 \pm 0,004$

Ces propriétés optiques concourent à indiquer (Deer, Howie et Zussman, 1965) une teneur en fer et magnésium plus élevée que celle de la phyllite étudiée plus haut, et une teneur en aluminium plus faible, c'est-à-dire une composition plus éloignée de celle de la muscovite idéale.

Dans les publications relatives à cette région des Alpes, on peut trouver 12 analyses tout à fait significatives à cet égard (Michel, 1953; Caillère et Michard, 1963; Nicolas, 1966; Chatterjee, 1968; Potenza et Morelli, 1968): ce sont celles des phengites dans lesquelles Al^{IV} est compris entre 1.46 et 0,94 (moyenne: 1,28) et Al^{VI} entre 3,40 et 2,37 (moyenne: 2,91).

Deux de ces phengites sont des variétés chromifères tenant respectivement 1,50% (Nicolas) et 1,75% (Chatterjee) de Cr₂O₃, valeurs comparables à celle relevée par F. Ellenberger dans un échantillon de Vanoise (1,60%); le chrome est également présent dans les micas du massif d'Ambin auxquels il communique une coloration verte très vive, bien visible en lame mince, ainsi que le pléochroïsme.

c. Autres micas blancs

On rangera dans cette catégorie 3 types, mal définis en raison de leur rareté relative.

Les micas du premier type, incolores, doivent leur singularité à leur disposition, à leur habitus et à la valeur de leur angle d'axes. Ils manifestent une totale indépendance à l'égard des éléments structuraux de la roche et recoupent notamment la foliation et les phengites qui s'y conforment; leurs cristaux sont aussi développés dans la direction perpendiculaire à (001) que dans la direction parallèle à ce plan. On a là, en fait, l'expression particulière d'une relation générale entre l'orientation et le faciès des micas blancs dont les lamelles sont d'autant plus épaisses qu'elles sont plus discordantes avec la foliation. L'angle d'axes, 2 VNp, est en moyenne de 42°; les valeurs extrêmes sont 27 et 47°, mais 83% d'entre elles se situent entre 41 et 47° (résultat de 24 mesures effectuées dans 7 échantillons pétrographiques provenant de toutes les formations qui contiennent ce type de mica). On admettra sans autre preuve qu'il s'agit de muscovites.

D'autres micas se distinguent par une couleur et un pléochroïsme d'une netteté exceptionnelle (Ng: vert olive, Nm: vert pâle, Np: jaune très pâle); leur angle d'axes est comparable à celui des phengites, phyllites auxquelles ils s'apparentent vraisemblablement (33° en moyenne dans un quartzite triasique riche en hématite, et tenant également de l'aegyrine; dans ce cas particulier, il pourrait s'agir de ferriphengite, compte tenu des propriétés optiques et de la paragénèse (Kanehira et Banno, 1960).

La séricite constitue un dernier type dont il est impossible de déterminer les caractéristiques optiques (cristaux trop petits).

2. Répartition

La muscovite phengitique se trouve exclusivement dans le groupe de la Clarea, spécialement dans les gneiss et micaschistes dont elle est un élément essentiel.

Le domaine de la phengite s'étend à toutes les autres formations. Ce mica est significatif par sa généralité et son abondance dans tous les faciès arénacés, pélitiques ou calcaréo-pélitiques, dans les leptynites alcalines, et dans les micaschistes albitiques de la série des Schistes lustrés. Il est constamment présent, en petite quantité, dans les termes carbonatés de l'ensemble calcaréo-dolomitique, niveau où l'on rencontre plus particulièrement les variétés fortement colorées. Il est inégalement développé dans les faciès basiques; les prasinites typiques en sont à peu près dépourvues, tandis que les glaucophanites sont irrégulièrement, mais dans l'ensemble mieux fournies. Les gisements de phengite chromifère semblent se situer dans les Schistes lustrés, notamment à proximité de la serpentinite d'Ulzio, ou dans les formations sous-jacentes et, en particulier, les cargneules.

La muscovite transverse n'est présente que dans quelques échantillons du groupe d'Ambin, de l'ensemble calcaréo-dolomitique ou des schistes lustrés; les considérations d'ordre chronologique conduisent cependant à lui assimiler les micas blancs déjà mentionnés, dont l'apparition est liée à celle de l'albite (ou postérieure), et d'autres qui seront étudiés plus loin avec les espèces dont ils dérivent. La séricite, enfin, est plus largment répandue; elle est le produit d'une recristallisation locale

et généralement modérée, ou de l'altération de différents minéraux parmi lesquels le plagioclase ancien du groupe de la Clarea (albite et oligoclase).

3. Relations avec d'autres minéraux

Dans les gneiss et micaschistes du groupe de la Clarea, les cloisons de muscovite phengitique semblent avoir été repoussées par le grenat; mais une telle déformation peut aussi résulter d'une compression postérieure aux deux minéraux. L'apatite se met parfois en place dans ces cloisons, en englobant des résidus de la phyllite.

La muscovite phengitique ne présente pas d'autre particularité et se trouve concernée au même titre que la phengite par la plupart des observations qui suivent.

Il peut y avoir transformation pseudomorphique. Dans toute la série, la biotite verte remplace ainsi les lames de mica blanc en respectant leur forme et leur orientation; elle constitue le plus souvent une frange discontinue, pénétrant plus profondément à la faveur des clivages; même lorsqu'elle est rigoureusement inscrite dans le contour des prismes de glaucophane dont elle procède, il lui arrive de s'orienter sur les tablettes de mica blanc environnantes (planche 3, g). Accidentellement, c'est la chlorite oxydée qui apparaît. Dans une prasinite de la série des Schistes lustrés, l'épidote peut ainsi prendre la place de la phengite. L'albite poeciloblastique ellemême se conforme de temps en temps aux lits phylliteux.

Le plus souvent, le minéral nouveau prend une forme quelconque, mais garde sous forme d'inclusions le cortège d'oxydes variés accompagnant le mica et des résidus de ce dernier; de nouvelles aiguilles de rutile peuvent même se former aux dépens du phyllosilicate; la disposition de tous ces éléments est en harmonie avec la géométrie extérieure. C'est ainsi que la muscovite se surimpose à la phengite (planche 3, h). Cependant, les plus beaux exemples de ce type de relation sont dus à l'albite dont les poeciloblastes recoupent presque systématiquement les phyllites (planche 3, 1). La calcite et l'ankérite se développent également de cette façon. Les pseudomorphoses rencontrées dans l'ensemble calcaréo-dolomitique et les Schistes lustrés (lawsonite présumée) englobent des débris de phengite en continuité avec la foliation de la roche. La chlorite, enfin, peut être ajoutée à cette liste, bien que ses rapports habituels avec le mica blanc n'aient pas de signification chronologique évidente: les deux minéraux constituent fréquemment des cristaux mixtes résultant d'un accolement suivant le plan (001) ou même d'une alternance irrégulière; dans les dolomies triasiques et les fragments des brèches liasiques, une tablette de chlorite (planche 3, j), ou plus rarement un tissu polycristallin (planche 3, i) est pris en sandwich entre deux minces lames de phengite fortement colorée, de façon à constituer un édifice compact aux limites régulières.

Les lamelles de phengite ou de muscovite phengitique imposent aux plages de quartz, calcite ou ankérite qui leur sont juxtaposées une limite rectiligne, indépendante de la structure cristalline de celles-ci; l'ordre de cristallisation peut encore être indiqué

par l'absence de toute déformation au sein d'une plage dont le contour est en partie déterminé par un mica fortement tordu. Les carbonates s'insinuent dans les clivages où le sphène cristallise de son côté en granules serrées ou en lames (planche 3, k); les tablettes d'hématite obéissent elles aussi, en partie, à ce contrôle.

F. BIOTITES

1. Types et caractères spécifiques

En se basant sur la couleur, on peut distinguer à priori trois types de biotite: brun-rouge, brun et vert.

TABLEAU 3. — Composition chimique et caractères optiques d'une biotite

Echantillon 291 B: Gneiss, partie inférieure du groupe de la Clarea (quartz, oligoclase, muscovite phengitique, biotite, chlorite, épidote, grenat, minerai). x = 955 700, y = 328 050 (Gisement voisin de celui du Saut de l'Oule mentionné par F. Ellenberger, 1958).

Analyse nouvelle A. Germanique, Lyon, 1967. Traces de P₂O₅; F non dosé.

% por d'ox	ndéraux sydes	Nombres d'atomes sur la base de 24 (O, OH)				
SiO_2 Al_2O_3	35,58 19,84	5,497 2,503	8,00	Si Al ^{iv}		
TiO ₂ Fe ₂ O ₃ FeO MnO MgO	2,47 3,15 17,06 0,22 8,91	1,093 0,287 0,370 2,196 0,027 2,057	6,03	Alvi Ti Fe ⁺³ Fe ⁺² Mn Mg		
$egin{aligned} & {\sf CaO} \\ & {\sf Na_2O} \\ & {\sf K_2O} \\ & & {\sf H_2O} + \\ & {\sf H_2O} - & \end{aligned}$	0,38 0,46 8,52 2,40 0,21	0,064 0,129 1,668 2,465	1,86	Ca Na K OH		
Total	99,20					

$$2VNp = 0^{\circ}$$

 $Ng = Nm = 1,641 \pm 0,002$; brun-rouge

Np = $1,588 \pm 0,002$; jaune très pâle

 $Ng - Np = 0.053 \pm 0.004$

a. Biotite brun-rouge

La couleur et le pléochroïsme sont tout à fait communs. Les cristaux sont fortement poecilitiques et, comme ceux des micas blancs, d'autant plus épais que leur plan (001) fait un angle plus grand avec la foliation de la roche.

Le tableau 3 permet de se faire une idée plus précise des propriétés optiques et de la composition chimique des micas de ce groupe.

b. Biotite brune

Ce deuxième type de mica présente en lame mince une coloration et un pléochroïsme moins marqués que le précédent, et différents: brun clair suivant Ng et Nm, sans nuance particulière ou avec une légère pointe de vert olive; incolore suivant Np. Le caractère poecilitique est moins affirmé. Les indices de réfraction et la biréfringence sont plus faibles que ceux de la biotite brun-rouge, et surtout, l'angle des axes optiques est très largement ouvert (comparer à ceux du tableau 3 les chiffres suivants qui se rapportent à un échantillon provenant des leptynites alcalines):

```
2 VNp = 31° (moyenne de 9 mesures comprises entre 30 et 33°)

Ng = 1,613 ± 0,002

Nm= 1,609 ± 0,002

Np = 1,573 ± 0,002

Ng — Np = 0,040 ± 0,004
```

L'association étroite et systématique avec un mica blanc (voir plus loin, page 23) interdit de déterminer la composition chimique par la méthode habituelle. Par ailleurs, l'usage de la sonde électronique n'a pas conduit, jusqu'à présent, à des résultats concluants. Aussi, le terme de biotite, employé dans ces conditions, doit-il être pris dans un sens aussi vague que celui de mica noir, compte tenu de propriétés optiques aussi peu canoniques.

c. Biotite verte

Elle est toujours pseudomorphe et très finement cristallisée; son habitus varie toutefois légèrement d'un support à l'autre. Un échantillon moyen, pris dans un faciès à tendance prasinitique du groupe d'Ambin, présente le pléochroïsme suivant: Ng, vert olive avec une pointe de brun; Nm, vert olive; Np, vert olive très pâle; l'angle d'axes, 2 VNp, est en moyenne de 25° (6 mesures comprises entre 22 et 27°). En fait, la couleur varie du vert franc au brun, souvent même à l'échelle de la lame mince; on peut citer à cet égard l'exemple particulièrement significatif d'un échantillon dans lequel la phyllite a une couleur suivant Ng vert d'eau, vert-olive parfois un peu brun, ou brun-olivâtre à brun-jaune, selon qu'elle tire son origine du glaucophane, de la phengite ou de la chlorite verte. De ce fait, la distinction avec la chlorite oxydée est parfois difficile.

Les études de J. Bocquet (1969) et surtout de D. Bahezre, R. Michel et P. Vialon (1965) ont montré qu'il s'agissait effectivement de biotite.

2. Répartition

La biotite brun-rouge se localise exclusivement dans le groupe de la Clarea. Elément d'une paragénèse ancienne, elle avait une importance limitée dans les faciès basiques, mais tenait un rôle essentiel dans ceux d'origine détritique. Elle ne subsiste plus que dans les résidus amphiboliques et gneissiques de la partie profonde, mais ses fantômes sont encore nombreux à ce niveau. Les traces sont beaucoup plus rares dans la partie supérieure de la formation en raison d'une évolution métamorphique plus poussée. Pour être complet, il faut signaler que cette biotite peut prendre une couleur verte, de façon tout à fait accidentelle, sans doute sous l'influence d'un contrôle chimique local. Par ailleurs, un mica brun rouge, assez pâle, s'associe à la phengite dans un calcschiste albitique provenant du Werfénien supérieur calcaréo-pélitique de Bellecombe. Un autre se développe aux dépens du même mica blanc dans la croûte ferrugineuse du Malm de l'Arella; il forme, parfois à cheval sur deux cristaux, des tâches circulaires dont la couleur et la biréfringence augmentent vers l'intérieur. La nature exacte de ces deux phyllites est inconnue; on peut d'ailleurs considérer qu'il s'agit d'accidents.

La biotite brune se rencontre pour sa part dans les leptynites alcalines ou à leur proximité. Sa fréquence en fait un élément caractéristique de ce niveau malgré une teneur d'ensemble très basse.

La biotite verte est largement répandue, mais reste au rang des constituants accessoires, même dans les formations où elle est la plus abondante (groupe de la Clarea dans son ensemble, faciès basiques du groupe d'Ambin, faciès acides et basiques de la série des Schistes lustrés); elle ne manque totalement que dans le groupe d'Etache et les quartzites, ainsi que dans les serpentinites.

3. Relations avec d'autres minéraux

a. Biotite brun-rouge

La biotite du groupe de la Clarea s'altère de deux façons différentes.

Elle peut subir une chloritisation banale, dont quelques particularités méritent cependant d'être signalées. Certains cristaux ne verdissent qu'à leur bordure et gardent au cœur une couleur et un pléochroïsme de biotite, alors que leur teinte de polarisation est partout celle d'une chlorite; cette teinte est uniforme, ou change au contraire en passant d'une zone à l'autre; le contact est progressif ou tranché. Le titane secrété lors de la transformation s'accumule dans les clivages et parfois le plan axial de « kinks », en se localisant dans la zone altérée, de préférence là où persiste une couleur brune; les cristaux qui apparaissent ont la forme de tablettes de section parallélogrammatique dont la dimension intermédiaire serait très variable

et parfois si proche de l'épaisseur que la forme deviendrait celle d'une aiguille; ces éléments s'orientent de telle sorte que leur plan soit parallèle au clivage de la chlorite et s'ordonnent éventuellement suivant le motif triangulaire de la sagénite; une cristallisation plus large conduit à des formes granuleuses, puis progressivement allongées et fuselées, caractéristiques du sphène; la disposition devient alors plus confuse.

La biotite peut également faire l'objet d'une épigénie dans laquelle un mica blanc et du glaucophane jouent les rôles essentiels (planche la)). Le mica semble favorisé par un environnement phylliteux (lits de biotite et de muscovite phengitique); il est en cristaux aussi épais que larges, de contour irrégulier; son petit angle d'axes le différencie nettement de la muscovite phengitique que l'on rencontre dans les mêmes roches: une seule des 13 mesures faites dans les 4 lames minces excède 30° et la moyenne est de 28°. Le glaucophane domine à son tour lorsque la biotite se trouve dans des lentilles quatzeuses; il est en prismes mal formés, faiblement colorés. Les deux minéraux sont étroitement enchevêtrés et rarement orientés sur le mica qu'ils remplacent; l'amphibole peut franchir les limites de ce dernier pour constituer une auréole mal définie. Le titane de la biotite s'exprime de plusieurs façons: dans certains cas, une pellicule d'oxyde brun-violet se dispose dans les clivages des divers minéraux sous forme de paillettes ou de dendrites; mais, le plus souvent, apparaissent aux dépens de l'oxyde des aiguilles de rutile (sagénite parfois), des fuseaux de sphène, ou des granules de nature incertaine. Ces produits ont une disposition révélatrice: ils font un liseré autour des anciens cristaux et se concentrent à l'intérieur, dans la zone altérée où la cristallisation est alors guidée par les directions cristallographiques des éléments en présence; lorsque le contrôle de la biotite est déterminant, les alignements titanés et les traces des clivages des minéraux nouveaux discordent de façon tout à fait significative. Dans un échantillon, un carbonate se développe à l'intérieur ou a proximité des pseudomorphoses: il doit donc intervenir dans la réaction.

Les deux types d'altération coexistent mais trouvent des conditions optimales respectivement dans les amphibolites et les gneiss. Les espèces pseudomorphes se transforment à leur tour en biotite verte (mica blanc et glaucophane) ou en chlorite oxydée (chlorite et accessoirement mica blanc.)

Le chloritoïde et l'épidote (planche 3, n) se surimposent aux fantômes en englobant sans dérangement les exsudats titanés. La calcite pénètre dans les clivages de la biotite et dans ceux de la chlorite ou du mica blanc qui en dérivent (planche 3, n); de même, la pyrite et parfois aussi l'albite poeciloblastique; le plagioclase et le carbonate peuvent alors jouer le rôle d'un coin en écartant les feuillets, comme en témoigne la forme fuselée de certaines sections de biotite. D'autres relations sont équivoques et suggèrent de ce fait un synchronisme; ainsi, la biotite inclut des fragments de quartz, mais détermine la limite rectiligne de nombreuses plages; elle cicatrise les fractures de la hornblende et du grenat dans lesquels elle est pourtant souvent enfermée; elle est associée à la muscovite phengitique dans les cloisons que le même grenat paraît repousser dans sa croissance.

b. Biotite brune

On ne peut définir ses relations avec le mica blanc sans passer en revue l'ensemble des phyllites de l'horizon leptynique. Celles-ci se présentent sous quatre formes essentielles:

- les cristaux les plus nombreux ont une couleur verte relativement très pâle, uniforme;
- d'autres sont, au contraire, constitués par l'association d'un mica du type précédent avec la biotite, dont les plages de forme quelconque, souvent anguleuse, occupent assez régulièrement une position centrale (planche 1, b); le contact est progressif, ou tranché et alors marqué par une brusque augmentation centripète de l'absorption, de la réfringence et de la biréfringence; les proportions des deux micas sont variables, mais dans la plupart des cas, l'espèce brune n'est révélée que par un examen attentif, car elle est parfois très faiblement colorée et limitée à un petit nombre d'individus; elle a quand même été reconnue dans la moitié des lames minces disponibles;
- dans un second type de cristaux mixtes, beaucoup plus rare, le mica presque incolore coexiste avec un autre dont la teinte (verte), la réfringence et généralement la biréfringence sont un peu plus fortes; de tels édifices sont comparables aux précédents, bien que la position du mica le plus coloré semble moins nettement déterminée;
- enfin, les leptynites contiennent une autre phyllite verte, de faciès sériciteux le plus souvent, qui peut franger des cristaux du type 1 ou 2 (planche 3, m) et paraît remplacer aussi bien la biotite que l'espèce peu colorée; toutefois, elle provient essentiellement de l'altération des feldspaths anciens.

Si l'on en juge par la couleur verte, toujours distincte, on se trouve en présence de plusieurs variétés de phengite, entre lesquelles les mesures de 2V ne font apparaître aucune différence: 93% des valeurs obtenues sont comprises entre 28 et 38° pour une moyenne de 34°. Tous ces micas sont susceptibles de se transformer partiellement en biotite verte, au même titre d'ailleurs que la biotite brune.

En ce qui concerne les rapports de cette dernière avec les feldspaths, il faut noter que les roches où la biotite est la plus abondante sont dépourvues de microcline, et que l'albite tient souvent des reliques orientées de la même façon que les lames extérieures. Dernière remarque: les clivages du mica enserrent fréquemment des tablettes d'hématite.

c. Biotite verte

Peu de choses à dire à son sujet, car c'est un des derniers minéraux à avoir cristallisé. Elle pourrait être contemporaine de la calcite si l'on en juge par l'obser-

vation unique suivante: les cristaux de chlorite qui se trouvent en contact avec des veines carbonatées sont plus fortement altérés en biotite verte.

G. STILPNOMELANE

1. Caractères spécifiques

Les quelques échantillons de stilpnomélane recueillis dans le massif d'Ambin ont en apparence les mêmes propriétés: cristaux poeciloblastiques dont les sections transversales ont fréquemment une forme de gerbe; couleur brun foncé suivant Ng et Nm, jaune d'or suivant Np. Un de ces échantillons a fait l'objet d'une étude (Gay, 1966) dont les principaux résultats sont rappelés dans le tableau 4.

Tableau 4. — Composition chimique et caractères optiques d'un stilpnomélane

Echantillon 24 121, groupe d'Ambin (quartz, stilpnomélane, amphibole sodique, deerite, grenat, calcite, rutile, magnétite, hématite, pyrite). x = 957700, y = 317900.

In M. Gay (1966). Minéral imparfaitement purifié de ses inclusions quartzeuses. Traces de P₂O₅.

% pon d'ox	déraux yd e s	Nombres d'atomes sur la base de 8 Si				
SiO_2	48,60	8,00	8,00	Si		
$\mathrm{Al_2O_3}$	9,50	1,835		Al		
TiO_2	t.			Ti		
Fe_2O_3	19,80	2,428	6,670	Fe ⁺³		
FeO	7,06	0,967	0,070	Fe + 2		
MnO	0,70	0,098		Mn		
MgO	5,45	1,342		Mg		
CaO	1,35	0,236		Ca		
Na_2O	0,35	0.098	0,689	Na		
K_2O	1,74	0,355		K		
${\bf H_2O} +$	4,60	27,774		O, OH, H ₂ O		
Total	99,15					

$$Ng = Nm = 1,670 \pm 0,001$$

$$Ng - Np = 0.084 \pm 0.003$$

$$d(001) = 12.11 \text{ Å}$$

 $Np = 1,586 \pm 0,002$

2. Répartition

Le stilpnomélane est un élément accidentel dont on ne connaît qu'un gisement important, celui de Salbertrand où a été recueilli le spécimen analysé. A cet endroit, il est assez abondant et largement cristallisé dans un mince niveau quartziteux du groupe d'Ambin dont les autres constituants majeurs sont la crossite, la deerite et des minéraux opaques. Il est également présent dans deux autres échantillons ramassés dans des éboulis, et provenant respectivement des leptynites alcalines du groupe d'Ambin et d'un gabbro fortement transformé de la série des Schistes lustrés.

3. Relations avec d'autres minéraux

On manque d'indices chronologiques en raison de la rareté du minéral; l'absence de toute orientation suggère simplement un caractère tardif.

H. TALC

Il est en fines paillettes, très légèrement teintées de vert et pléochroïques, cristallisant à la place d'autre minéraux, ou sous forme de petits amas. Il a été déterminé à l'aide d'un radiogramme Debye-Scherrer.

On le rencontre en petites quantités, à la périphérie des noyaux serpentineux dont il tire son origine.

I. CHLORITE

1. Types et caractères spécifiques

a. Chlorite verte

Les cristaux sont dans l'ensemble épais, et marquent une tendance poecilitique plus ou moins affirmée. Toutefois, dans la mesure où cette chlorite est secondaire, elle peut être assez polymorphe, la variété des minéraux remplacés conditionnant la variété des formes, au moins à certains stades figés de l'altération.

Le tableau 5 présente les résultats de deux analyses calculées sur la base de 28 atomes d'oxygène, sans tenir compte de l'eau, méthode qui conduit au nombre d'ions hexacoordonnés le plus proche de 12. Le choix a été guidé par les caractères optiques évidents permettant de penser que l'une des deux chlorites était parmi les plus magnésiennes, et que l'autre tenait sensiblement les mêmes quantités de fer et de magnésium; de fait, les valeurs du rapport Fe total/Fe total + Mg sont respectivement de 0,23 et 0,55. Une troisième chlorite (échantillon 10101 A), susceptible d'après les mêmes critères de représenter le pôle ferrifère, a fait l'objet d'une analyse partielle à la sonde électronique; Fe/Fe + Mg y est en effet égal à 0,80.

Afin de préciser les variations de la composition chimique, on a déterminé les caractères optiques de 10 spécimens, classés dans le tableau 6 d'après leur signe

Tableau 5. — Composition chimique de deux chlorites

- Corundophilite-shéridanite. Echantillon 17 121 A: amphibolite, groupe de la Clarea (albite, phengite, chlorite, glaucophane, épidote, calcite, sphène, rutile). x = 955 900, y = 317 700.
 Analyse nouvelle A. Germanique, Lyon, 1968. Fer total exprimé sous forme de Fe⁺². Traces de P₂O₅.
- 2. Thuringite. Echantillon 3 964: lentille d'exsudation essentiellement quartzeuse, groupe d'Ambin. $x=955\,950,\,y=332\,950.$

Analyse nouvelle A. Germanique, Lyon, 1967. Fer total exprimé sous forme de Fe⁺². Traces de P₂O₅.

	ase de 28 O	atomes sur la ba	Nombres d'		% pondéraux d'oxydes			
		2		1	2	1		
Si Al ^{iv}	8,00	4,891 3,109	8,00	5,540 2,460	23,75 25,83	28,22 20,73	SiO_2 Al_2O_3	
Alvı Ti		3,158		2,336 0,106	t.	0,72	TiO ₂	
Fe ⁺²		4,849		1,971	4,96 23,70	2,39 9,86	Fe ₂ O ₃ FeO	
	11,98		11,95			7,00		
Mn	,	0,027		0,055	0,16	0,34	MnO	
Mg		3,897		6,545	12,70	22,37	MgO	
Ca		0,035		0,941	0,16	4,48	CaO	
Na		0,010			0,05	0,00	Na ₂ O	
K					0,00	0,00	K ₂ O	
ОН		16,00		16,00	8,40	10,93	H ₂ O+	
					0,05	0,47	H ₂ O—	
					99,76	100,51	Total	

optique, et leur biréfringence telle qu'on peut l'estimer à l'aide d'une lame auxiliaire teinte sensible. La figure 1 indique une variation apparemment continue des teneurs en silicium et surtout en fer et magnésium; sa comparaison avec le tableau 6 montre que l'effet chromatique résultant de l'emploi de la lame auxiliaire (il dépend à la fois du signe optique et de la biréfringence) est un reflet assez fidèle de la constitution. On est donc en droit d'utiliser cet effet pour apprécier la composition chimique et notamment la proportion de fer et de magnésium, et pour établir une classification grossière mieux adaptée aux réalités pétrographiques que la nomenclature en usage. Un tel procédé est inspiré par celui que conseille A. L. Albee (1962); cet auteur se base cependant sur le signe optique et les teintes de polarisation. On distinguera ainsi les types suivants:

 jaune orange, rouge violet 	l ^{er} ordre	chlorites tenant plus de Mg que de Fe chlorites intermédiaires
4. bleu5. vert, jaune	2 ^e ordre	chlorites tenant plus de Fe que de Mg

Voici, à titre indicatif, les teintes de polarisation correspondantes:

- 1. normales (gris, blanc, jaune)
- 2. anormales (bronze, rouge-brun virant au mauve)
- 3. anormales (mauve)
- 4. anormales (bleu éventuellement nuancé de violet) ou plus rarement normales (gris)
- 5. extrêmement variables, le plus souvent anormales et délavées (gris ou bronze nuancé de mauve, bleu ou vert).

Les cristaux de chlorite sont fréquemment zonés, de façon plus ou moins régulière, mais presque toujours progressive; dans le cas le plus général d'une zonation concentrique, la valeur du rapport Fe/Fe + Mg augmente plus souvent vers le centre que vers la bordure. Il n'y a pas de relation évidente entre ces variations et le matériel d'origine.

b. Chlorite brune

La chlorite verte se transforme par épigénie en une phyllite brune dont l'aspect microscopique est celui de la biotite et du stilpnomélane (pléochroïsme brun rouge à jaune d'or, biréfringence élevée) et qui est en fait identifié avec l'une ou l'autre des deux espèces dans tous les travaux antérieurs a 1966. A cette date, N. D. Chatterjee montre que dans les deux exemplaires qu'il a étudiés, la transformation en question est le résultat d'une simple oxydation n'entraînant aucune modification de la structure.

Il ne semble pas en être ainsi d'un spécimen du massif d'Ambin qui a été soumis à un examen radiocristallographique et à une analyse à la microsonde électronique après un tri au microscope. Le motif de diffraction est caractérisé par la présence de deux raies intenses et fines (14,15 et 7,07 Å) que l'on retrouve de la même façon dans celui de la chlorite verte (pour cette dernière, se rapporter au tableau 5 et à la figure 1, nº 9). Ces observations s'accorderaient avec celles de N. D. Chatterjee si l'on ne relevait dans la même région du spectre, deux autres réflexions un peu moins intenses, plus larges, et difficiles à définir avec précision (15,9 et 8,2 Å). Pas une seule raie ne peut être rapportée aux micas bruns banaux. La composition est pourtant voisine de celle du stilpnomélane (tableau 7) et se distingue fortement de celle des chlorites, ne serait-ce que par la richesse en silice et la pauvreté en alumine.

Les résultats obtenus sont trop ambigus pour permettre de revenir sur les conclusions de N. D. Chatterjee; on admettra donc avec cet auteur, que la phyllite brune

Tableau 6. — Caractères optiques des chlorites vertes

Echantillon 17 121 A: amphibolite, groupe de la Clarea. Analyse nº 1, tableau 5.

Echantillon 10 101 A: micaschiste albitique, groupe d'Ambin. Analyse partielle à la sonde électronique. Echantillon 2 763 B: micaschiste albitique, groupe d'Ambin. -.4.4.4.6.7.8.6.0

Couleur de Signe polarisation optique jaune +
1
1
<u> </u>
1

Echantillon 6 102: chloritoschiste, série des Schistes lustrés.

Echantillon 1 393 B: prasinite épidotique, groupe de la Clarea.

Echantillon 4 664: micaschiste albitique, groupe d'Ambin.

Echantillon 3 064 D: prasinite chloriteuse, groupe d'Ambin.

Echantillon 3 964: lentille d'exsudation essentiellement quartzeuse, groupe d'Ambin. Analyse nº 2, tableau 5.

Echantillon 2 864 H: prasinite chloriteuse, groupe d'Ambin. Echantillon 2 164: micaschiste albitique, groupe d'Ambin.

est une chlorite oxydée, en soulignant simplement la probabilité d'une relation étroite avec le stilpnomélane d'ailleurs confirmée par l'examen microscopique: deux lames minces montrent en effet un passage parfaitement graduel entre la phyllite sous son faciès habituel et un stilpnomélane indubitable (ce qui avait conduit à assimiler provisoirement les deux minéraux: M. Gay, 1970). Ces observations rejoignent celles que J. M. Caron vient de faire dans la région de Sestrières (1970) où le « stilpnomélane [...] semble s'être formé aux dépens d'une chlorite par l'intermédiaire d'une oxychlorite ».

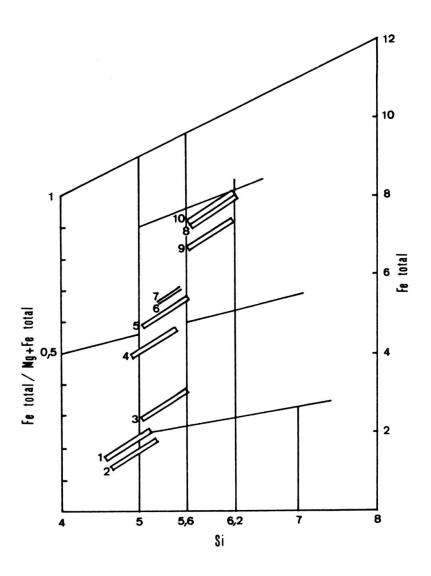


Fig. 1. — Variations de la composition chimique des chlorites vertes, définies par les valeurs de l'indice de réfraction (No) et de la biréfringence (No — Ne) tirées du tableau 6 (d'après M. H. Hey, 1954)

Les chlorites sont considérées comme des minéraux uniaxes.

Tableau 7. — Composition chimique d'une phyllite brune remplaçant partiellement la chlorite verte

Echantillon 10 101 A: micaschiste albitique, groupe d'Ambin (quartz, albite, phengite, chlorite, phyllite brune, glaucophane, allanite, calcite, rutile, minerais). x = 963500, y = 324250.

Analyse à la sonde électronique, 1969. Les 2 valeurs extrêmes indiquées pour chaque oxyde traduisent à la fois les écarts de teneur des 3 cristaux testés et les variations relatives aux 4 types de corrections appliquées; le total obtenu en additionnant les % moyens des différents oxydes est un peu faible (85,7). Alcalins non dosés. Fer total calculé sous forme de FeO.

SiO_2	47,1	54,2
Al_2O_3	7,9	9,9
FeO	20,6	20,8
MnO	0,0	0,0
MgO	3,2	4,4
CaO	1,8	2,0
TiO ₂	0,0	0,0

2. Répartition

a. Chlorite verte

Elle entre dans la constitution de tous les micaschistes du groupe de la Clarea, mais n'atteint qu'à la partie supérieure une importance notable; elle appartient alors aux types 3 et surtout 4 (voir page 27). Sans être tout à fait générale, elle est encore assez régulièrement présente dans les anciens matériaux détritiques du groupe d'Ambin où, cependant, l'éventail de composition est très largement ouvert du pôle magnésien au pôle ferrifère, sans fréquence dominante. Elle manque par contre totalement dans le groupe d'Etache et les quartzites.

Dans les formations carbonatées, sans être très abondante, la chlorite est uniformément répandue, notamment dans les Schistes lustrés dont elle est un élément significatif; elle est presque toujours du type 1 et en tous cas rarement négative.

On la rencontre dans toutes les formations basiques, en quantité très variable. De ce point de vue, les amphibolites sont les moins abondamment et fréquemment pourvues; à quelques exceptions près, leur chlorites tiennent plus de magnésium que de fer et sont même le plus souvent de premier type; dans les glaucophanites et les prasinites, la tendance est encore magnésienne (rares chlorites négatives), mais l'éta-lement plus prononcé; dans les formations à glaucophane et lawsonite, on relève une écrasante majorité de chlorites du type 1. Le minéral figure accessoirement dans un assez grand nombre d'échantillons de leptynites alcalines; il est un peu plus abondant dans les micaschistes albitiques de la série des Schistes lustrés où il présente une composition très variable.

b. Chlorite brune

Son extension est comparable à celle de la biotite verte: irrégulièrement développée, relativement peu fréquente, la chlorite brune ne se hausse jamais au rang de constituant majeur. Elle est pourtant stable de bas en haut de la série puisque, à l'exception du groupe d'Etache et des quartzites, toutes les formations en contiennent: c'est le groupe de la Clarea qui est le plus riche, particulièrement à son sommet, puis le groupe d'Ambin.

3. Relations avec d'autres minéraux

a. Chlorite verte

La chlorite verte, l'albite et l'actinote sont étroitement associées dans l'évolution prasinitique des formations à glaucophane, mais leurs relations exactes sont incertaines. On a déjà indiqué que l'albite semblait, en l'incluant, protéger le glaucophane de l'altération chloriteuse: l'amphibole sodique persiste alors ou subit une transformation pseudomorphique en actinote qu'on n'observe guère que dans ces conditions. Ces relations permettraient de penser que la chlorite est postérieure à l'albite, ou qu'elle en est à la rigueur contemporaine, si l'on ne relevait les observations contradictoires suivantes: c'est dans les ovardites (prasinites à fond chloriteux) que le caractère porphyroblastique et poeciloblastique de l'albite est le plus marqué; le plagioclase est généralement indemme de toute cataclase alors que le phyllosilicate est déformé; la schistosité mécanique qui affecte ce dernier peut même déterminer la forme et l'orientation des plages feldspathiques; enfin, au contact du plagioclase, la phyllite s'effrange parfois comme sous l'effet d'une corrosion, pour peu que son clivage soit perpendiculaire à l'interface.

La muscovite est en tous cas postérieure lorsqu'elle se surimpose à la chlorite verte en englobant des trainées d'oxyde parrallèles aux clivages. De même certains micas qui poussent sur les lames chloriteuses: talc, dans l'auréole réactionnelle des serpentinites d'Ulzio, biotite verte, sporadiquement, et surtout chlorite brune dont la généralité justifie une description particulière. Comme le remarque N. D. Chatterjee, les chlorites vertes sont d'autant plus sensibles à ce dernier type d'altération qu'elles sont plus riches en fer; les variétés les plus magnésiennes (groupe 5) en sont totalement exemptes. La réaction procède à la faveur des clivages, de sorte que la chlorite secondaire se présente, dans un cristal en section transversale, sous forme de coins fréquemment réunis en une frange terminale, d'inclusions d'apparence fuselée, plus rarement de lames à faces parallèles traversant de part en part (planche l, c). Il y a continuité optique et gradation de couleur entre les deux minéraux. La schistosité mécanique exerce un contrôle essentiel sur cette évolution: il est souvent manifeste que seuls les individus adjacents à une telle surface de discontinuité sont affectés; J. von Raumer (1969) a pu observer une disposition analogue dans le granite du Mont-blanc.

Les relations avec les carbonates n'ont rien d'équivoque: la chlorite peut garder la trace d'une déformation intense, sans mesure avec celle de la calcite ou de l'ankérite qui l'environne; elle se laisse pénétrer par ces dernières, ainsi que par la dolomite d'origine métamorphique dans les rares échantillons où cet élément est présent; avec le clivage minéral, c'est parfois la schistosité de la roche, postérieure à la cristallisation du phyllosilicate, qui est soulignée par un film régulier de calcite ou d'ankérite. Le clivage de la chlorite contrôle également la forme et l'orientation de certaines plages de leucoxène et d'hématite, comme le fait celui des micas blancs. Il faut admettre que le rutile peut être lui aussi postérieur, si l'on reconnaît à l'albite porphyroblastique des écorces de coussins un caractère tardif relativement à la chlorite: l'oxyde, en effet, remplace systématiquement le sphène à l'intérieur du plagioclase, et seulement là. Notons enfin un développement inhabituel de la chlorite à proximité de concentrations sulfurées dans certains micaschistes profonds du groupe de la Clarea, sans pouvoir expliquer de façon satisfaisante un tel voisinage.

b. Chlorite brune

Elle est, avec les carbonates et la biotite verte, un des derniers minéraux à s'être formés.

J. SERPENTINES

1. Types et caractères spécifiques

En se plaçant d'un point de vue morphologique, on peut distinguer deux types:

- certaines serpentines apparaissent au microscope comme un mélange généralement peu ordonné de sections minces, fusiformes, ou au contraire plus larges et alors fréquemment ouvertes à la façon d'une gerbe ou d'un éventail; une orientation discrète s'y manifeste suivant deux directions orthogonales;
 - d'autres sont au contraire caractérisées par une structure maillée.

Une telle distinction est justifiée par l'étude aux rayons X. Suivant les indications de E. J. W. Whittaker et J. Zussman (1956), les deux échantillons du premier type ayant fait l'objet d'un examen présentent des caractères d'antigorite: la réflexion la plus intense correspond à une distance réticulaire de 2,52 (échantillon 1062 A) ou 2,53 Å (échantillon 6124); les réflexions à 1,56 et 1,54, également déterminantes, sont relevées dans les deux cas. Le spectre d'un dernier échantillon (1771), se rapportant cette fois au second type, est celui d'une lizardite; raies moins bien définies en raison de leur largeur 2,50 (intense), 1,54 et 1,50 Å; rien à 1,56.

2. Répartition

Les serpentines se rencontrent exclusivement dans la série des Schistes lustrés. La lizardite et une des deux antigorites proviennent de deux lentilles de la région du lac du Mont-Cenis; la seconde antigorite a été recueillie dans le massif de la Sauze d'Oulx.

3. Relations avec d'autres minéraux

La magnétite obéit, le cas échéant, à la même ordonnance que la serpentine: ses granules accentuent les structures réticulaires ou sont étroitement moulés par les mailles.

La trémolite, la calcite et la dolomite sont associées à la serpentine dans l'altération des pyroxènes magmatiques, mais elles se forment aussi plus ou moins directement à ses dépens, en même temps que le talc (périphérie du massif de la Sauze); des lames minces en nombre trop faible ne permettent pas de préciser les étapes de cette dernière transformation. La chlorite est un autre produit de remplacement; elle cristallise en petites mouches, ou en minces filets parallèles aux clivages, ou constitue des amas irréguliers d'aspect finement vermiculé.

K. Pyroxenes

1. Types et . caractères spécifiques

a. Pyroxène magmatique

Les cristaux, de grande taille, ont un contour automorphe (abstraction faite de la recristallisation métamorphique); ils sont incolores ou légèrement colorés de brun et présentent tous le clivage supplémentaire (100). Dans une dolérite, il est possible de déterminer d'autres caractéristiques: 2 VNg = 48°, Ng/C = 41° (chacun de ces deux chiffres représente la moyenne de 6 valeurs peu différentes).

En l'absence d'un diagnostic précis, on peut se référer aux travaux de A. Nicolas (1966) portant sur une région limitrophe; les pyroxènes étudiés par cet auteur proviennent également de formations basiques et ultrabasiques de la série des Schistes lustrés; sur le diagramme de Poldervaart et Hess, ils se situent dans le champ du diopside ou à proximité.

b. Pyroxène métamorphique calcique et ferro-magnésien

A ce type on rapportera des cristaux automorphes, incolores, dont les angles 2 VNg et Ng/C ont respectivement des valeurs moyennes de 55 et 41° (4 mesures).

On admettra qu'il s'agit d'un pyroxène de la série diopside-hedenbergite, compte tenu de l'environnement (roche à fond quartzeux et carbonaté soumise à un métamorphisme de degré moyen).

c. Pyroxènes métamorphiques sodiques

Les particularités de quelques uns de ces pyroxènes sont indiquées dans le tableau 8 qui rappelle également les propriétés optiques de la jadéite signalée en 1963 par S. Lorenzoni (les valeurs de 2 VNp et de Np/C données pour les six premiers échantillons représentent les moyennes de 4 à 6 mesures en lumière monochromatique jaune). Les propriétés optiques donnent une idée grossière des espèces en présence; l'espacement des plans (221) ne suffit pas à assurer la détermination, mais confirme au moins dans une certaine mesure les hypothèses formulées (voir à ce propos E. J. Essene et W. S. Fyfe, 1967).

On peut ainsi rapporter les trois premiers échantillons à la série aegyrineaugite aegyrinique, et même préciser que 1 et 2 sont des aegyrines (contenant plus de 70% de (Si₂O₆) NaFe⁺³), tandis que 3 est une augite aegyrinique (contenant

Tableau 8. — Caractères spécifiques des pyroxènes sodiques

- 1. Aegyrine. Echantillon 382 B: quartzite à ciment d'aegyrine, Trias.
- 2. Aegyrine. Echantillon 1593: galet, groupe d'Etache.
- 3. Augite aegyrinique. Echantillon 8061: marbre à silicates, surface durcie du Malm.
- 4. Pyroxène jadéitique. Echantillon 4 113 D; élément des brèches associées aux laves en coussins, série des Schistes lustrés. Le pyroxène est celui du fond de la roche.
- 5. Jadéite. Echantillon 4 113 D. Le pyroxène est pseudomorphe d'anciens phénocristaux feldspathiques.
- 6. Jadéite. Echantillon 23 121: micaschiste, groupe d'Ambin.
- 7. Jadéite. In S. Lorenzoni (1963); métagrauwacke, groupe de la Clarea.

		Pléochroïsme					
-	Ng	Ng Nm Np		Dispersion	2VNp°	Np/cº	d (221) Å
1	vert très pâle	jaune très pâle	vert très pâle	faible	66	4	2,975
2	jaune-vert très pâle	jaune-vert très pâle	incolore	faible	62	6	2,975
3	vert-jaune pâle	jaune très pâle	vert d'eau	faible	78	7	
4	vert-jaune pâle	jaune-vert pâle	incolore	moyenne	81	3	2,950
5	incolore	incolore	incolore	forte	89	29	
6	incolore	incolore	incolore	forte	88	28	2,940
7	jaune-vert très pâle	incolore	jaune très pâle	- 16. V & V	70-72	32-34	

moins de 70% de (Si₂O₆) NaFe⁺³). Cette spécification est conforme à la nomenclature proposée par W. A. Deer, R. A. Howie et J. Zussman (1965) et s'appuie sur la relation établie par ces mêmes auteurs entre la composition chimique et les valeurs de l'angle d'axes et de l'angle d'extinction. La position de Np (bissectrice aiguë ou obtuse des axes cristallographiques a et c) est également discriminante, mais il a été impossible de la définir en l'absence de tout clivage ou face (001). Ces pyroxènes sont toujours en agrégats de cristaux de taille assez grande, de forme prismatique ou quelconque.

Dans le pyroxène nº 4, la jadéite est le constituant essentiel, mais la part de l'aegyrine et de l'augite n'est pas négligeable; les proportions pourraient notamment être celle d'une omphazite; les cristaux sont aciculaires ou prismatiques, groupés en faisceaux ou en gerbes. Les échantillons 5 et 6 (gros cristaux prismatiques dont les sections s'ouvrent parfois légèrement en éventail) paraissent mériter le nom de jadéite; le dernier libère toutefois dans son altération de nombreux granules de magnétite et d'hématite.

2. Répartition

a. Pyroxène magmatique

Il ne subsiste, à l'état de résidu ou de simple trace, que dans les roches du cortège basique et ultrabasique des Schistes lustrés. Dans la serpentinite de la Sauze d'Oulx, la dolérite qui la recoupe, et le gabbro voisin, il a en partie échappé à l'altération métamorphique. En dehors de ces gisements, on ne trouve plus que ses fantômes: dans les laves de la région d'Ulzio, les anciens phénocristaux ont généralement gardé leur forme ou au moins une individualité marquée par un assemblage métamorphique singulier, différent de celui qui a remplacé le fond de la roche; dans les serpentinites et les chloritoschistes, ce sont des particularités de la trame qui indiquent encore le contour ou la structure des anciens pyroxènes (et celle des péridots).

b. Pyroxène métamorphique calcique et ferro-magnésien

Il a été reconnu en un seul endroit, dans l'horizon amphibolique du groupe de la Clarea, au sud-sud-est des Casses blanches sur le versant italien; il y est associé à de la hornblende et à un peu de sphène dans de minces lits dont le fond est alternativement quartzeux et carbonaté.

c. Pyroxènes métamorphiques sodiques

Les minéraux de la série aegyrine-augite aegyrinique se rencontrent dans des faciès accidentels des groupes d'Ambin et d'Etache, des quartzites et de l'ensemble calcaréo-dolomitique. Ils sont toujours accompagnés par des produits opaques en quantité inhabituelle (magnétite et hématite essentiellement) notamment dans la

dernière formation où ils se localisent plus précisément au sommet du Malm, dans une croûte qui peut être considérée comme une ancienne surface durcie.

Les pyroxènes jadéitiques sont aussi rares. Les quelques découvertes qui en ont été faites intéressent le groupe de la Clarea (métagrauwackes), le groupe d'Ambin (micaschistes, leptynites alcalines et prasinites) et la série des Schistes lustrés (métabasaltes massifs, bréchiques ou en coussins formant un petit pointement à proximité de la localité d'Ulzio). Leur extension a pu être beaucoup plus large, notamment dans le groupe d'Ambin où l'on croit souvent reconnaître dans les ocelles albitiques les résidus d'un tel pyroxène.

3. Relations avec d'autres minéraux

a. Pyroxène magmatique

Un des échantillons recueillis dans la serpentinite de la Sauze contient un grenat de couleur verte dont la signification sera discutée plus loin; ce minéral est à la fois disposé suivant un réseau de filonnets d'épaisseur très irrégulière, et inscrit dans le contour d'anciens pyroxènes dont les clivages ont guidé la cristallisation en fines lamelles.

D'une façon générale, les pyroxènes ont été profondément altérés. Dans les formations ultrabasiques, ceux qui ont partiellement échappé à la serpentinisation se transforment en trémolite orientée sur leur réseau, et en carbonates exsudés dans les clivages ou les fractures; ils sont peut-être l'origine des concentrations de calcite et/ou dolomite de certains faciès. Même dans les chloritoschistes, résultant d'une évolution ultérieure des serpentinites, on devine encore parfois le pyroxène. Dans les roches basiques, et spécialement dans la dolérite et le gabbro de la région d'Ulzio, le glaucophane est le produit d'altération dominant (planche 1, d); il tend à constituer des agglomérats sans forme définie et sans structure interne bien apparente, dans lesquels on a du mal à reconnaître l'élément initial lorsque la transformation est achevée; à la faveur de cette altération cristallise également du sphène, totalement inclus dans le glaucophane, mais disposé conformément au clivage du pyroxène dont il ne reste pas d'autre trace. Dans les formations effusives, l'amphibole sodique fait place ensuite à la chlorite, au mica blanc, à l'albite et à la calcite, sans que la silhouette des anciens cristaux soit totalement effacée.

b. Pyroxène métamorphique calcique et ferro-magnésien

Ses relations avec les minéraux qui l'accompagnent sont peu significatives, si l'on excepte une partie du carbonate (ankérite?); celui-ci apparaît d'abord dans les clivages, puis envahit plus largement les cristaux de pyroxène dissociés en multiples granules et progressivement remplacés; la réaction est particulièrement évidente lorsque les deux minéraux sont dans un fond de quartz. Cependant, l'altération n'est

pas assez forte pour rendre compte de tout le carbonate présent dans la roche en quantité suffisante pour contribuer au litage.

c. Pyroxènes métamorphiques sodiques

Ceux de la série aegyrine-augite aegyrinique se transforment en un mélange d'albite, quartz et hématite. De petites gouttes de plagioclase se forment parallèlement au clivage puis, en se réunissant, finissent par constituer un assemblage ou un monocristal pseudomorphe, chargé de multiples granules de pyroxène de même orientation optique, de tablettes d'hématite en zone avec l'axe c du pyroxène, et d'inclusions de quartz (planche 4, p). Dans l'ensemble calcaréo-dolomitique, la calcite est manifestement plus récente que l'augite aegyrinique dont elle emplit les clivages et dont elle inclut des cristaux tordus sans présenter elle-même la moindre trace de déformation. On a mentionné page 9 l'existence de sections de pyroxène semblables à de la dentelle, et indiqué que leur formation était liée à l'existence préalable d'une mosaïque de quartz; lorsqu'une telle structure se détache sur un fond carbonaté, dont les éléments ont des formes et des dimensions sans rapport avec celles de ses mailles (planche 3, a), il faut nécessairement admettre un remplacement du quartz par la calcite postérieurement à la cristallisation de l'augite aegyrinique.

Les pyroxènes jadéitiques subissent, dans les groupes de la Clarea et d'Ambin, une altération comparable à celle des précédents (planche 1, e). L'albite en est le produit essentiel; elle se présente sous la forme d'un cristal unique ou d'un agrégat de cristaux d'orientations voisines, ne respectant qu'imparfaitement la forme initiale; lorsqu'elle est mâclée, c'est suivant la loi de l'albite, avec parfois un motif en échiquier. Les inclusions y tiennent une place importante: gouttellettes de quartz, tablettes d'hématite (translucides ou opaques suivant leur taille) et octaèdres de magnétite alignés sinon orientés suivant les directions de leur hôte; dans certains cas apparaît également un feutrage de séricite verte obéissant au même contrôle que les minerais (d'après l'examen cristallographique (Lefèvre et Michard, 1965), il pourrait s'agir de paragonite). Dans les matériaux volcaniques des environs d'Ulzio, la jadéite est corrodée par du mica blanc ou de la chlorite profitant de toutes les lignes de faiblesse; elle est remplacée par des veinules d'épidote, et recoupée par la calcite (clivages) et l'albite des fractures tardives.

L. AMPHIBOLES

1. Types et caractères spécifiques

a. Trémolite-actinote

Les amphiboles de coloration très faible ou nulle liées à la serpentinite de la Sauze sont probablement des trémolites. Rappelons qu'elles sont associées aux

résidus pyroxéniques, ou dérivent de la serpentine elle-même; dans le dernier cas, elles sont accompagnées par de la calcite, de la dolomite et du talc. L'angle d'axes élevé des deux échantillons étudiés (tableau 9, nº 1 et 2) est un indice supplémentaire.

Les variétés d'une couleur verte assez pâle sont beaucoup plus répandues; elles sont généralement aciculaires, bien qu'une stricte épigénie du glaucophane conduise parfois à des formes prismatiques. Il est notoire que ces amphiboles se rapportent à la série trémolite-ferroactinote (à ce propos, voir par exemple les analyses de A. Nicolas, 1966). D'après la relation établie par W. A. Deer, R. A. Howie et J. Zussman (1965) entre les indices de réfraction et la composition des minéraux de ce groupe, la proportion moléculaire approximative de ferro-actinote serait de 30 à 40 % dans les trois échantillons étudiés (tableau 9, nº 3 à 5).

b. Hornblende verte

L'habitus est régulièrement prismatique. Le pléochroïsme d'ensemble est le suivant:

- Ng: vert, nuancé d'une pointe de bleu plus ou moins apparente
- Nm: vert, parfois mêlé d'un peu de jaune
- Np: jaune plus ou moins soutenu.

Dans tous les cas, l'absorption paraît plus forte suivant Nm que suivant Ng; elle varie assez largement d'un échantillon à l'autre. Les tableaux 9 (nº 6 à 11) et 10 indiquent les propriétés optiques et la composition chimique de quelques spécimens de ce type d'amphibole.

c. Hornblende bleu-vert

Elle constitue, avec le glaucophane qui lui est toujours étroitement associé, des cristaux prismatiques dont elle peut franger les extrémités en prenant accidentellement un faciès aciculaire. Toute séparation, et par conséquent toute analyse chimique est de ce fait impossible. Heureusement, ce type d'amphibole est bien caractérisé par ses propriétés optiques (tableau 9, n° 12); on peut donc étendre au massif d'Ambin les résultats d'un certain nombre de travaux dont J. Fabriès a fait le point en 1966: il s'agirait « de hornblendes subcalciques (Ca<1,5), voisines de la formule idéale $NaCaR_3^{2+} R_2^{3+} AlSi_7O_{22} (OH)_2$, dans laquelle une certaine proportion de R^{3+} serait remplacée par ($Na^A + R^{2+}$). »

d. Amphibole sodique

Les amphiboles sodiques ont un habitus généralement prismatique, de temps en temps aciculaire, et tout à fait exceptionnellement fibreux. La plupart d'entre elles ont un pléochroïsme banal; jaune suivant a, bleu lavande suivant b, bleu ciel suivant c: mais quelques unes se distinguent par une dominante bleue plus forte

- Trémolite. Echantillon 4 124: serpentinite à résidus pyroxéniques, série des Schistes lustrés.
- Trémolite. Echantillon 9 124: marbre à grain fin lié à la même serpentinite, série des Schistes lustrés.
 - Actinote. Echantillon 2 074: prasinite amphibolique, partie supérieure du groupe de la Clarea.
 - Actinote. Echantillon 10 102: prasinite amphibolique, série des Schistes lustrés.
 - Actinote. Echantillon 112: prasinite, série des Schistes lustrés.
- Hornblende verte. Echantillon 993 C: amphibolite, groupe d'Ambin.
- Hornblende verte. Echantillon 17 121 A: amphibolite, groupe de la Clarea. Analyse nº 1, tableau 10.
 - Hornblende verte. Echantillon 3 992: amphibolite, groupe de la Clarea. Analyse nº 2, tableau 10.

 - Hornblende verte. Echantillon 193: amphibolite, groupe de la Clarea.
- Hornblende verte. Echantillon 993 A: amphibolite, groupe d'Ambin. Analyse nº 3, tableau 10.
- Hornblende verte. Echantillon 1 294 B: amphibolite, groupe de la Clarea. Analyse nº 4, tableau 10. - 7.6.4.3.9.7.8.0.0.1.2.

Hornblende bleu-vert. Echantillon 894 B: amphibolite, groupe de la Clarea.

$N_{\rm g}-N_{ m p}$			0,023 ±0,003	$0,025 \\ \pm 0,003$	$0,025 \\ \pm 0,002$	0,029 ±0,003	$0,021 \\ \pm 0,002$	$0,027 \pm 0,002$	$0,026 \\ \pm 0,002$	$^{0,026}_{\pm 0,002}$	$0,032 \\ \pm 0,002$	$0,027 \\ \pm 0,002$
N Q			1,635 ±0,002	$^{1,625}_{\pm 0,002}$	$^{1,629}_{\pm 0,001}$	$\pm 0,002$	1.642 ±0,001	1,645 ±0,001	1,657 ±0,001	$^{1,655}_{\pm 0,001}$	1.658 ±0,001	1,657 ±0,001
Z.						$^{1,652}_{\pm 0,002}$	1,652 ±0,002	1,662 ±0,001	1,672 ±0,002	1,669 ±0,001	1,676 ±0,002	1,673 ±0,002
ž Z			1,658 ±0,001	$^{1,650}_{\pm 0,001}$	1,654 ±0,001	1,666 ±0,001	1,663 ±0,001	1,672 ±0,001	1,683 ±0,001	1,681 ±0,001	1,690 ±0,001	$\pm 0,001$
2VNp°	83	83	77	75	99	88	80	82	77	74	89	69
Ng/cº	15	16	13	17	17	15	18	15	14	15	16	17
αZ	incolore	incolore	vert-jaune très pâle	vert-jaune très pâle	vert-jaune	jaune très pâle	incolore	jaune très pâle	jaune pâle	jaune pâle	jaune pâle	jaune pâle
Pléochroisme Nm	incolore	incolore	vert-(bleu) pâle	vert-(bleu) pâle	vert	vert pâle	vert	vert-(jaune)	vert-(jaune)	vert-(jaune)	vert	vert
N S	incolore	incolore	vert-(bleu) pâle	vert-(bleu) pâle	vert-(bleu)	vert-(bleu) pâle	vert-(bleu)	vert	vert	vert	vert-(bleu)	bleu-vert
	1	2	3	4	5	9	7	∞	6	10	=	12
		səjo	nitoA es	rémolite	L		sa	ies verte	ornblenc	н		Horn- blende bleu- vert

TABLEAU 10. — Composition chimique de quatre hornblendes vertes

Echantillon 17 121 A: amphibolite, groupe de la Clarea (albite, phengite, chlorite, hornblende, glaucophane, épidote, calcite, sphène, rutile) $x = 955\,900, y = 317\,700.$

Analyse nouvelle A. Germanique, Lyon, 1969. Traces de P₂O₅; F non dosé. Caractères optiques: tableau 9, nº 7.

Echantillon 3 992: amphibolite, groupe de la Clarea (quartz, albite, phengite, chlorite, hornblende, glaucophane-crossite, épidote, calcite, sphène, rutile, pyrite et autres minerais). x = 961 900, y = 327 750. 7

Echantillon 993 A: amphibolite, groupe d'Ambin (quartz, albite, phengite, chlorite, hornblende, épidote, calcite, sphène, rutile, pyrite) Analyse nouvelle A. Germanique, Lyon, 1967. Traces de P₂O₅; F non dosé. Caractères optiques: tableau 9, nº 8. ε.

x = 961500, y = 321200.

Echantillon 1 294 B: amphibolite, groupe de la Clarea (quartz, albite, phengite, hornblende, glaucophane-crossite, épidote, sphène). $x = 956\,350$, $y = 320\,800$. Analyse nouvelle A. Germanique, Lyon, 1969. 0,04% de P₂O₅ inclus dans le total; F non dosé. Caractères optiques: tableau 9, nº 10. 4.

Analyse nouvelle A. Germanique, Lyon, 1967. Traces de P₂O₅; F non dosé. Caractères optiques: tableau 9, nº 11.

		Si Aliv	$\begin{array}{c} AI^{v_1} \\ Ti \\ Fe^{+\frac{3}{2}} \\ Fe^{+\frac{2}{2}} \end{array}$ Mg	K a Sa	НО	
		8,00	5,17	2,23		
0	4	6,187	0,592 0,234 0,513 1,621 0,029 2,176	1,681 0,478 0,072	1,00	
base de 23		8,00	5,24	2,23		
Nombres d'atomes sur la base de 23 O	3	6,380	0,732 0,107 0,311 1,597 0,032 2,460	1,641 0,552 0,036	1,00	
ombres d'a		8,00	5,20	2,22		
ž	2		0,719 0,138 0,419 1,226 0,020 2,678	1,646 0,527 0,046	1,00	
		8,00	5,17	2,22		
	1	6,817	0,657 0,047 0,252 0,823 0,019 3,372	1,610 0,533 0,069	1,00	Constituted
	4	42,17 13,91	2,12 4,66 13,22 0,24 9,95	10,70 1,68 0,39	0,58	19,66
ydes	3	43,19	0,96 2,81 12,93 0,26	10,37 1,93 0,19	1,63	99,12
% pondéraux d'oxydes	7	43,36	1,27 3,83 10,06 0,17 12,33	10,54 1,87 0,25	0,74	98,44
od %	1	47,80	0,44 2,36 6,90 0,16 15,87	10,60 1,93 0,38	1,33	98,78
		SiO ₂ Al ₂ O ₃	TiO ₂ Fe ₂ O ₃ FeO MnO MgO	CaO Na ₂ O K ₂ O	H ₂ O +	Total

(outremer, Prusse). L'absorption est très variable; la dispersion augmente grossièrement avec elle. Les variétés les plus colorées sont fréquemment zonées, et de façon très irrégulière; l'absorption tend cependant a être plus importante au cœur des cristaux.

Quatorze amphiboles provenant des diverses formations basiques (groupes de la Clarea et d'Ambin, série des Schistes lustrés) ainsi que de l'ensemble calcaréo-dolomitique ont fait l'objet d'un examen à la platine universelle en lumière mono-chromatique. Elles se répartissent en deux groupes d'après l'orientation de leur indicatrice optique:

- huit ont le plan des axes optiques parallèle à (010) et Ng voisin de c; 83 % des valeurs de Ng/c sont comprises entre 1 et 6°, et les moyennes (5 à 10 mesures suivant les échantillons) vont de 3 à 7°; l'éventail des valeurs de 2 VNp est très large et les moyennes elles-mêmes (5 à 7 mesures) se situent entre 29 et 55°;
- six ont le plan des axes optiques perpendiculaire à (010), Ng suivant b et Nm voisin de c; dans 83% des cas, l'angle entre les deux dernières directions mesure de 2 à 8° et il est en moyenne de 4 à 10° (4 à 8 mesures); l'intervalle des variations de 2 VNp est aussi important que dans le premier groupe: 33 à 54° pour les moyennes (3 à 6 mesures).

On sait que le premier type d'orientation se rencontre dans les glaucophanes et quelques crossites, le second dans les crossites et quelques magnésioriebeckites. Les résultats de deux analyses chimiques (tableau 11) sont à cet égard satisfaisants. La première amphibole, faiblement colorée et moyennement dispersive, dont le plan des axes optiques est parallèle à (010), a une composition de glaucophane; elle est associée dans la roche à de la lawsonite. La seconde, fortement colorée et dispersive, avec un plan des axes optiques perpendiculaire à (010), est une crossite chimiquement très voisine de celle analysée par J. Bocquet (1969); ces deux dernières amphiboles proviennent d'ailleurs de gisements assez proches, carbonatés l'un et l'autre. On peut donc admettre que les amphiboles bleues du massif d'Ambin sont en majorité des glaucophanes et des crossites, en déplorant que l'examen microscopique ne soit pas déterminant, dans la mesure où le changement d'orientation ne commande pas la nomenclature; aussi, le terme de glaucophane est-il employé dans un sens large. Les quelques spécimens dont le pléochroïsme s'écarte du schéma habituel se rapportent peut-être aux magnésioriebeckites.

2. Répartition

a. Amphiboles calciques

Elles sont en majeure partie localisées dans les roches basiques du groupe de la Clarea, du groupe d'Ambin et de la série des Schistes lustrés; elles font totalement

Tableau 11. — Composition chimique et caractères optiques de deux amphiboles sodiques

- Glaucophane. Echantillon 13 124 C: amphibole associée à de la lawsonite dans une courte veine, métabasalte de la série des Schistes lustrés. x = 953 350, y = 313 400.
 Analyse nouvelle A. Germanique, Lyon, 1969. Traces de P₂O₅; F non dosé.
- Crossite. Echantillon 8 461: dolomie, ensemble calcaréo-dolomitique (albite, phengite, chlorite, crossite, calcite, dolomite, minerai). x = 954 500, y = 325 200.
 Analyse nouvelle A. Germanique, Lyon, 1969. Traces de P₂O₅; F non dosé.

% pondéraux d'oxydes				Nombres d	'atomes sur la b	ase de 23 O	
	1	2	1	l		2	
SiO_2 Al_2O_3	57,22 9,19	55,20 6,20	7,631 0,369	8,00	7,842 0,158	8,00	Si Al ^{IV}
TiO ₂ Fe ₂ O ₃ FeO MnO MgO	1,10 4,71 6,32 0,12 11,11	t. 8,30 10,35 t. 9,74	1,075 0,110 0,471 0,704 0,013 2,208	4,58	0,880 0,886 1,229 2,062	5,06	Al ^{vi} Ti Fe ⁺³ Fe ⁺² Mn Mg
CaO Na ₂ O K ₂ O	1,23 6,42 0,11	1,51 6,60 t.	0,176 1,659 0,018	1,85	0,230 1,817	2,05	Ca Na K
$^{ m H_2O+}_{ m 2O-}$	1,73 0,05	1,23 0,05	1,00		1,00		ОН
Total	99,31	99,18					
				7 7		2	
P.A.O. 2VNp°		//(010) 29			5	010) 4	
Ng		4 $^{1,643}\pm0,00$ Description	1	Nm/c	1,668 =	4 ⊢ 0,002 vande	
Nm	1 1	$0,635\pm0,00$ bleu lavande		$1,660 \pm 0,001$ bleu ciel			
Np Na Na	j	$1,615 \pm 0,00$ aune pâle			1,648 jaune p		
	1 1 j	oleu lavande 1,615 \pm 0,00	1		bleu ci 1,648 jaune p	⊢ 0,001 el	

défaut dans les formations suivantes: leptynites alcalines, groupe d'Etache, quartzites, ensemble calcaréo-dolomitique, schistes lustrés et micaschistes albitiques qui leur sont liés.

L'actinote est générale dans les faciès basiques, et spécialement abondante dans les prasinites. Sa fréquence paraît y augmenter de bas en haut de la série. Comme elle se forme aux dépens du glaucophane, on la rencontre également, par accident, dans le fond continu des groupes de la Clarea et d'Ambin où ce dernier minéral est assez répandu. La trémolite, pour sa part, n'est guère connue qu'à la périphérie ou au sein du massif serpentineux de la Sauze.

Si l'on excepte les amphibolites d'Exilles, rapportées au groupe d'Ambin, la hornblende verte n'a pas d'autre gisement que l'horizon basique du groupe de la Clarea. Elle en est encore un élément essentiel, bien que son importance aît été considérablement réduite au cours des derniers évènements métamorphiques.

La hornblende bleu-vert est accessoire, compte tenu du petit nombre d'échantillons qui en contiennent (amphibolites, glaucophanites et prasinites des deux formations inférieures).

b. Amphiboles sodiques

Comme les précédentes, elles sont particulièrement développées dans toutes les roches basiques, de façon très irrégulière d'ailleurs. Elles manquent totalement dans les leptynites alcalines, les schistes et conglomérats du groupe d'Etache, les quartzites, les calcschistes et les micaschistes albitiques de la série des Schistes lustrés. Mais, à la différence des amphiboles calciques, elles sont bien représentées, quoique souvent par de simples fantômes, dans quelques formations d'origine sédimentaire: micaschistes de la Clarea et d'Ambin, ensemble calcaréo-dolomitique (notamment croûtes ferrugineuses).

Certaines particularités de forme méritent d'être signalées. C'est ainsi que l'amphibole bleue constitue à la partie inférieure du groupe de la Clarea des agglomérats de prismes courts, assez mal formés, contrastant avec les cristaux isolés, parfaitement automorphes, de la partie supérieure; les formes aciculaires sont peut-être un peu plus fréquentes au niveau de la série des Schistes lustrés; les masses fibreuses se présentent comme des accidents de la surface durcie du Malm de l'Arella. Les variations de couleur sont également liées dans une certaine mesure à la nature des formations: les types les moins colorés (probablement des glaucophanes) sont ceux qui accompagnent la lawsonite, et surtout ceux que l'on rencontre à la base du groupe de la Clarea; les micaschistes de la partie supérieure de ce groupe et ceux du groupe d'Ambin sont caractérisés par des variétés nettement plus absorbantes; dans les faciès riches en fer de l'ensemble calcaréo-dolomitique, les amphiboles ont une couleur encore plus foncée et souvent anormale (crossites et peut-être riebeckites); par contre, dans les amphibolites, glaucophanites et prasinites et toutes provenances, la gamme de coloration est très étendue.

3. Relations avec d'autres minéraux

a. Trémolite

Rappelons qu'elle est associée à un carbonate dans l'altération des résidus pyroxéniques de la serpentine de la Sauze, à du talc, de la calcite et de la dolomite dans la transformation marginale de la serpentine elle-même, Dans ce dernier cas, elle est en toute rigueur antérieure à ses compagnons: la phyllite se développe dans les clivages et les fractures, mais surtout à l'extrémité des prismes d'amphibole, dont il ne reste plus ailleurs que des débris ou une vague forme; quant aux carbonates, ils sont à leur habitude insinués dans les clivages.

b. Actinote

Elle est quelquefois partiellement remplacée par des phyllosilicates (mica blanc et biotite verte dont les lamelles se disposent parallèlement aux clivages), recoupée par la calcite des fractures tardives et par celle du fond qui profite de toutes les lignes de faiblesse. Elle est enfin souvent incluse dans l'épidote où elle dessine même de temps en temps des charnières de plis, mais cette relation est ambiguë puisque l'actinote peut être pseudomorphe d'une amphibole sodique.

c. Hornblende verte

Dans les amphibolites de la Clarea, elle est vraisemblablement contemporaine de la biotite qui, tour à tour, l'inclut dans ses porphyroblastes et en cicatrise les fractures. Elle est en tout cas antérieure au glaucophane qui forme assez souvent une couronne ou un réseau interne conforme aux clivages de son hôte (planche 3, 0, p,). L'amphibole sodique peut s'inscrire dans les limites exactes d'un cristal de hornblende tout en étant orientée sur le réseau d'un autre cristal environnant (planche 3, q, r): une telle relation démontre la succession proposée. D'ailleurs, la réaction libère du calcium qui s'exprime sous forme de calcite ou d'épidote. Ces deux espèces peuvent cribler la hornblende de petites plages auréolées de glaucophane, parfois manifestement voisines des fractures. Dans les cristaux mixtes où les deux amphiboles sont en proportions sensiblement égales, elles se concentrent préférentiellement dans la partie sodique, ou à la limite entre les deux parties; l'épidote est généralement en granules, tandis que la calcite exsude dans les fractures et surtout les clivages sous forme de minces films, de sections losangiques limitées par des plans (110), ou de taches allongées suivant la même direction Dans un échantillon, la transformation n'affecte que les hornblendes juxtaposées à de la calcite, et se limite même à la fraction de leur contour sur laquelle est réalisé le contact; dans ce cas, le carbonate paraît d'ailleurs provenir du plagioclase et jouer simplement le rôle de catalyseur.

Quelques phyllosilicates cristallisent aussi aux dépens de la hornblende verte, de telle sorte que les clivages (001) et (110) respectifs soient parallèles; il peut se former ainsi de petites quantités de mica blanc ou de biotite verte, en laison éventuelle

avec des fissures de la roche, et surtout de la chlorite dont les lames s'ordonnent en un treillis régulier emprisonnant parfois un peu de calcite. Une altération de ce genre en mica blanc et chlorite est également connue dans les amphibolites du groupe d'Ambin.

Remarquons enfin que l'albite et la chlorite oxydée emplissent le cas échéant les fractures tronçonnant les prismes de hornblende parallèlement à leurs faces (001).

d. Hornblende bleu-vert

Dans le groupe d'Ambin, c'est toujours l'amphibole bleu-vert qui fait la couronne ou la frange terminale des sections d'amphibole bleue. Dans le groupe de la Clarea, les deux amphiboles font tour à tour figure de relique du fait de leur situation au cœur des cristaux mixtes. Un seul échantillon témoigne indiscutablement de la postériorité du glaucophane; c'est une amphibolite à grain grossier, de structure diablastique, dans laquelle le glaucophane forme entre les cristaux de hornblende un liseré à partir duquel il pénètre plus profondément le long des clivages; on y trouve également des exemples du type de relation décrit plus haut, où l'amphibole sodique pseudomorphe adopte l'orientation d'un autre cristal que celui qu'elle remplace.

Le seul autre minéral avec lequel la hornblende bleu-vert aît des rapports significatifs est la chlorite dont quelques lamelles sont prises dans le plan des clivages.

e. Amphiboles sodiques

Leur déséquilibre est systématique, quoique peu apparent à la base du groupe de la Clarea. Il se traduit d'une façon assez générale, par une altération en chlorite ou actinote plus ou moins directement liées à de l'albite (planche 2, a); dans l'ensemble calcaréo-dolomitique, la réaction est un peu particulière et conduit notamment à la formation d'une quantité appréciable de mica blanc.

L'altération chloriteuse est commune à toutes les formations. Elle commence à la périphérie et progresse le long des clivages et des fractures; l'amphibole est ainsi remplacée par un fin tissu chloriteux noyé dans un fond d'albite granoblastique ou plus rarement monocristalline, mâclée, de temps en temps pigmentée de brun. Lorsque le quartz contenu dans ces fantômes est en grains plus petits que dans le fond de la roche et orientés de façons différentes, il est incontestablement un produit de la transformation, à fortiori s'il manque dans les individus restés indemnes. A ce stade, les formes sont encore parfaitement conservées, bien que l'albite déborde parfois légèrement. Elles s'estompent et le plagioclase disparaît à mesure que la phyllite cristallise plus largement (planche 1, f, g, h); dans les roches basiques où elle était abondante, l'amphibole fait place à un enchevêtrement confus, alors que là où elle était clairsemée, elle est encore longtemps indiquée par l'individualité des concentrations chloriteuses, leur forme allongée ou vaguement losangique, la persistance de quelques îlots de grains très fin. Le premier stade peut manquer,

en particulier dans les formations basiques les plus profondes du groupe de la Clarea où la substitution se fait d'ailleurs d'une manière très ordonnée (planche 2, b); ce caractère est assez exceptionnel pour être noté, de telles pseudomorphoses ne gardant habituellement qu'un reflet très discret de la structure précédente. La chlorite verte peut évoluer en chlorite brune. Elle se mêle fréquemment à de la biotite verte, en proportion généralement accessoire cependant; le lien entre les deux phyllosilicates est mal établi: dans certains cas, le mica dérive manifestement de la chlorite, mais il n'est pas certain qu'un tel intermédiaire soit indispensable; ses cristaux restent le plus souvent de petite taille et se disposent sans ordre bien apparent au sein de l'amphibole; ils s'orientent même parfois sur les phengites voisines (planche 3, g). Le mica blanc participe à cette épigénie de façon assez constante, mais peu évidente lorsqu'il est en petite quantité et que la transformation est déjà avancée. Dans les parties les plus profondes du niveau basique inférieur (groupe de la Clarea), il constitue certains piliers ou des pièces losangiques de la marquetterie chloriteuse. Son origine ne fait aucun doute, de même que dans les métabasaltes à glaucophane et lawsonite où quelques lames apparaissent dans les clivages ou en bordures des prismes d'amphibole sodique, indépendamment de la présence de chlorite. Dans l'ensemble calcaréo-dolomitique qui fait l'objet d'un développement à part, il se hausse même au rang de produit essentiel.

A de rares exceptions près, l'altération en actinote ne se rencontre que dans les roches basiques où elle est étroitement liée à la précédente. Le terme d'une évolution mixte de ce genre est une prasinite amphibolique, roche dans laquelle l'inosilicate est dans l'ensemble uniformément réparti dans un fond de chlorite et d'albite ocellaire. Sur fond chloriteux, l'actinote garde l'orientation des cristaux de glaucophane, mais non leur forme; sur fond d'albite, au contraire, elle est souvent pseudomorphe: les faciès de transition entre glaucophanites et prasinites montrent en effet que l'amphibole bleue se résout dans le plagioclase en un faisceau d'aiguilles peu serrées (planche 2, c) se formant d'abord à l'extrémité des cristaux. On peut interpréter comme le début de cette transformation un changement de couleur qui s'accompagne simplement d'une division plus fine, par des plans de clivage plus nombreux, et plus nets du fait de l'oxyde qui s'y dépose. Par accident, c'est la hornblende bleu-vert qui se développe ainsi aux dépens du glaucophane, mais les modifications structurales résultant de cet autre type de substitution, sont généralement moins importantes.

Dans l'ensemble calcaréo-dolomitique (planche 3, s à w), l'amphibole sodique s'entoure d'une gaine de chlorite ou de mica blanc; ce dernier a le même angle d'axes et une couleur aussi nette que celui qui s'accole aux deux faces (001) de certains cristaux de chlorite, et se distingue au contraire du mica incolore généralement dispersé dans la pâte carbonatée. L'espace ainsi délimité est occupé par les deux phyllites, disposées confusément ou ordonnées suivant les clivages (110), ainsi que par du quartz et de l'albite; les quatre minéraux s'y combinent en nombre et en proportions variés. La calcite peut s'y introduire, au point même que dans certains

secteurs elle paraît chasser tous les autres éléments; elle recristallise en outre sur une faible épaisseur autour des pseudomorphes.

A ces diverses altérations qui traduisent clairement une déstabilisation, s'ajoutent de simples phénomènes de remplacement. Dans l'ensemble calcaréo-dolomitique, c'est l'augite aegyrinique qui se substitue ainsi à l'amphibole bleue (planche 4, a, b, c); les formes sont quelquefois conservées, à défaut de l'orientation (un parallélisme des axes c est rare), mais il ne reste bien souvent pas d'autre trace des éléments anciens qu'un filigrane dû à la distribution du pigment d'hématite. Dans les métabasaltes d'Ulzio, ce sont les pyroxènes jadéitiques et l'épidote qui tendent à envahir et à remplacer le glaucophane. Un peu partout, les carbonates s'inscrivent dans le contour de prismes plus ou moins altérés.

D'autres minéraux, porphyroblastiques, incluent le glaucophane sans corrosion notable ni dérangement. C'est le cas de l'épidote dans les glaucophanites, plus rarement de l'albite dans les prasinites, du grenat, de l'ankérite, et même de l'apatite lorsqu'elle est en cristaux assez gros.

Certaines espèces, enfin, cristallisent en minces lames dans les clivages de l'amphibole. L'albite et la calcite qui emplissent aussi les fractures tardives donnent les meilleurs exemples de ce type de relation. Le plagioclase fait également dans les métabasaltes un liseré mince et régulier autour du glaucophane altéré ou non qu'il isole de la roche. Quant au carbonate, il ne saurait être confondu avec celui que libère l'amphibole calcique en se transformant en amphibole sodique, puisqu'on le rencontre de la sorte dans toutes les formations, même celles qui n'ont jamais tenu de hornblende. Le sphène, la pyrite et l'hématite se trouvent également dans les clivages, ou s'accomodent passivement des interstices entre les cristaux d'amphibole. Dans les faciès dérivés de croûtes ferrugineuses, la pigmentation hématitique des crossites (et magnésioriebeckites) révèle d'anciennes structures sédimentaires et notamment des organismes.

M. DEERITE

1. Caractères spécifiques

La découverte de deerite dans le massif d'Ambin a fait l'objet d'une communication orale au meeting de Cambridge sur la « minéralogie et la pétrologie des schistes à glaucophane et roches associées » (1968) et d'une publication récente (Agrell et Gay, 1970). Auparavant, ce minéral était inconnu dans les Alpes.

La détermination aux rayons X en a été confirmée par une analyse chimique à la sonde électronique (tableau 12): la composition est comparable à celle des échantillons originaux de Californie (Agrell, Bown et MacKie, 1965), malgré un total inexplicablement bas. Les cristaux aciculaires ou prismatiques, de section losangique, ont une longueur moyenne de 1 mm; ils sont très absorbants, presque noirs en lumière non analysée, et faiblement pléochroïques.

Tableau 12. — Composition chimique de la deerite

Echantillon 24 121, groupe d'Ambin (quartz, stilpnomélane, amphibole sodique, deerite, grenat, calcite, sphène, rutile, magnétite, hématite, pyrite). x = 957700, y = 317900.

In S. O. Agrell et M. Gay (1970). Rapport Fe⁺²/Fe⁺³ et teneur en H₂O supposés identiques à ceux de l'échantillon californien analysé par voie humide; F et Cl non dosés.

33,27
0,41
21,41
35,64
0,74
0,64
0,00
0,00
0,00
t.
4,25
96,36

2. Répartition et relations avec d'autres minéraux

La deerite se trouve dans un mince niveau quartziteux discontinu (épaisseur inférieure à 5 cm), concordant avec les lits prasinitiques auxquels il est associé, et d'une façon générale avec la stratification du groupe d'Ambin.

Elle y voisine avec le stilpnomélane (tableau 4), une crossite ou magnésioriebeckite, des minerais abondants, un peu de grenat et de calcite. Les deux minéraux allongés obéissent à une orientation linéaire; ils seraient donc antérieurs au phyllosilicate qui échappe à tout-contrôle structural, et peut d'ailleurs, cristalliser aux dépens de l'amphibole.

La decrite subit une épigénie partielle en hématite.

Des aiguilles d'hématite qui pourraient avoir une origine semblable sont connues au sommet du Jurassique du col de l'Arella (ancienne surface durcie).

N. CHLORITOÏDE

1. Caractéres spécifiques

Les cristaux ont une forme et un contour variables. Les plus petits sont en minces tablettes, faiblement colorées. Les plus gros sont plus épais et prennent souvent en lame mince l'aspect d'une gerbe ou d'un éventail modérément ouverts; ils sont aussi

plus abondants, mais cette règle souffre quelques exceptions. Tous sont maclés. Le tableau 13 indique, pour 3 chloritoïdes, certaines valeurs angulaires caractéristiques déterminées à la platine universelle en lumière monochromatique jaune (moyenne de 3 à 7 mesures); les trois échantillons choisis ont même pléochroïsme (Ng: incolore; Nm: bleu-vert pâle; Np: vert-bleu pâle) et sont également dispersifs (teintes délavées bronze, mauve, jaune); les deux premiers ont un faciès tabulaire (cristaux d'un diamètre moyen inférieur à 0,5 mm) tandis que le premier tend à former des rosettes (diamètre moyen voisin de 2 mm).

TABLEAU 13. — Valeurs de quelques angles caractéristiques dans les chloritoïdes

- 1. Echantillon 18 121 B: micaschiste, partie inférieure du groupe de la Clarea.
- 2. Echantillon 2 193: micaschiste albitique, partie supérieure du groupe de la Clarea.
- 3. Echantillon 3 491: lentille d'exsudation essentiellement quartzeuse. Analyse, tableau 14.

	1	2	3
Ng/⊥ (001)°	16	18	15
Nm/⊥ (001)°	86	86	85
Np/⊥ (001)°	75	75	75
2VNp°	87	84	81

Le fait qu'aucun des axes de l'indicatrice optique ne se trouve dans le plan (001) suggère une symétrie triclinique. Un radiogramme de poudre du troisième échantillon est à cet égard satisfaisant, puisqu'on y relève toutes les réflexions déterminantes: 3,24; 2,68; 2,29; 2,20; 2,08 Å (Halferdahl, 1961). Une analyse chimique du même spécimen est donnée dans le tableau 14; elle fait apparaître une faible teneur en eau, susceptible de rendre compte du total insuffisant, et conduisant à calculer les proportions atomiques sur une base anhydre de 12 oxygènes.

2. Répartition

Il est présent, quoique de façon sporadique, dans le fond détritique des groupes de la Clarea et d'Ambin, et dans les faciès basiques de ce dernier groupe. Dans cet ensemble, la taille des cristaux paraît augmenter vers le haut, peut-être en liaison avec la granulométrie des roches.

Tableau 14. — Composition chimique, indices de réfraction et biréfringence d'un chloritoïde

Echantillon 3 491: lentille d'exsudation essentiellement quartzeuse, groupe d'Ambin (quartz, phengite, chlorite, trémolite, chloritoïde, ankérite, hématite). $x = 956\,000$, $y = 324\,450$.

Analyse nouvelle A. Germanique, Lyon, 1967. 0,05% de Na₂O inclus dans le total; traces de K_2O et de P_2O_5 .

Autres caractères optiques, tableau 13, nº 3.

% pon d'ox	déraux ydes	Nombres d'atomes sur la base de 14 (O, OH)				
SiO ₂	24,35	1,973	1,97	Si		
Al_2O_3	41,43	3,000	3,00	Al		
TiO ₂	t. 3,86	0,957	1,00	Al Ti Fe + 3		
Fe ₂ O ₃	3,80					
FeO	10.26	0,192		Fe ⁺³		
MnO	19,26 0,20	1,305 0,014	1,96	Mn		
MgO	3,86	0,393	1,90	Mg		
CaO	0,59	0,051		Ca		
H ₂ O+ H ₂ O—	5,41 0,05	4,00		ОН		
Total	99,06					
Ng = 1,7 Nm = 1,7 Np = 1,7 Ng — Np	19 15					

En dehors de ces formations, deux gisements ont été découverts, le premier dans le « flysch » de la cuvette de Bellecombe, le second dans les schistes à Equisetum situés au nord-nord-ouest de la pointe du même nom. Le chloritoïde est également connu dans les Schistes lustrés des régions voisines (Chatterjee, 1966; Nicolas, 1966).

3. Relations avec d'autres minéraux

Il paraît y avoir une incompatibilité entre l'albite et le chloritoïde: on trouve en effet ce dernier, d'une part dans des roches pauvres en felsdpath ou même totalement dépourvues de ce minéral, d'autre part dans des faciès du groupe d'Ambin où l'albite

ocellaire est particulièrement abondante, mais peut-être dérivée de la destruction tardive d'un pyroxène jadéitique.

L'altération du chloritoïde est systématique mais inégale; elle est plus prononcée en présence d'albite. Au début, elle se localise à la bordure des cristaux, ainsi que dans les clivages et dans les fractures transversales; lorsqu'elle est achevée, on ne reconnaît plus la forme de l'élément initial. Ses seuls produits sont le mica blanc et la chlorite verte (planche 2, d, e). Le mica se distingue facilement de celui du fond de la roche par son habitus, et son grand angle d'axes qui l'apparentent à la muscovite transverse (page 16): ses tablettes, très épaisses et fortement xénoblastiques, s'interpénètrent étroitement; dans les deux échantillons pétrographiques du groupe d'Ambin où il a fait l'objet d'un examen à la platine nuiverselle, le mica pseudomorphe est caractérisé par des valeurs moyennes de 2 VNp égales à 40 et 41°, contre 35 et 34° respectivement pour la phengite du fond. La chlorite peut appartenir à n'importe lequel des cinq types définis page 27, mais elle a dans la plupart des cas une composition intermédiaire (type 3); elle est accessoirement oxydée en chlorite brune.

Le chloritoïde peut être emprisonné dans les porphyroblastes d'ankérite. Dans une prasinite du groupe d'Ambin, il ne persiste plus qu'à l'état d'inclusion dans le grenat; il y obéit à une orientation nette, également marquée par des files d'inclusions quartzeuses et titanées, mais différente d'un grenat à l'autre et sans relation évidente avec la foliation de la roche. Dans les micaschistes d'Ambin, du quartz cicatrise certains cristaux brisés ou simplement fissurés.

O. EPIDOTES

1. Types et caractères spécifiques

Toutes les épidotes rencontrées sont monocliniques (extinction oblique). La plupart se rattachent à la série épidote-clinozoïsite si l'on en juge par la coloration nulle ou jaune-vert; certaines ont une proportion notable de terres rares (allanite) comme en témoignent leur teinte brune et les halos pléochroïques qui entourent les cristaux inclus dans l'albite, le mica blanc, la chlorite; par contre, on ne relève jamais la moindre couleur rouge qui traduirait la présence d'une quantité appréciable de manganèse.

En se basant ainsi sur les propriétés optiques les plus évidentes, on peut distinguer trois groupes:

a. Epidotes incolores fortenient dispersives

Les principales caractéristiques sont une absence de coloration et des teintes de polarisation anormales, dues à une forte dispersion (bleu dominant, mais aussi jaune, et accessoirement gris-blanc nuancé de bronze ou de brun).

Au demeurant, il existe une grande varieté de formes: petits prismes, masses bourgeonnantes, masses vacuolaires inscrites dans un contour vaguement tétragonal, cristaux compacts sinon automorphes dont l'analyse diffractométrique prouve l'identité.

Dans le groupe de la Clarea, ces épidotes ont fréquemment une structure kélyphitoïde (planche 3, e, f): elles présentent de ce fait en lame mince, suivant l'orientation de la section considérée, un aspect ponctué ou fibreux.

b. Epidotes jaune-vert, modérément dispersives

La couleur et le pléochroïsme sont plus ou moins marqués, mais toujours distincts. Les couleurs de polarisation, du deuxième ordre, se mêlent encore parfois à des teintes anormales jaunes et bleues.

Les cristaux tendent à des formes prismatiques dont la réalisation est favorisée par un environnement phylliteux. Ils sont fréquemment zonés, mais sans règle apparente, sauf dans les glaucophanites du groupe de la Clarea où une telle hetérogénéité de composition est tout à fait remarquable en raison de sa constance et de sa netteté: dans le cas le plus général, le grain d'épidote comporte une mince zone intermédiaire de couleur et de biréfringence plus fortes, nettement délimitée, située à une distance du centre sensiblement égale aux 2/3 du rayon, et présentant quelques prolongements internes le long de clivages ou de fractures; l'absence de l'une ou de l'autre des trois zones concentriques ainsi définies, combinée à des variations d'épaisseur relative, suffit à rendre compte théoriquement de tous les types de cristaux observés. Une relation du même genre a été observée dans une prasinite de la série des Schistes lustrés: la variété la plus colorée est en position marginale ou en veinules coïncidant avec d'anciennes fractures de la roche.

c. Epidotes brunes (allanites)

Le pléochroïsme est très fort. La couleur d'absorption maximale est un brun nuancé de rouge, de vert ou de jaune; elle est rarement uniforme et varie le plus souvent de façon concentrique en s'atténuant vers l'extérieur. La teinte de polarisation la plus fréquene est un jaune orangé plus ou moins voilé de gris.

Les cristaux sont généralement automorphes, très allongés par rapport à ceux du type précédent.

d. Relations entre ces différents types

Il est impossible de placer une frontière entre les deux derniers types, sauf dans les rares exemples de cristaux mixtes où le noyau d'allanite est précisément délimité, et seul maclé parfois.

La confusion fréquente des couleurs et des formes permet de penser que les types 1 et 2 sont les éléments d'une série de clinozoïsites et d'épidotes. Cette hypothèse est pleinement confirmée par l'examen aux rayons X; les métabasaltes de la région

TABLEAU 15. — Variations de l'angle des axes optiques dans les minéraux de la série épidote-clinozoïsite

- 1. Echantillon 3 892: amphibolite, groupe de la Clarea (épidote provenant de l'altération du plagioclase).
- 2. Echantillon 1 292: épidotite à glaucophane.
- 3. Echantillon 28 121: gneiss, groupe de la Clarea (épidote provenant de l'altération du plagioclase).
- 4. Echantillon 1 092: prasinite, groupe de la Clarea.
- 5. Echantillon 5 663: micaschiste albitique, partie supérieure du groupe de la Clarea.
- 6. Echantillon 2 874: lentille d'exsudation liée aux faciès basiques du groupe de la Clarea. Analyse nº1, tableau 16.
- 7. Echantillon 38 121 E: amphibolite se transformant en glaucophanite, groupe de la Clarea.
- 8. Echantillon 17 121 A: amphibolite à épidote, groupe de la Clarea.
- 9. Echantillon 1 363: micaschiste albitique, groupe d'Ambin.
- 10. Echantillon 162: faciès à tendance prasinitique, groupe d'Ambin.
- 11. Echantillon 7 761: faciès dolomitique, ensemble calcaréo-dolomitique.
- 12. Echantillon 112: prasinite, série des Schistes lustrés.

	Туре	Forme	2VNg°
1		Prismatique; structure kélyphitoïde	105 ?
2	Epidotes incolores	Prismatique	85
3	fortement dispersives	Tabulaire ou réniforme; structure kélyphitoïde	89
4		Quelconque; structure vacuolaire	94
5		Quelconque; structure vacuolaire	95
6	Epidotes	+ Prismatique	101
7	d'un type intermédiaire	± Prismatique	106
8		+ Prismatique	100
9	Epidotes jaune-vert	+ Prismatique	104
10	modérément dispersives	± Prismatique	105
11	•	± Prismatique	106
12		± Prismatique	107

d'Ulzio sont à cet égard intéressants: les caractéristiques de leurs épidotes varient d'une façon importante et apparemment continue, comme les formes d'ailleurs. On sait que dans une telle série, l'angle des axes optiques, positif dans les termes les plus alumineux, prend une valeur neutre lorsque la proportion de molécule ferrifère est voisine de 15%, et devient négatif au-delà de cette limite (Deer, Howie et Zussman, 1965). La valeur de cet angle (moyenne de 5 à 10 mesures en lumière monochromatique jaune) a été déterminée dans une série de douze échantillons choisis de manière à recouvrir toute la gamme des formes, ainsi que des couleurs d'absorption et de polarisation. Les résultats, consignés dans le tableau 15, montrent que l'on a surtout des épidotes au sens strict des auteurs cités en référence (2 V positif, Fe⁺³/Fe⁺³ + Al > 15\%), et que les propriétés optiques simples ne sont

pas déterminantes car elles n'ont pas de relation précise avec la composition chimique; c'est pourquoi, dans ce texte, le terme d'épidote est employé dans un sens large pour désigner tous les minéraux de la série clinozoïsite-épidote au sens strict. La composition chimique et les indices de réfraction de deux termes moyens de la série étudiée sont indiqués dans le tableau 16.

Tableau 16. — Composition chimique, indices de réfraction et biréfringence de deux épidotes sensu stricto

- Echantillon 2 874: lentille d'exsudation liée aux faciès basiques du groupe de la Clarea (quartz, albite, chlorite, actinote, épidote, calcite, pyrite). x = 967 300, y = 329 750.
 Analyse nouvelle A. Germanique, Lyon, 1969. Inclus dans le total: 0,07% de Na₂O, 0,10% de K₂O et 0,03% de P₂O₅.
 Autres caractères optiques, tableau 15, nº 6.
- Echantillon 17 121 A: amphibolite, groupe de la Clarea (albite, phengite, chlorite, hornblende, glaucophane, épidote, calcite, sphène, rutile). x = 955 900, y = 317 700.
 Analyse nouvelle A. Germanique, Lyon, 1967. 0,28% de Na₂O inclus dans le total; traces de K₂O et de P₂O₅.
 Autres caractères optiques, tableau 15, nº 8.

% p	ondéraux d'ox	ydes		Nombres d'ato	mes sur la base	de 13 (O, OH)	(
	1	2				2	
SiO ₂ Al ₂ O ₃	38,13 25,16	38,04 23,74	2,992 0,008	3,00	2,998 0,002	3,00	Si Al ^{IV}
TiO ₂	0,21	0,42	2,318 0,012	2,91	2,210 0,025	2,84	Al ^{vi} Ti Fe ⁺³
Fe ₂ O ₃	9,76	10,20	0,576		0,606		
FeO MnO	0,28 0,22	0,10 0,07	0,018 0,015	2,09	0,006 0,004	2,07	Fe ⁺² Mn
MgO CaO	0,75 23,48	0,80 23,24	0,088 1,973		0,094 1,969		Mg Ca
H ₂ O+	2,03	2,33	1,063		1,229		ОН
H ₂ O—	0,02	0,05					
Total	100,24	99,27		+		7-1.5-	
months in the		3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				2	
Ng		1,759 ± 0,00			1,747 ±		
Nm Np		$1,740 \pm 0,000$ $1,724 \pm 0,000$			1,736 ± 1,724 ±		
Ng-Np		0.035 ± 0.006			0,023		

2. Répartition

Les minéraux du groupe de l'épidote sont très répandus puisqu'ils ne manquent totalement que dans les quartzites et les serpentinites. Mais ils sont très inégalement développés: en dehors des formations basiques où ils tiennent une place essentielle, on peut les considérer comme accessoires, particulièrement dans le groupe d'Etache.

Les épidotes du premier type sont surtout liées au groupe de la Clarea. Elles y sont d'abord représentées, dans les amphibolites, par des cristaux sensiblement automorphes, incorporés à la trame au même titre que la hornblende; les masses de structure vacuolaire que l'on rencontre surtout dans les glaucophanites et prasinites en sont peut-être les résidus corrodés. Elles figurent en outre dans les amphibolites, ainsi que dans les gneiss et micaschistes les plus profonds, sous la forme déjà indiquée de petits cristaux prismatiques ou bourgeonnants, inclus dans le plagioclase et caractérisés par une structure kélyphitoïde. Les grains automorphes placés eux-mêmes au contact ou à l'intérieur du feldspath, s'entourent d'une auréole de ce genre.

L'allanite se trouve presque uniquement dans les micaschistes de la partie supérieure du groupe de la Clarea et dans le groupe d'Ambin où elle est surtout localisée dans les faciès à larges ocelles d'albite; dans le premier gisement, elle paraît exclusive.

Les épidotes du second type (jaune-vert et modérément dispersives) sont inconnues dans les gneiss et micaschistes du groupe de la Clarea; elles restent exceptionnelles dans les amphibolites où la variété incolore est de loin la plus fréquente, mais se développent largement dans les glaucophanites et prasinites. Dans le groupe d'Ambin, elles voisinent éventuellement avec l'allanite ou s'associent à elle en cristaux mixtes. Dans toutes les autres formations, à l'exception des métabasaltes dont les particularités ont été mentionnées plus haut, elles dominent très largement. Les caractères morphologiques ne sont pas identiques dans les glaucophanites et les prasinites: dans ce dernier faciès pétrographique, l'épidote est généralement plus granuleuse, comme si elle avait subi une corrosion; mais elle peut y être tout aussi automorphe que dans le premier.

3. Relations avec d'autres minéraux

Les considérations morphologiques suggéraient déjà le caractère ancien de l'épidote incolore, automorphe, des amphibolites du groupe de la Clarea. De fait, on connaît l'exemple de tels cristaux fracturés et cicatrisés par un mica blanc en apparence identique à celui qui naît de la destruction de l'oligoclase. La variété kélyphitoïde serait plus récente, puisqu'elle est produite par l'altération du même plagioclase dans d'autres conditions; elle est en tout cas contemporaine de l'albite qui l'environne et emplit ses minuscules canaux.

L'épidote colorée peut se trouver en inclusions dans le grenat des glaucophanites du groupe d'Ambin, parfois même dans l'apatite. Ses clivages et fractures contiennent souvent des corps étrangers: albite, mica blanc (planche 4, d), chlorite (planche 2, f) et ses dérivés (chlorite brune et biotite verte), calcite, sphène. Les deux phyllites profitent de leur situation pour envahir plus largement l'épidote, mais cette dernière est particulièrement réfractaire, si bien que les exemples d'un tel remplacement sont rares, et qu'il reste toujours quelques grains de même orientation optique dans le fond pseudomorphe. L'allanite est sujette aux mêmes altérations.

D'autres observations témoignent de la postériorité de la chlorite: dans certains échantillons, le glaucophane ne subsiste plus que dans l'épidote qui l'a donc préservé de l'habituelle transformation; le cas d'une pseudomorphose chloriteuse en partie moulée par une plage d'épidote est également significatif, compte tenu de la force de cristallisation de ce dernier minéral relativement aux phyllosilicates. Une lame mince taillée dans un schiste lustré éclaire également les relations avec la calcite: elle recoupe une fine dentelle d'épidote tantôt prise à la manière d'un ciment entre les éléments de plages quartzeuses polycristallines, tantôt englobée par de larges plages de calcite: la silice a donc été remplacée par le carbonate postérieurement à la cristallisation de l'épidote, suivant un processus déjà invoqué à propos de l'augite aegyrinique. De son côté, la pyrite ne saurait être postérieure, là où ses cubes sont isolés par une couche d'épidote d'épaisseur régulière.

P. LAWSONITE

1. Caractères spécifiques

Dans les roches, les cristaux ont généralement moins de 1 mm de long, mais ils peuvent exceptionnellement atteindre 1 cm. Ils sont dans l'ensemble automorphes et, si l'on en juge par l'examen microscopique, ont le plus souvent une forme primitive; des faces supplémentaires peuvent cependant apparaître suivant la direction (101), également indiquée dans de nombreuses sections par la présence d'une macle polysynthétique (notation conforme à celle adoptée par Deer, Howie et Zussman). Le rapport des dimensions extrêmes ne descend pas au-dessous de 1/3. Le minéral est parfaitement incolore; son angle d'axes, 2 VNg, est de 81° (moyenne de 15 mesures, également réparties entre trois échantillons différents, et comprises entre 79 et 83°).

Dans les éboulis du petit massif volcanique d'Ulzio (Gay, 1968) a été découverte une masse de lawsonite presque pure de 100 à 150 cc, provenant d'une veine dont une éponte est visible dans l'échantillon. Elle est constituée par un enchevêtrement de faisceaux de prismes d'allongement très variable (valeur minimale du rapport entre les dimensions extrêmes: 1/10), d'éclat nacré, de couleur blanche très localement nuancée de rose (hématite très divisée) ou de vert (chlorite d'altération). Les constituants accessoires sont: quartz, albite, mica blanc, chlorite, calcite; le glaucophane

(tableau 11, analyse nº 1) est abondant mais concentré à part. En lame mince, les individus n'ont pas de contour géométrique régulier; ils sont incolores, très légèrement dispersifs entre nicols croisés (couleur bleue pour les sections cycliques), et présentent parfois la macle polysynthétique (101); les indices de réfraction, la biréfringence et la valeur de l'angle des axes sont donnés dans le tableau 17 avec l'analyse chimique d'un échantillon très pur (plus de 99 % de lawsonite) (2 VNg = moyenne de 10 mesures sur des cristaux différents; valeurs extrêmes: 76 et 86°).

On rapportera à cette espèce des pseudomorphoses assez fréquentes à certains niveaux, en se basant sur la forme parfaitement conservée, sur le mode d'altération et parfois sur la présence de nombreuses aiguilles de rutile dont la répartition reflète la structure interne de l'ancienne lawsonite (voir page 66).

TABLEAU 17. — Composition chimique et caractères optiques d'une lawsonite

Echantillon 13 124 C: lawsonite associée à du glaucophane (analyse n° 1, tableau 11) dans une courte veine, métabasaltes de la série des Schistes lustrés. $x=953\,350,\,y=313\,400.$ Analyse nouvelle A. Germanique, Lyon, 1968. 0.17% de P_2O_5 inclus dans le total.

% pondéraux d'oxydes			base de 10 (O,	
SiO_2 Al_2O_3	37,58 32,38	1,971 0,029	2,00	Si Al ^{īv}
		1,973		Alvi
TiO_2	0,18	0,007	2,01	Ti
Fe_2O_3	0,67	0,026		Fe + 3
FeO	0,09	0,004	-	Fe + 2
MnO	0,00			Mn
MgO	0,37	0,029	1,03	Mg
CaO	17,68	0,994	1,03	Ca
Na ₂ O	0,00	= 57	=	Na
K ₂ O	0,00			K
$H_2O +$	11,14	3,899		ОН
H ₂ O—	0,03			
Total	100,29			

 $Ng = 1,691 \pm 0,001$

 $Nm = 1,676 \pm 0,001$

 $Np = 1,662 \pm 0,001$

 $Ng - Np = 0.029 \pm 0.002$

2. Répartition

La lawsonite se rencontre d'abord dans certains faciès basiques de la série des Schistes lustrés. Elle est un constituant essentiel des métabasaltes et de la métadolérite affleurant aux environs d'Ulzio; sa présence à cet endroit est connue depuis 1897 (Franchi, in Bearth, 1962). On la rencontre encore ailleurs, de façon tout à fait accidentelle, dans quelques prasinites où la transformation est achevée. Les autres gisements sont tous en milieu calcaréo-pélitique (ou carbonaté) et semblent répartis de façon quelconque. Deux régions méritent cependant une mention particulière: celle de la pointe de Bellecombe, en France, et celle du petit village de Gad-Ulzio, en Italie. Dans la première, les traces de lawsonite sont relativement abondantes à certains niveaux de l'ensemble calcaréo-dolomitique comme elles le sont en certains points de Maurienne (pseudomorphoses décrites par F. Ellenberger, 1960). Dans la seconde, elles se localisent dans les Schistes lustrés, au contact de la serpentinite, c'est-à-dire dans un environnement comparable à celui du gisement signalé près de Sestrières par J. M. Caron et P. Saliot (1969); à la chapelle San Domenico (1 km à l'est-sud-est du hameau indiqué), les cristaux sont localement très bien conservés et peuvent atteindre 1 cm de longueur. De tels résidus sont exceptionnels dans des roches de cette nature; on n'en connaît qu'un autre exemple, au contact des micaschistes albitiques, sur l'arête du mont Vin-Vert; généralement, l'épigénie est totale et la détermination hasardeuse.

3. Relations avec d'autres minéraux

Dans les métabasites, la lawsonite est dans l'ensemble bien conservée, comme son compagnon le glaucophane qu'elle peut d'ailleurs inclure, mais elle n'est pas exempte de toute altération. Elle se transforme souvent en épidote, de façon très irrégulière, même à l'échelle de l'échantillon; la substitution s'accentue notamment vers le centre de certains éléments de brèche ou des coussins. Lorsqu'elle est achevée, on ne reconnaît plus que la forme générale des concentrations initiales. La variété la plus riche en fer paraît susceptible d'un remplacement direct, en veinules parfois. La lawsonite s'altère aussi en mica blanc, de façon tout à fait générale. Dans la plupart des cas, elle est simplement frangée de courtes paillettes, mais elle peut être plus profondément atteinte et même subir une épigénie complète. La chlorite joue un rôle comparable; elle s'introduit dans les clivages et de là s'étend plus ou moins largement; on connaît l'exemple d'individus totalement remplacés par un tissu chloriteux imprégné par de l'albite. Les cristaux de lawsonite sont également recoupés par la calcite et surtout l'albite (minéraux incorporés à la roche ou emplissant ses fractures), particulièrement lorsqu'ils sont tronçonnés par la cataclase; leurs fragments sont alors progressivement réduits et arrondis. Certaines plages de sphène, de rutile ou d'hématite se moulent étroitement sur les prismes de lawsonite; il s'en détache parfois de minces lames qui pénètrent plus ou moins profondément dans les clivages (planche 4, e, l).

Les rares pseudomorphoses rencontrées dans les prasinites sont de nature chloriteuse; toutefois, certaines concentrations d'épidote pourraient avoir la même origine.

Dans les faciès calcaréo-pélitiques, l'altération est très forte et met surtout en jeu des phyllosilicates: mica blanc et chlorite pseudomorphes, généralement associés et tour à tour dominants. Le mica (planche 2, g) est en tablettes épaisses, incolores comme celles de la muscovite transverse (page 16); la chlorite est toujours optiquement positive et tient donc au moins autant de magnésium que de fer. Dans le périmètre ainsi défini se développent d'autres minéraux: quartz, albite, calcite et accidentellement épidote. Le quartz pourrait être un produit de la réaction, là où il est sous forme de gouttelettes, mais ses grains ne sont bien souvent rien d'autre que des inclusions sujettes aux mêmes variations quantitatives et granulométriques que le quartz de la roche. Dans certains cas, l'albite est en plages isolées dont la localisation paraît fortuite; dans d'autres, il est au contraire manifeste qu'elle a trouvé à la place de la lawsonite des conditions particulièrement favorables à sa cristallisation: elle s'y concentre et constitue un fond ou plus rarement une simple couronne de structure diablastique. La calcite, de son côté, tient une place très variable; elle est sans doute en partie d'origine épigénique, bien qu'elle ne se distingue pas toujours du carbonate extérieur avec lequel elle est même fréquemment en continuité optique.

Q. PUMPELLYITE

La pumpellyite n'a été reconnue dans aucune des formations étudiées; elle avait été signalée dans le groupe de la Clarea (Lorenzoni, 1963), et dans certains faciès métavolcaniques d'Ulzio (Gay, 1968) où il s'agit en réalité de jadéite.

R. GRENATS

1. Types et caractères spécifiques

La taille est très variable (quelques 1/100 à 10 mm). La forme en dépend dans une large mesure: en effet, les plus petits cristaux sont très compacts, sinon automorphes, tandis que les plus gros sont poecilitiques et peuvent même consister en de simples concentrations de grains plus ou moins indépendants les uns des autres. La couleur est rarement visible en lame mince.

L'analyse chimique d'un grenat antéalpin du groupe de la Clarea (ancien gneiss à deux micas) a permis de déterminer les proportions moléculaires suivantes: pyrope 14,2 almandin 57, spessartine 4,2, grandite 24,6 (tableau 18). Indiquons à titre de

comparaison que le grenat également ancien, recueilli par P. Vialon (1966) dans le massif plus interne de Dora Maira, tient 71% d'almandin; il provient d'une roche de même nature, dont la transformation a dû cependant s'effectuer à une profondeur un peu plus grande.

TABLEAU 18. — Composition chimique et indice de réfraction d'un grenat

Echantillon 3 192: ancien gneiss à deux micas et grenat, altéré par le métamorphisme alpin, partie inférieure du groupe de la Clarea (quartz, muscovite phengitique et grenat relictuels, albite, séricite, glaucophane, épidote, calcite, sphène, rutile). x = 962 250, y = 327 700.

Analyse nouvelle A. Germanique, Lyon, 1965.

			1	I
SiO ₂	37,06	2,940	3,00	Si
Al_2O_3	18,90	0,060	3,00	Aliv
		1,706		Alvi
TiO ₂	0,52	0,031	1,99	Ti
Fe ₂ O ₃	4,26	0,254		Fe+3
FeO	25,00	1,658		Fe+2
MnO	1,84	0,123		Mn
MgO	3,49	0,412	2,91	Mg
CaO	8,27	0,703	2,91	Ca
Na ₂ O	0,08	0,011		Na
K ₂ O	t.			K
P_2O_5	0,76	0,051	140	P
H ₂ O+	0,00			OH
H ₂ O—	0,05			
Total	100,23			100 120

Un grenat alpin a également été extrait d'un micaschiste albitique du groupe d'Ambin; ses constituants essentiels seraient, par ordre d'importance, la spessartine et l'almandin, si l'on en juge par la relation établie par G. C. K. Sastri (1958) entre la composition d'une part, l'indice de réfraction et le paramètre d'autre part (en l'occurence 1,802 et 11,613 Å).

Il faut également signaler la présence de grenat (déterminé aux rayons X) dans un échantillon de serpentinite provenant du ravin au nord-est de la Sauze. Il peut s'agir d'une variété chromifère, compte tenu de la couleur verte et du gisement.

2. Répartition

Si l'on fait abstraction de la serpentinite, le grenat se localise dans les groupes de la Clarea et d'Ambin, où on le rencontre aussi bien dans les faciès d'origine détritique que dans les intercalations basiques. C'est à la partie inférieure de la première formation qu'il est le plus fréquent, le plus abondant et le mieux cristallisé: il est présent dans 75% des échantillons recueillis et peut atteindre 1 cm de diamètre. Ailleurs, il n'est que sporadique.

3. Relations avec d'autres minéraux

Dans le groupe de la Clarea, le grenat est vraisemblablement contemporain de la biotite: dans sa croissance, il paraît repousser les lits phylliteux en englobant toutefois quelques petites lames de mica noir, mais il est également cicatrisé par ce dernier. Par contre, il est manifestement antérieur au glaucophane: certaines de ses fractures contiennent en effet de petits cristaux d'amphibole, parfois mêlés à de l'épidote; plus rarement, leur réseau est totalement envahi par un monocristal qui déborde éventuellement les limites de son hôte (planche 4, f).

D'autres relations ont un caractère plus général et concernent indifféremment les groupes de la Clarea et d'Ambin. Par endroits, les éléments quartzeux sont dissociés, isolés et corrodés par le grenat, mais le quartz occupe aussi les espaces ménagés par la cristallisation de ce minéral (formes vacuolaires, irrégulières ou polycristallines) et ceux déterminés par l'écartement des phyllites; sans être exclusif, il y domine très largement et n'est pas plus déformé que dans le reste de la roche. De telles concentrations traduisent peut-être la recristallisation locale du fond après extraction des éléments nécessaires à la formation des porphyroblastes (Rast, 1965). Des amas pyriteux se constituent parfois dans ces zones (groupe de la Clarea). Les fractures peuvent être emplies d'albite (groupe d'Ambin) ou de calcite (groupe de la Clarea et d'Ambin). Les irrégularités structurales jouent dans l'altération un rôle important, dans la mesure où elles conduisent à une fragmentation du grenat: les débris épargnés par la corrosion se répartissent alors de façon quelconque ou se disposent suivant une couronne plus ou moins continue. La chlorite est le principal produit d'altération, sauf à la base du groupe de la Clarea où elle est dans l'ensemble peu développée; elle respecte les formes (planche 4, g), mais dans les roches basiques ayant achevé leur évolution prasinitique, les pseudomorphoses ne sont plus qu'exceptionnellement reconnaissables; ultérieurement, la chlorite est susceptible de s'oxyder ou de se transformer en biotite verte. Dans certaines roches, la dernière phyllite n'existe qu'à l'intérieur des grenats; il faut donc admettre qu'elle a recristallisé sans intermédiaire, ou au moins qu'elle s'est formée avant la fin de la chloritisation, dans la mesure où la chlorite dérivée du grenat ne semble pas avoir une composition particulière. Un mica blanc peut apparaître de cette façon dans le groupe d'Ambin,

et surtout à la base du groupe de la Clarea où il est associé à du glaucophane (planche 2, h); les exemples d'une telle épigénie sont quand même rares. Le caractère relativement tardif de la chlorite et du mica blanc est encore démontré par le cas d'une roche basique du groupe d'Ambin, dont les seuls résidus de chloritoïde qui aient échappé à l'habituelle transformation (page 51) sont précisément inclus dans le grenat.

Dans le massif ultrabasique de la Sauze, le grenat est contemporain de la serpentinisation. Il s'est substitué à des pyroxènes dont il conserve parfois remarquablement la structure: par exemple, il peut se présenter sous la forme d'une série de minces lames parallèles et régulièrement espacées représentant manifestement la trace d'un ancien clivage (110) dans une section de la zone [001]. Mais ces pyroxènes étaient déjà réduits à l'état de résidus comme le suggère la disposition du grenat en un ou plusieurs îlots au sein de fantômes dont les limites sont encore bien définies. Grenat et serpentine sont d'ailleurs associés dans un réseau de fractures anciennes.

S. CARBONATES

1. Types et caractères spécifiques

La distinction entre la calcite et les autres carbonates s'appuie sur les techniques suivantes:

- coloration au nitrate de cuivre de lames minces ou d'échantillons macroscopiques (faciès bréchiques de l'ensemble calcaréo-dolomitique);
- examen diffractométrique de la roche totale (faciès carbonatés et calcaréopélitiques) ou d'un extrait (autres faciès pétrographiques).

Par contre, la distinction établie entre la dolomite et l'ankérite est arbitraire en l'absence de méthodes permettant de reconnaître rapidement les termes de cette série: elle est cependant justifiée par l'existence de deux carbonates de ce type, nettement caractérisés par leurs conditions de gisement et leur apparence microscopique.

a. Calcite

Elle est toujours en plages xénomorphes, associées suivant une structure granoblastique ou diablastique. Les macles n'apparaissent que dans les individus d'une certaine taille, mais sont alors d'une façon générale largement développées. Une légère oxydation peut se manifester en lame mince.

b. Dolomite

Dans l'ensemble calcaréo-dolomitique, une partie de la dolomite initiale a été épargnée par le métamorphisme; le grain en est très fin, et les détails structuraux du sédiment sont parfaitement conservés, notamment les organismes. La recristallisation conduit à des roches de structure plus grossière où les anciens tests ne sont plus indiqués que par un filigrane d'hématite, ou par la forme circulaire ou annulaire de certains éléments cristallins. Dans les autres formations, la dolomite est le produit de réactions plus complexes.

D'une façon générale, les cristaux sont parfaitement automorphes lorsqu'ils sont isolés au sein d'une autre substance; en s'accolant pour constituer le fond de la roche, ils perdent généralement leur forme, mais gardent leur individualité du fait d'un contour polygonal. Même les plus grandes plages restent pauvres en macles, contrairement à ce qui se passe dans la calcite. Un pigment brun est assez fréquent, uniformément réparti ou au contraire localisé, soit au cœur des cristaux, soit à leurs interfaces; la calcite en est totalement dépourvue lorsqu'elle coexiste avec l'autre carbonate.

c. Ankérite

Ses cristaux restent isolés ou constituent de très petits groupes. Ils tendent à être fortement autoblastiques, mais se chargent d'inclusions dès qu'ils atteignent une certaine taille dépendant de la granulométrie de la roche; aussi les formes rhomboédriques régulières sont-elles l'apanage des plus petits individus. L'ankérite est encore plus pauvre en macles que la dolomite. Elle est enfin le siège d'une altération très variable mais à peu près générale, se traduisant à l'œil nu par l'apparition d'une patine brune, puis par la dissolution des cristaux, remplacés par un oxyde pulvérulent

TABLEAU 19. — Composition chimique d'une ankérite

Echantillon 4 464: lentille d'exsudation, groupe d'Ambin (quartz, ankérite, chlorite). x = 955550, y = 332850.

Analyse nouvelle A. Germanique, Lyon, 1969. Inclus dans le total: 0.12% de SiO_2 et 0.06% de Na_2O ; traces de K_2O , P_2O_5 et TiO_2 ; Fe_2O_3 recalculé sous forme de FeO.

% pondéraux d'oxydes			mbres d'atome la base de 6 C	
Fe ₂ O ₃ FeO MnO MgO CaO	0,79 11,87 0,74 10,63 32,60	0,352 0,021 0,530 1,169	2,07	Fe ⁺³ Fe ⁺² Mn Mg Ca
CO ₂ H ₂ O—	42,87 0,09 99,77	1,959	1,96	С

et plus ou moins profondément cariés. Le microscope montre que l'altération se localise au début en bordure des plages et dans les clivages; lorsqu'elle est totale, il ne subsiste qu'un fantôme limoniteux, parfois environné de minuscules rhomboèdres, probablement de calcite.

L'analyse présentée dans le tableau 19 est celle d'un carbonate brunissant provenant d'une lentille concordante.

d. Carbonates des fractures tardives

La calcite et l'ankérite contribuent l'une et l'autre au remplissage des fractures de distension.

2. Répartition

Mises à part les diverses intercalations de la série des schistes lustrés et du Trias salifère, les formations superposées aux quartzites briançonnais sont le produit d'une sédimentation essentiellement carbonatée: la dolomite y est localisée dans les faciès les plus purs de l'ensemble calcaréo-dolomitique; les faciès à tendance pélitique sont à base de calcite, et tiennent parfois un peu d'ankérite.

Dans les autres formations, à quelques exceptions près, le carbonate n'est plus qu'un élément parmi les autres; sa généralité est cependant assez remarquable. La calcite est présente partout, et tient une place particulièrement importante dans les roches basiques; au sommet du groupe de la Clarea et dans les leptynites alcalines, elle cède le pas à l'ankérite, qui est, d'une façon générale, aussi largement répandue, mais bien moins abondante. La dolomite est accidentelle; on ne la rencontre que dans quelques galets du groupe d'Ambin, dans certains lits associés aux glaucophanites et prasinites de la même unité, et en liaison avec les serpentinites.

3. Relations avec d'autres minéraux

La formation de l'albite a précédé celle des carbonates comme en témoignent, par leur nature même et leur généralité, les relations précédemment définies (page 14). Pourtant, les périodes de cristallisation relatives à chacun de ces deux éléments ont dû se chevaucher légèrement, si l'on en juge par les observations suivantes, dont il faut d'ailleurs souligner le caractère accidentel. L'albite occupe parfois des espaces rhomboédriques: elle forme ainsi dans la calcite des inclusions de section parallélogrammatique, ou bien se substitue à des cristaux d'ankérite parfaitement automorphes dont elle englobe des résidus limoniteux, et ceci dans des roches où elle est par ailleurs systématiquement xénoblastique. Le plagioclase peut également former une couche mince et régulière entre le carbonate et les minéraux qui l'entourent: c'est le cas de plages de calcite isolées dans un fond chloriteux, ou de rhomboèdres d'ankérite pris dans un tissu de quartz granoblastique. On connaît aussi l'exemple d'un lit phylliteux remplacé par l'albite sans dommage pour l'ankérite qui s'était auparavant introduite

dans le clivage schisteux. Enfin, le feldspath peut désagréger la dolomie, recristallisée ou non, en pénétrant entre ses éléments dont le contour s'arrondit alors sous l'effet de la corrosion.

Dans les cargneules, la calcite remplace la dolomite sous toutes ses formes: dolomie à grain fin ou gros rhomboèdres témoignant qu'une recristallisation s'est déjà produite. L'exemple de ces derniers est particulièrement démonstratif car il permet de suivre la transformation: leur volume diminue peu à peu et leur contour s'altère de plus en plus à mesure que les golfes de corrosion s'approfondissent et s'élargissent (planche 4, h); au terme de la substitution, la silhouette et les clivages des anciens cristaux de dolomite sont encore indiqués par le dépôt de la petite quantité de fer que devait contenir le premier carbonate.

Dernière remarque: dans certaines fractures, le quartz s'est mis en place le dernier puisqu'il occupe une position centrale entre deux veines de calcite.

T. SULFATES

Le gypse et l'anhydrite n'ont fait l'objet d'aucune étude particulière.

U. SPHENE ET RUTILE

1. Caractères spécifiques

Le sphène dérive en partie de minerais; dans ce cas, il paraît sale; souvent même, sa transparence n'est révélée que par les objectifs les plus forts ou par un éclairage frontal favorisant les réflexions internes. Certaines plages ont gardé la forme quelconque du minerai préexistant, mais le plus souvent les cristaux sont fuselés, sinon automorphes.

Le rutile se présente sous deux faciès différents. Il est, pour l'essentiel, finement cristallisé et parfaitement autoblastique; suivant l'allongement, l'habitus est alors aciculaire à prismatique. Les macles en genou sont rares; par contre, les groupements du type sagénite sont assez courants, Mais il peut être aussi en masses plus importantes dont la forme quelconque est là encore celle du minerai remplacé; leur surface est parfois hérissée d'aiguilles.

2. Répartition

Le sphène est un élément à peu près constant des faciès basiques de toutes natures et de tous niveaux. Dans les autres formations, il est peu fréquent et presque toujours en proportion négligeable, sauf peut-être dans le groupe de la Clarea où il tire essentiellement son origine de la biotite.

Le rutile est toujours en quantité insignifiante, mais il a une extension beaucoup plus large puisqu'il ne fait totalement défaut que dans les quartzites triasiques et les serpentinites; dans l'ensemble calcaréo-dolomitique, il est cependant relativement rare en dehors de faciès pélitiques. Les masses xénomorphes ont une importance particulière dans l'ensemble du groupe de la Clarea, alors qu'elles jouent ailleurs un rôle plus effacé.

3. Relations avec d'autres minéraux

Le sphène et le rutile aciculaire sont en inclusion dans presque tous les minéraux de métamorphisme, exception faite de ceux qui constituent les gneiss et les amphibolites de la Clarea. Une telle situation n'entraîne, le plus souvent, aucune modification. Mais il arrive que les traînées de sphène perdent de leur importance en traversant certaines substances; les grains ont une taille plus petite ou sont réduits en poussière. Inversement, la teneur en rutile peut augmenter, particulièrement dans les minéraux qui se sont mis en place au détriment des lits de mica; dans certains cas, l'oxyde n'apparaît que dans une circonstance de ce genre. Il peut enfin y avoir transformation minéralogique (voir page 14 l'exemple de chapelets de sphène se transformant en rutile lorsqu'ils quittent le fond chloriteux pour pénétrer dans les porphyroblastes d'albite).

La distribution et l'orientation de ces inclusions reflètent la structure de la roche ou celle du minéral dans lequel elles se trouvent. La répartition des aiguilles de rutile définit, à l'échelle de l'échantillon ou du minéral, un litage parallèle à la stratification ou à une schistosité; les cristaux de sphène se disposent en traînées ou en chapelets lorsqu'ils se concentrent. Les individus peuvent avoir une orientation quelconque, mais généralement leur grand axe est sensiblement parallèle au plan du litage ou de la schistosité, et oblique sur les directions cristallographiques de l'hôte; ils suivent le cas échéant la linéation. Le rutile est fréquemment sous forme de sagénite. La répartition se conforme également parfois à la structure cristalline, comme c'est le cas dans la lawsonite des calcschistes, au contact du massif serpentineux de la Sauze: les minuscules aiguilles de rutile s'ordonnent suivant des zones de concentrations différentes, concentriques, dont les limites sont rigoureusement parallèles aux faces des prismes; elles n'en suivent pas moins la direction d'une surface de la roche (planche 4, i). Eventuellement, c'est l'orientation qui se calque sur les directions cristallographiques de l'hôte. Certes, le parallélisme habituel entre l'axe c des cristaux de rutile et le plan (001) des micas est surtout dû au fait que les deux éléments obéissent au même contrôle structural; en effet, les discordances de détail sont nombreuses, et tout à fait évidentes lorsque les phyllites sont réglées avec moins de rigueur. Il n'en reste pas moins que dans certains cas, l'orientation des aiguilles de rutile est proportionnelle à celle des tablettes de mica et disparaît complètement dans les zones où celles-ci sont enchevêtrées indépendamment de toute déformation, ou dans les amas sériciteux de recristallisation. Le rutile peut également se disposer suivant les deux directions du clivage du glaucophane.

L'ensemble de ces observations peut s'expliquer de la façon suivante. Dans certaines circonstances, le titane entre dans le réseau des silicates (sans parler des minerais), notamment des micas. Mais il a également la possibilité de cristalliser sous forme de sphène ou de rutile. La formation de la première espèce serait soumise à des conditions beaucoup plus strictes; le sphène est en effet localisé dans les faciès basiques, et paraît caractériser une période initiale de l'évolution métamorphique, tandis que le rutile aciculaire est presque ubiquiste et continue à se développer par la suite chaque fois qu'un minéral tenant du titane est remplacé par un autre qui n'accepte pas cet élément dans son réseau. Quoi qu'il en soit, la distribution est le reflet plus ou moins fidèle de celle qui existait déjà à l'origine: beaucoup plus régulière dans les produits volcano-sédimentaires et surtout volcaniques que dans les sédiments dont les lits les plus argileux étaient aussi les plus riches en titane. L'orientation est essentiellement déterminée par la structure dominant dans la roche au moment de la cristallisation. La structure des substances congénères exerce un contrôle beaucoup plus discret. Par la suite, le sphène peut être détruit mais généralement les deux minéraux se laissent englober sans réagir.

La forme ou la dispositon des cristaux de sphène trahit également la présence d'anciens constituants dont il ne resterait sans cela guère de traces. Dans les faciès métavolcaniques de la région d'Ulzio, l'emplacement de prismes de glaucophane ou de lawsonite totalement altérés est encore indiqué par des chapelets de petits grains ou par l'empreinte laissée dans une plage plus importante (planche 4, j à m); les produits d'altération (albite, mica blanc, chlorite, actinote, épidote) sont par conséquent postérieurs au sphène; la lawsonite doit l'être aussi puisqu'elle remplace des plagioclases magmatiques dont le contour est marqué de la même façon. Dans une prasinite du groupe d'Ambin, l'albite s'est substituée à un mica blanc sans dommage pour les lames de sphène qui emplissaient certains clivages; dans un schiste lustré, c'est la calcite qui a pris la place de grains de quartz entre lesquels le sphène s'était auparavant insinué: elle imprègne une dentelle dont on ne pourrait expliquer autrement la formation. On connaît un seul exemple de ce type de relation concernant le rutile: des traînées de minerai silhouettent les fantômes de lawsonite (albite + épidote); les aiguilles qui les hérissent sont exclusivement dirigées vers l'extérieur. Ajoutons que le sphène fracturé est parfois cicatrisé par du mica blanc ou de la biotite verte.

Les rapports entre le sphène et le rutile sont assez ambigus. Le rutile en masse, provenant de minerai, peut s'entourer d'une couronne de sphène granuleux, bourgeonnant, parfois insinué dans les clivages; il finit ainsi par se réduire à un ou plusieurs noyaux arrondis; on rencontre même de tels résidus dans les cristaux de sphène automorphes. Cette tendance est si générale dans le groupe de la Clarea qu'on peut la considérer comme une caractéristique de la formation, bien qu'elle se manifeste accessoirement à d'autres niveaux; elle est d'ailleurs beaucoup moins évidente au sommet où l'oxyde prend un faciès plus aciculaire. Au demeurant, le rutile présente

de temps en temps des formes fuselées ou losangiques qui suggèrent une épigénie; ses aiguilles hérissent d'ailleurs certains amas de sphène et remplacent dans l'albite les grains de ce dernier minéral (page 66).

L'interprétation des diverses observations repose sur le postulat suivant: le titane s'est exprimé directement sous forme de sphène ou de rutile. En réalité, les deux minéraux tirent partiellement leur origine de minerais, dans une mesure qu'il est souvent impossible de préciser; on est donc conduit à restreindre la portée des arguments présentés.

V. MINERAIS

1. Types et caractères spécifiques

L'examen en lumière transmise permet de distinguer trois types principaux:

- tablettes dont les sections ont idéalement une forme d'hexagone ou de parallélogramme étroit, suivant leur orientation par rapport au plan de la lame mince, mais dont le contour est en fait le plus souvent irrégulier, profondément découpé; sous une épaisseur très faible, de l'ordre du micron, ce minerai est translucide et présente une couleur rouge;
 - cristaux octaédriques éventuellement corrodés;
- masses généralement cubiques, sauf dans le groupe de la Clarea où elles sont au contraire rigoureusement xénoblastiques; sous un éclairage frontal, elles sont caractérisées par leur éclat jaune et leur bordure d'altération à réflexions internes brunes.

On identifie sans difficulté ces produits avec l'hématite, la magnétite et la pyrite respectivement, minerais que l'on reconnaît d'ailleurs à l'œil nu dans de nombreux échantillons. L'examen en lumière réfléchie de six préparations-témoins confirme cette détermination; il révèle en outre la présence d'autres espèces dont on ne peut définir les caractères, compte tenu de leur variété et du petit nombre de sections polies: ilménite, chalcopyrite, pyrrhotine.

Il faut enfin noter, dans certaines formations détritiques qui ont alors une couleur sombre, la présence d'une poussière opaque de nature minérale, trop fine et peu abondante pour être déterminée par les moyens habituels (hématite possible).

2. Répartition

L'hématite est le minerai le plus important en raison de son ubiquité et de la régularité avec laquelle elle est répartie dans chaque faciès. La magnétite et la pyrite sont elles aussi largement répandues, mais de façon beaucoup plus irrégulière en dehors de gisements particuliers comme les anciennes surfaces durcies, où l'oxyde est toujours abondant, et l'horizon carboné du groupe d'Ambin, riche en sulfure.

L'ilménite a été reconnue dans deux roches basiques d'origine probablement éruptive: une amphibolite du groupe de la Clarea et une glaucophanite de la série des Schistes lustrés; dans la première, elle est en amas de grains xénomorphes; dans la seconde, elle constitue avec de l'hématite, des masses informes dont la structure témoigne d'une exsolution.

La pyrrhotine se trouve pour sa part dans les deux échantillons du groupe de la Clarea ayant fait l'objet d'un examen au microscope métallographique: l'amphibolite déjà mentionnée et un micaschiste. Dans les deux cas, elle est accompagnée d'une petite quantité de chalcopyrite dont on relève également la présence dans la glaucophanite.

3. Relations avec d'autres minéraux

a. Hématite

La distribution et l'orientation des cristaux d'hématite dans certains paradérivés peut encore indiquer quelques particularités du sédiment. Dans un premier cas, l'élément métamorphique qui inclut l'oxyde ainsi disposé paraît avoir le même déterminisme que celui-ci; il en est donc vraisemblablement contemporain. Ainsi, les tablettes d'hématite contribuent à définir le litage et la schistosité cristallophyllienne parallèle à la stratification, comme la phengite qui les englobe fréquemment (planche 4, n); cette dernière obéit par conséquent au même contrôle, mais avec moins de rigueur, sans doute en raison de la taille plus grande de ses cristaux; c'est ce qui expliquerait les discordances locales. Les relations avec le quartz sont du même genre; celles avec le chloritoïde le sont peut-être aussi. Dans un second cas, le fond ne présente aucune structure particulière à la différence de l'hématite qui s'y trouve, et dont la cristallisation est de ce fait antérieure, ou à la rigueur contemporaine; il en est ainsi des porphyroblastes d'albite (4, n), des plages de calcite, et peut-être du tissu chloriteux où la direction du plan de stratification est matérialisée comme elle l'est à l'intérieur du mica blanc; c'est également la présence d'une poussière d'hématite qui permet de reconnaître dans les quartzites triasiques, malgré la recristallisation, la forme arrondie des anciens grains détritiques (page 3; planche 4, o), et de distinguer la silhouette de micro-organismes dans les amphiboles sodiques de certains niveaux carbonatés (voir à ce propos M. Gay, 1970, et F. Ellenberger, 1958). Parfois, ce sont les détails d'un état métamorphique précédent qui sont indiqués de cette façon: par exemple, dans les lames minces recoupant la surface durcie du Jurassique de l'Arella, un défaut de pigmentation délimite, au sein de l'augite aegyrinique, la surface des prismes d'amphibole bleue remplacée (page 47).

Certaines plages d'hématite gardent l'empreinte de minéraux épigénisés; leur cristallisation a donc précédé celle des éléments pseudomorphes: albite, chlorite, actinote, calcite prenant la place du glaucophane (planche 4, q, r); albite encore, née de l'altération de l'aegyrine (planche 4, p) épidote, se substituant à la lawsonite.

Dans les galets mous d'Ambin, des filonnets quartzeux interrompent le fond phylliteux riche en minerais.

L'hématite se transforme en rutile, bien que le microscope métallographique n'aît pas révélé la présence d'une exsolution d'ilménite. Une telle évolution est systématique dans le groupe de la Clarea: au début, la substance devient vaguement translucide en certains endroits, particulièrement en bordure, comme on peut s'en rendre compte à l'aide d'un microscope ordinaire équipé d'un objectif très grossissant; un éclairage frontal fait alors apparaître des réflexions internes ponctuelles, jaunâtres; puis la transformation s'étend progressivement à toute la masse qui peut bourgeonner, se hérisser d'excroissances prismatiques ou aciculaires; des résidus opaques subsistent parfois. Ultérieurement, se développe une couronne de sphène (page 67). Dans les formations superposées au groupe de la Clarea, le remplacement de l'hématite par l'oxyde de titane présente un caractère sporadique; il se fait généralement selon le processus qui vient d'être décrit; toutefois, il peut prendre dans le groupe d'Ambin une forme particulière (planche 4, s): la structure du minerai est révélée par un squelette de rutile (aiguilles disposées suivant des motifs grossièrement rectangulaires ou hexagonaux paraissant correspondre à des orientations différentes par rapport au plan de la lame mince). Le sphène peut encore apparaître secondairement, mais il est le plus souvent un produit d'altération directe, au même titre que le rutile.

b. Magnétite et pyrite

Les indices qui les concernent sont peu nombreux et du même genre. Certains octaèdres de magnétite sont isolés de leur environnement par un fin placage chloriteux, d'autres par une mince couche de calcite. Quelques cubes de pyrite sont de la même façon enrobés d'albite ou d'épidote.

Le sulfure peut en outre être fissuré et recoupé par la calcite. Il subit une oxydation qui n'a peut-être pas toujours une origine météorique: bordure régulière de limonite ou d'hématite, dont l'épaisseur n'est pas nécessairement proportionnelle à la fraîcheur de l'échantillon.

W. MINÉRAUX ACCESSOIRES

1. Types et caractères spécifiques

a. Tourmaline

La forme est régulièrement prismatique. Le pléochroïsme d'ensemble est le suivant: No, vert-bleu et parfois même franchement bleu, vert-olive, vert-brun, ou rose (teintes classées par ordre de fréquence décroissante); Ne, rose plus ou moins foncé, avec diverses nuances de mauve, bleu, vert, jaune. La couleur n'est

pas toujours uniforme; elle peut varier de trois façons différentes: quelconque, progressive le long de l'axe c entre deux pôles chromatiques, ou concentrique. Dans le dernier cas, le cristal présente deux ou plusieurs zones de compositions différentes; sa bordure tend à être plus riche en fer si l'on en juge par un pléochroïsme généralement plus intense, ainsi que par un relief et une biréfringence plus élevés dont on ne peut d'ailleurs que rarement déterminer les valeurs relatives.

b. Zircon

Il est en prismes bipyramidés, de taille très variable, plus ou moins émoussés. Il paraît toujours sale et présente parfois une légère coloration jaune ou verte.

c. Apatite

Dans l'ensemble, ses cristaux sont de petite taille (quelques 1/100 mm), mais ils peuvent atteindre accidentellement 1 mm de longueur. La forme la plus générale est celle de prismes assez courts dont les angles sont souvent arrondis. Certains échantillons présentent une pigmentation uniforme ou uniquement centrale de minuscules granules ou tablettes d'un oxyde brun; ces dernières sont disposées parallèlement, vraisemblablement suivant le clivage.

2. Répartition

a. Tourmaline

Elle est tout à fait exceptionnelle dans les termes basiques des groupes de la Clarea et d'Ambin, et paraît manquer totalement dans les leptynites alcalines ainsi que dans les gabbros et les serpentinites. Dans toutes les autres formations, on la rencontre de façon sporadique mais relativement fréquente, notamment dans le groupe d'Ambin et les faciès à tendance pélitique de l'ensemble calcaréo-dolomitique.

b. Zircon

Banal dans les fonds pélitiques et arénacés, il est évidemment beaucoup plus rare dans les matériaux carbonatés. Les roches basiques sont très pauvres ou totalement dépourvues de ce minéral; par contre, les leptynites alcalines en contiennent une quantité assez remarquable.

c. Apatite

Elle est très largement répandue, plus spécialement abondante à la base du groupe de la Clarea où les teneurs sont même parfois exceptionnelles, très clairsemée dans les Schistes lustrés et encore plus dans l'ensemble calcaréo-dolomitique.

3. Relations avec d'autres minéraux

a. Tourmaline

L'albite poeciloblastique et la calcite incluent fréquemment les cristaux de tourmaline, sans modifier une disposition acquise antérieurement sous le contrôle de diverses surfaces-S; elles cicatrisent également les prismes tronqués, comme le fait de son côté la chlorite. Pour sa part, l'ankérite paraît exercer une action corrosive.

b. Zircon

C'est apparemment un élément relictuel, au moins en dehors du groupe de la Clarea.

c. Apatite

Les fractures transversales, et plus rarement les clivages, sont envahis par l'albite, la phengite, la chlorite et ses produits d'altération (chlorite brune et biotite verte); à cette occasion se développe parfois une légère corrosion. Dans un échantilon, le plagioclase forme en outre un mince liseré autour du phosphate qu'il isole ainsi du quartz environnant.

Il convient de remarquer qu'il est impossible de déterminer la part de l'apatite détritique ou magmatique: une telle origine est probable lorsque les sections arrondies ont une anisotropie notable, tandis que d'autres, allongées, ont une extinction permanente en lumière analysée; la concentration relevée dans quelques veinules de quartz du Trias siliceux est au contraire l'exemple d'une origine métamorphique certaine.

X. RÉSUMÉ ET CONCLUSION

Le tableau 20 résume les observations qui précèdent, en présentant une liste récapitulative des espèces rencontrées, et un schéma de leur répartition dans l'espace et le temps. Du point de vue chronologique, si l'on excepte les reliques sédimentaires ou magmatiques (dont on ne trouve aucune trace dans le groupe de la Clarea), deux ensembles apparaissent distinctement:

- 1. Le premier est constitué d'éléments métamorphiques rigoureusement localisés dans le groupe de la Clarea. Cette formation est la plus ancienne que l'on connaisse dans le massif d'Ambin; elle est recouverte en discordance par des sédiments détritiques de caractère molassique, d'âge probablement stéphano-permien (Gay, 1970); les paragénèses suivantes, qui la caractérisent, sont donc probablement hercyniennes:
- formations arénacées: quartz, oligoclase, muscovite phengitique, biotite ± albite, grenat almandin ¹;

¹ Le signe ± signifie avec ou sans.

- formations basiques: plagioclase, hornblende, épidote ± biotite, grenat almandin;
- l'assemblage de quartz, diopside, hornblende et calcite est également significatif, quoique tout à fait accidentel (le carbonate y est pour une part d'origine alpine, mais pour l'essentiel contemporain des autres constituants).

Le plagioclase le plus répandu dans les faciès méta-arénacés (gneiss) a une composition d'oligoclase (An 18 en moyenne); il peut coexister avec une albite (An 3). De telles associations ont été décrites par S. Tsuji (1966) et par M. L. Crawford (1966); elles pourraient résulter de l'immiscibilité existant dans la série des plagioclases pour des températures correspondant au domaine des schistes verts et à une partie du domaine des amphibolites. Dans les faciès métabasiques (amphibolites), l'altération interdit toute détermination précise, mais le plagioclase devait être basique, compte tenu de la quantité d'épidote qui a cristallisé à ses dépens lors du métamorphisme alpin. Le seul mica blanc analysé est formé d'environ 88 % de muscovite et 12 % d'une céladonite dont les sites octaédriques seraient surtout occupés par du magnésium et du fer trivalent dans les proportions de 2/1; il est du type 2M₁. La biotite étudiée tient pour sa part 0,29 atome de titane pour 24 (O, OH). La hornblende a une couleur verte, ou exceptionnellement bleu-vert; sa teneur en alumine ne doit pas descendre au-dessous de 11 % compte tenu des propriétés optiques et des quatre analyses disponibles. Le grenat, provenant d'un gneiss, est défini par les proportions moléculaires suivantes: 57% d'almandin, 24,6% d'andradite et de grossulaire, 14,2% de pyrope, 4,2% de spessartine. Enfin, dans l'épidote analysée, le rapport Fe⁺³/Fe⁺³ + Al est voisin de 22%.

Ces particularités indiquent un métamorphisme dans les conditions du faciès amphibolites, et plus précisément de sa partie supérieure.

2. Contrairement aux précédents, les minéraux du second ensemble sont dispersés dans toute la série, et se rencontrent notamment dans un niveau rapporté à l'Eocène. Ils témoignent donc d'une recristallisation générale d'âge alpin, tout à fait progressive comme le montrent le tableau 20 et l'analyse des déformations microscopiques (Gay, 1972); cette dernière permet en effet de préciser la chronologie, et en particulier d'établir l'ordre de cristallisation des minéraux précoces qui paraîtraient sans cela contemporains. L'analyse structurale révèle en outre que le métamorphisme s'est produit pendant une période bien déterminée, extrêmement courte, de l'histoire tectonique. Il est donc permis de penser qu'il n'y a pas eu d'équilibre intermédiaire, mais une évolution continue vers un équilibre final défini par les associations ci-dessous (dans celles-ci, il est fait abstraction de la biotite verte, du stilpnomélane, et de la chlorite oxydée, considérés comme les produits d'une altération tardive par la phase fluide):

rutile):

- formations arénacées ou pélitiques (fond des groupes de la Clarea et d'Ambin): quartz, albite, phengite, chlorite (rutile ± épidote, calcite, ankérite ¹); dans les sédiments plus évolués du groupe d'Etache et dans les quartzites, les assemblages respectifs sont: quartz, phengite (± ankérite, rutile) et quartz, phengite ± microcline; formations calcaréo-pélitiques (ensemble calcaréo-dolomitique, en partie, et schistes lustrés): quartz, phengite, chlorite, calcite (± albite, épidote, ankérite,
- formations carbonatées (ensemble calcaréo-dolomitique, en partie); calcite ± dolomite (quartz, phengite ± albite, chlorite);
- formations éruptives acides (leptynites alcalines): quartz, albite, phengite \pm microcline, biotite (\pm chlorite, ankérite, épidote); le microcline et la chlorite sont incompatibles; en dessous d'une certaine valeur du rapport K/Al (correspondant à une certaine teneur en céladonite du mica blanc), le microcline et la biotite ne sont plus stables et la chlorite apparaît; il en est ainsi parfois dans l'horizon leptynique, et toujours dans les faciès micaschisteux de la série des Schistes lustrés, caractérisés par la présence de quartz, albite, phengite \pm chlorite (\pm épidote, calcite);
- formations éruptives basiques (intercalées dans les groupes de la Clarea et d'Ambin, et dans la série des Schistes lustrés): albite, chlorite, épidote, sphène ± actinote, calcite (quartz, phengite ± ankérite); l'actinote et l'ankérite sont incompatibles; la hornblende bleu-vert accompagne accessoirement l'actinote dans les groupes de la Clarea et d'Ambin;
- formations éruptives ultrabasiques: serpentine ± chlorite; ou: calcite, dolomite, trémolite ± talc remplaçant localement l'amphibole.

TABLEAU 20. — Répartition des minéraux dans l'espace et le temps

A gauche:	répartition dans l'espace.
	Relique ou fantôme d'élément magmatique ou sédimentaire.
	Elément majeur d'un assemblage métamorphique actuel (présent dans 50 % au moins se étudiés, sous une teneur supérieure à environ 5 %).
	Elément majeur d'un assemblage métamorphique ancien.
Minerais non r	Elément accessoire mais symptomatique des divers assemblages métamorphiques. représentés dans cette partie du tableau en raison d'une définition insuffisante. Largeur ensiblement proportionnelle à l'épaisseur des formations correspondantes.
A droite: compte des inc	répartition dans le temps, établie d'après les observations microscopiques, sans tenir lices structuraux. Echelle horizontale arbitraire.

¹ Les éléments mis entre parenthèses sont accessoires. Dans le groupe de la Clarea, le quartz et le mica blanc hercyniens persistent à l'état métastable.

	alpin	Stade	
	orphism o		
	Méta- morphisme Métam	hercynien	
	Résidus M anté	métemorphi quee	
			Murrolina Pragiociase Pradiotise Candita Pradiotise Pradiotise Calcita Dolomite Calcita Dolomite Magnétite, chromite Calcita Dolomite Magnétite, chromite Calcita Magnétite, chromite Calcita Magnétite Magnétite Magnétite Magnétite Magnétite Mathile Carant Magnétite Mathile Carant Marcolina Albite Magnétite
Groupe de le	cés (xure)teix)	F.esrchas microsoft Factès besique Factès Roschasch Roschasch Roschasch Roschasch Roschasch	
Quartzites Gr. Groups d'Ambin	sen tessor tes tessor t	F.acide Lighty F.acide F.acide F.acide Pélitiq	
Engemble calcdol.	en ler en ler seupäi		
Série des Schistes lustrés		Faciès calcaré pélitiq Fancac Fancac	

Ainsi l'équilibre final s'est établi dans les conditions de stabilité des minéraux suivants: quartz, albite, phengite, chlorite, actinote, épidote, calcite, ankérite, sphène, rutile. Ces conditions sont celles du faciès schistes verts qui n'est cependant pas uniformément réalisé dans l'espace considéré, en ce sens que toutes les roches n'ont pas subi une transformation complète.

III. L'ÉVOLUTION MÉTAMORPHIQUE ALPINE ET SES FACTEURS

A. Introduction

Dans la mesure où les conditions de stabilité sont connues par des calculs thermodynamiques ou par des expériences, la cristallisation des minéraux, et leur altération éventuelle, sont les indices d'un certain climat de métamorphisme. Dans le cas du métamorphisme alpin, les indices sont assez nombreux pour qu'on puisse espérer reconstituer ce climat; à cet effet, on considèrera successivement les grandes familles de minéraux.

B. ALBITE

Si elle fait défaut dans les formations calcaréo-pélitiques de la série des Schistes lustrés, on la trouve dans les divers faciès de l'ensemble calcaréo-dolomitique, et notamment dans les calcaires et dolomies massifs du Trias, où les cristaux idio-blastiques peuvent atteindre 1 cm de longueur. Des gisements de ce genre sont fréquents en Maurienne. J. Yajima. J. C. Touray et J. T. Iiyama (1967) signalent, à la suite de A. Lacroix, la présence de halite dans les inclusions fluides primaires de ces albites; l'étude thermométrique les conduit à envisager, pour certaines des inclusions, une température de formation supérieure ou égale à 300° C. Dans un tel milieu, le sodium est clairement d'origine étrangère, vraisemblablement lié à la présence d'évaporites à ce niveau de la série, et plus précisément à la transformation précoce du gypse primaire en anhydrite libérant de grandes quantités d'eau (page 89). La cristallisation du plagioclase en question ne peut être datée en l'absence de tout indice chronologique, mais elle pourrait s'être produite au début du métamorphisme, et la température indiquée serait alors un repère précieux.

Dans toutes les autres formations, l'albite est le fruit d'une recristallisation tardive dont on s'accorde aujourd'hui à reconnaître le caractère topochimique: tous les matériaux analysés ont en effet la composition de roches sédimentaires ou éruptives banales (Gay, 1970). Le plagioclase, dont la teneur en anorthite dépasse rarement 6%, coexiste le plus souvent avec l'épidote. Une telle association a, dans les conditions du métamorphisme régional, un domaine de stabilité bien défini comme le montrent les études de terrain (par exemple, celles de D. de Waard, 1959). D'après les estimations de H. Ramberg (1952) ou de T. F. W. Barth (1962), elle ne peut