Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 24 (1971)

Heft: 1

Artikel: Le sondage de Chessy (Haute-Savoie) : contribution nouvelle à la

géologie du Quaternaire du Bas-Chablais

Autor: Dray, M.

DOI: https://doi.org/10.5169/seals-739693

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

LE SONDAGE DE CHESSY (Haute-Savoie) CONTRIBUTION NOUVELLE A LA GÉOLOGIE DU QUATERNAIRE DU BAS-CHABLAIS

PAR

M. DRAY

INTRODUCTION

L'étude actuelle du Quaternaire du Bas-Chablais se trouve enrichie par la réalisation de nombreux sondages dont certains, carottés et profonds, permettent des analyses très fines.

B. Blavoux (1) a étudié la géologie profonde de la colline d'Evian grâce à 4 sondages dont le plus important (Sionnex 212 m de profondeur) n'a cependant pas atteint le substratum. Sur le versant thononais, nous avons pu réaliser, avec l'aide de la municipalité de Thonon, un sondage carotté profond (171 m) qui a traversé la totalité des dépôts quaternaires (2).

Les critères purement géologiques ainsi que les études calcimétriques et granulométriques effectuées sur les échantillons de ce sondage ont permis de distinguer les différentes unités du Quaternaire régional.

SITUATION ET COUPE DU SONDAGE

Le sondage de Chessy est situé aux confins des communes de Thonon et des Allinges, au lieu-dit Chessy (feuille Thonon nº 1 au 1/20 000 coordonnées Lambert X = 917.3; Y = 158.1; Z = 484 m). Son implantation a été définie à la suite d'une campagne géoélectrique réalisée par le Bureau d'études géologiques et géophysiques de Bonne-sur-Menoge (Hte-Savoie). La surface prospectée a été de 20 km² et 400 sondages électriques ont été exécutés par la méthode Wenner, selon 16 profils orientés.

Cette campagne géophysique a mis en évidence une bande d'environ 1 km de largeur partant d'Armoy et dirigée vers le N-NW. Cette zone, bien délimitée, fait penser à un ancien chenal d'écoulement comblé par une formation grossière pouvant constituer un réservoir d'eau (3).

Le sondage a été implanté à la terminaison aval de ce chenal hypothétique et dans son axe.

La coupe du sondage montre dans le Quaternaire 5 unités lithologiques bien distinctes (fig. 1):

- 1. de 0 à 33 m des terrains «fluvioglaciaires» S-L,
- 2. de 33 à 68 m une moraine bleue à blocaux avec une intercalation de sables de 52 à 55 m,
- 3. de 68 à 107 m des terrains « fluvioglaciaires »,
- 4. de 107 à 162 m une moraine grise à rares blocaux,
- 5. de 162 à 164 m un poudingue peu consolidé.

Le fond du sondage (164 à 171 m) est constitué par des schistes argileux de type flysch, correspondant à une formation antéquaternaire.

DESCRIPTION DES DIFFÉRENTES UNITÉS

Dans la première unité, on rencontre de haut en bas:

- de la surface à 1,90 m un sol argileux avec une argile caillouteuse marron,
- de 1,90 à 10,25 m des sables devenant plus noirs, auxquels succède un niveau de graviers et sables,
- de 10,25 à 15,80 m des sables graviers et quelques blocs, ensuite des sables fins à moyens avec des graviers et de gros galets oxydés à la base,
- de 15,80 à 23,00 m les sables deviennent plus fins puis l'on voit apparaître l'argile.

On note la succession suivante:

- sables fins gris avec quelques graviers,
- sables fins gris,
- les mêmes légèrement argileux, puis très argileux.
- de 23 à 32 m on rencontre un horizon de sables fins à moyens gris, l'ensemble étant assez homogène,
- de 32 à 33,80 m on retrouve ce niveau mais argileux avec des silts gris argileux.

La deuxième unité est représentée par une moraine à blocaux, c'est-à-dire par un mélange compact d'argile bleue avec des blocaux. Cette argile est associée à des sables de taille variable et à des graviers.

— de 52 à 54,80 m un horizon sableux très homogène interrompt cette unité morainique qui se continue jusqu'à 67,80 m avec les mêmes caractéristiques.

La troisième unité plus complexe montre une sédimentation très hétérogène. Le carottage n'a pas été tout à fait continu dans cette zone à cause des essais de pompage qui ont exigé des passées à l'eau claire. Il nous a été difficile d'établir du moins par endroit, une stratigraphie très précise. Cependant nous avons distingué:

- de 67,80 à 88,80 m un ensemble de sables graviers et galets avec des éléments plus fins à la base
- de 88,80 à 96,00 m, une alternance de passées sableuses (quelques millimètres à quelques centimètres) et argileuses très pures, l'ensemble présentant l'allure de varves.
- de 96,00 à 106,80 m la sédimentation varvée disparaît et nous trouvons successivement:
 - une argile sableuse à blocaux
 - des sables fins marneux
 - de nouveau une argile sableuse à blocaux
 - puis des sables fins limoneux avec quelques graviers
 - enfin une argile sableuse à blocaux.

La quatrième unité correspond à une argile grise très compacte « type mastic » contenant des petits graviers et quelques rares blocs. Elle se distingue nettement de l'unité argileuse précédente surtout par sa sédimentation beaucoup plus fine.

La cinquième unité correspond à un niveau peu épais de sédiments détritiques à matériel préalpin exclusivement. Il s'agit d'un poudingue peu consolidé.

Sous cette cinquième unité, on trouve le substratum antéquaternaire qui est constitué par des sédiments, de type flysch, très plissotés et injectés de calcite.

On distingue:

- de 164,40 à 165,35 m des schistes peliteux sombres avec des passées plus claires (plus gréseuses). Des injections de calcites recoupent l'ensemble. On peut considérer qu'on se trouve en présence de flysch.
- de 165,35 à 166,65 m une intercalation gréseuse gris clair veinée de calcite.
- de 166,65 à 169,60 m de nouveau des schistes mais moins peliteux que les précédents, les passées plus claires correspondent encore aux niveaux plus gréseux. Le pendage de 60° est symétrique au précédent. Les injections de calcite recoupent la schistosité. A la cote 169,00 on note une passée plus gréseuse qui contient des petits cristaux de pyrite.
- de 169,60 à 170,80 m des schistes plissotés et injectés de calcite mêlés à des blocs de grès. La stratification et la schistosité sont indéchiffrables.
- de 170,80 à 171 m un bloc de grès fins à moyens gris.

Les lames minces taillées dans les grès montrent:

- à 165,85 m un granoclassement normal,
- à 166,62 m un granoclassement contraire; la série serait renversée,
- à 169,20 m un granoclassement normal.

Les déterminations paléontologiques effectuées sur des lames minces réalisées dans les grès et sur des lavages de schistes ne nous autorisent pas à donner un âge précis à ce bed-rock.

Les lavages des schistes ont fourni la microfaune suivante 1:

- 165,25 m Globotruncana aegyptiaca Nakkady Hedbergelles minuscules
- 165,85 m Hedbergelles minuscules
- 166,10 m Globotruncana concavata Brotzen
 - » elevata Brotzen
 - » bulloïdes Vogler
 - » lapparenti Brotzen
 - » cf. arca Cushman ou fornicata Plummer (forme mal conservée)

Globigerinelloïde praerichillensis Pessagno

Rugoglobigerina sp.

Heterohelix sp.

Hedbergelles minuscules

— 166,80 m Heterohelix sp.

Hedbergelles minuscules

Globotruncana fornicata Piummer

Rugoglobigerina sp.

- 167,70 m Hedbergelles minuscules
- 169,45 m nombreuses petites Hedbergelles nombreux Heterohelix Rugoglobigerina sp.

Seul le Crétacé supérieur (Maestrichtien) est daté sûrement. Quelques formes mal conservées pourraient correspondre à des Globorotalidés tertiaires mais il est impossible de l'affirmer.

La position géographique du sondage conduit à penser qu'il s'agit de terrains appartenant soit à la nappe Ultrahelvétique soit à la nappe Parautochtone molassique.

¹ Détermination de M^{me} M. CARON que je remercie vivement.

Outre la position du sondage entre le flysch de la colline des Allinges et le flysch de la bordure de la Dranse, les quelques déterminations paléontologiques semblent suggérer que ces sédiments appartiennent plutôt à la nappe Ultrahelvétique.

Dans ces conditions le sondage de Chessy recouperait la limite septentrionale du front de cette nappe; un repli frontal pourrait, par ailleurs, expliquer le renversement observé ainsi que la nature et l'état de conservation des échantillons.

LE SONDAGE DE CHESSY DANS LE CONTEXTE GÉOLOGIQUE RÉGIONAL

Il subsiste une indétermination concernant le « substratum »; il en est de même des dépôts quaternaires rencontrés qu'il est difficile de corréler avec d'éventuels équivalents stratigraphiques. Les analyses palynologiques en cours pourront peut-être apporter une solution. L'absence de sédiments organiques (fragments de bois ou tourbe) qui auraient permis une datation au C 14, conduit à se fier aux seules analogies de faciès, avec toutes les réserves que cela comporte. Dans ce cas, on peut concevoir que:

- la première unité correspond aux dépôts postglaciaires ou fluvioglaciaires consécutifs au retrait du glacier (ce sont les « terrasses de Thonon »),
- la deuxième unité est l'équivalent d'une moraine argileuse déposée lors de la dernière avancée glaciaire. La passée sableuse 52 à 55 m est soit un dépôt consécutif à un épisode de retrait, soit une ancienne poche du glacier remplie de sédiments sableux, ayant actuellement la valeur d'une lentille circonscrite dans un ensemble argileux,
- la troisième unité est soit un interglaciaire important séparant deux glaciations, soit un interstadiaire au sein d'une même glaciation. De toutes façons, elle correspond à un stade de retrait important. Cette troisième unité ne montre cependant ni flore ni faune macroscopique, ce qui semble en contradiction avec une origine uniquement fluvioglaciaire. Ajoutons que l'existence de varves et de dépôts sableux avec blocs n'est pas incompatible avec une origine de type ségrégation intraglaciaire.

Les analogies de faciès avec des formations locales bien connues d'une part et les épaisseurs importantes d'autre part nous amènent à attribuer à cette troisième unité une origine interglaciaire ou interstadiaire. Les analyses de laboratoire permettent d'en préciser l'origine;

- la quatrième unité représente une moraine argileuse différente de la moraine précédente par ses caractères lithologiques et granulométriques,
- la cinquième unité, peu épaisse, composée de sédiments conglomératiques peu consolidés, présente la particularité d'être constituée exclusivement de matériel préalpin. Ce caractère la rapproche du conglomérat des Dranses.

Les analogies de faciès nous conduisent en définitive à proposer avec prudence le schéma suivant intégrant le sondage de Chessy dans le contexte géologique quaternaire régional.

Unité	Phénomène géologique	Correspondance Stratigraphique (BURRI) (-IV-)	Sédiment
1	Alluvionnement post-glaciaire et fluvioglaciaire	Würm II Tardiwürm	graviers-galets sables
2	Glaciation rhodanienne	WÜRM II Moraine supérieure	Argile bleue à blocaux type Evian avec une intercalation lenti- culaire ? sableuse.
3	Alluvionnement interglaciaire ou (interstadiaire « fluvioglaciaire »)	WÜRM I-II Interstadiaire	graviers-galets-sables sédiments varvés
4	Glaciation rhodanienne	WÜRM I Moraine inférieure	argile grise avec peu de blocaux « type mastic »
5	Alluvionnement préalpin	WÜRM I Conglomérat des Dranses ?	Conglomérat peu consolidé
-	Soubassement préalpin charrié Nappe Ultrahelvétique	Ultrahelvétique ?	Flysch

Si l'on considère que l'unité 1 représente le Postwürm ou le tardiwürm des auteurs français et suisses, les 2 glaciations rhodaniennes seraient deux stades würmiens, et l'unité 5 un dépôt analogue au poudingue des Dranses.

LES CALCIMÉTRIES ET GRANULOMÉTRIES

Sur les carottes du sondage, des calcimétries ainsi que des granulométries ont été effectuées afin de comparer les échantillons entre eux mais aussi afin de faire ressortir les relations existant entre l'origine du sédiment (rhodanienne, glaciaire, locale, fluvioglaciaire) sa teneur en calcaire et sa granulométrie.

Pour permettre de comparer les résultats avec ceux de B. Blavoux relatifs aux sondages d'Evian, les mêmes méthodes d'analyses ont été utilisées. Ainsi, la granu-

lométrie a été effectuée sur un échantillon décalcifié et les indices d'homogénéité du sédiment calculés sur un échantillon tronqué (2 mm à 40μ). De même, les pourcentages calculés de galets ne sont pas significatifs dans l'absolu car l'échantillon prélevé était trop petit (quelques centaines de grammes); les valeurs données à titre indicatif permettent cependant une comparaison entre les différents échantillons.

Calcimétrie (fig. 1 — tab. 1 et 2)

Unité et nombre Calcaire total Calcaire de la fraction Calcaire de la fraction d'échantillons grossière (·) Valeurs Moyenne Moyenne Valeurs Moyenne Valeurs limites limites limites 35.9 50.6 52.7 39.7 1 35.8 34.4 (14)58.0 59.0 45.9 2 37.5 42.1 40.1 44.0 36.1 40.6 (7) 48.0 49.5 46.7 3 25.8 40.1 24.2 46.2 24.0 31.7 (25)63.5 37.8 66.1 4 31.2 33.3 35.0 45.6 30.8 32.8 (7) 35.2 62.0 33.7 5 49.0 31.1 (1) 40.5

TABLEAU I. — Données calcimétriques du sondage de Chessy

La calcimétrie a été effectuée en deux temps:

- sur la fraction grossière comprise entre 2 mm et 40μ (par attaque à HCI à froid dilué au demi),
- sur la fraction fine, inférieure à 40 μ (au calcimètre Bernard).

L'échantillon « total » (entre 2 mm et 0) a été fractionné en 4 parties (insoluble grossier — calcaire grossier — calcaire fin — insoluble fin).

Les résultats de ces analyses montrent que la calcimétrie (calcaire total ou calcaire d'une des fractions) est différente dans les 5 unités recoupées par sondage. Il faut remarquer que:

TABLEAU 2

Unité	Nº de	% de c rappo chaque		%	de calca à l'échant	ire rappor	té I	Calcaire	Moyennes (X)
Géo- logique	l'échantillon	fraction gros- sière (CG)	fraction fine (CF)	Inso- luble grossier (ig)	calcaire grossier (gc)	calcaire fin (fc)	Inso- luble fin (if)	total en %	et Observations
	CH 1 CH 2 CH 3	2.8 1.8 3.6	0.4 0.8 0.4	33.8 36.7 52.9	1.0 0.7 2.0	0.3 0.5 0.2	64.9 62.1 44.9	1.3 1.2 2.2	
and the second s	CH 4 CH 5 CH 6 CH 7 CH 8	35.8 51.6 55.8 55.7 54.6	39.4 45.9 37.7 37.7 39.4	61.2 46.5 43.4 24.7 43.7	34.0 49.6 54.7 31.1 52.6	1.9 1.8 0.7 16.6 1.5	2.9 2.1 1.2 27.6 2.2	35.9 51.4 55.4 47.7 54.1	35.8 < CG < 59.0 34.4 < CF < 45.9 24.7 < ig < 61.2 30.6 < gc < 56.1
1	CH 9 CH 10 CH 11 CH 12 CH 13 CH 14	55.3 54.3 58.6 59.0 56.0 51.4	40.2 37.7 45.5 45.9 34.4 41.0	43.2 41.1 39.7 37.5 37.7 29.4	53.5 50.1 56.1 54.0 47.9 31.1	1.3 2.9 1.9 3.9 4.9 16.2	2.0 4.9 2.3 4.6 9.5 23.3	54.8 53.0 58.0 57.9 52.8 47.3	0.7< fc < 16.6 1.2< if < 27.6 $\overline{CG} = 52.7$ $\overline{CF} = 39.7$ $\overline{ig} = 39.8$ $\overline{gc} = 44.6$
	CH 15 CH 16 CH 17	54.0 45.8 49.8	36.9 36.9 37.7	35.4 36.3 37.9	41.6 30.6 37.5	8.5 12.2 9.3	14.5 20.9 15.3	50.1 42.8 46.8	$\frac{\overline{fc}}{\overline{fc}} = 6.0$ $\overline{if} = 9.6$
2	CH 18 (1) CH 18 (2) CH 18 (3) CH 19 (1) CH 19 (2) CH 20 (1) CH 20 (2)	40.1 41.1 43.3 39.4 58.8 49.5 45.9	36.1 38.5 37.7 50.0 50.0 46.7 43.9	21.3 22.7 27.2 59.9 40.5 23.0 30.0	14.3 15.9 20.8 38.9 57.8 22.6 25.4	23.2 23.6 19.6 0.6 0.8 25.4 19.6	41.2 37.8 32.4 0.6 0.9 29.0 25.0	37.5 39.5 40.4 39.5 58.6 48.0 45.0	$40.1 < CG < 49.5$ $36.1 < CF < 46.7$ $\overline{ig} = 24.8 \overline{CG} = 44.0$ $\overline{gc} = 19.8 \overline{CF} = 40.6$ $\overline{fc} = 22.3$ $\overline{if} = 33.1$ $25.0 < if < 41.2$ $21.3 < ig < 30.0$ $14.3 < gc < 25.4$ $19.6 < fc < 25.4$
	CH 21 (1) CH 21 (2) CH 22 CH 23 CH 24 CH 25	54.9 66.1 61.8 58.0 62.2 58.5	36.9 28.7 34.6 33.6 31.1 24.4	35.4 31.5 34.6 35.2 33.6 36.9	43.0 61.5 55.9 48.6 55.4 52.0	0.8 2.0 3.7 5.4 3.4 2.6	13.6 5.0 5.8 10.8 7.6 8.5	51.0 63.5 59.6 54.0 58.8 54.6	24.2 <cg<66.1 24.0<cf<37.8< td=""></cf<37.8<></cg<66.1
	CH 26 CH 27 CH 28 CH 29 CH 30 CH 31	58.6 51.7 55.5 33.4 57.5 55.1	28.6 36.1 24.0 31.1 32.8 36.1	14.1 22.1 13.6 30.2 27.4 26.4	20.0 23.6 24.0 21.6 37.0 32.4	18.9 19.6 13.6 10.9 11.7 14.9	47.0 34.7 43.2 24.3 23.9 26.3	38.9 43.2 37.6 32.5 48.7 47.3	$\overline{CG} = 44.0$ $\overline{CF} = 40.6$ $\overline{ig} = 27.1$ $\overline{gc} = 26.4$ $\overline{fc} = 14.3$ $\overline{if} = 31.2$

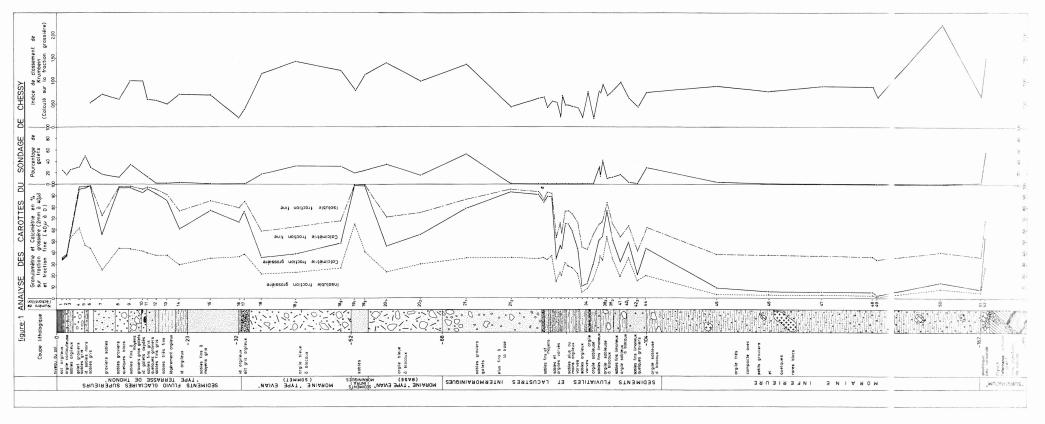


TABLEAU 2. — suite

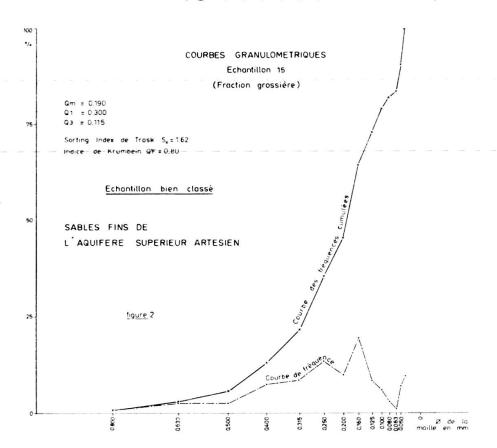
Unité	Nº de	% de c rappo chaque		% de calcaire rapporté à l'échantillon total				Calcaire	Moyennes (X)
Géo- logique	l'échantillon	fraction gros- sière (CG)	fraction fine (CF)	Inso- luble grossier (ig)	calcaire grossier (gc)	calcaire fin (fc)	Inso- luble fin (if)	total en %	et Observations
	CH 32 CH 33 CH 34 CH 35 CH 36 CH 37 CH 38 CH 39 CH 40 CH 41 CH 42 CH 43 CH 44	50.6 51.7 33.9 47.3 30.4 29.9 38.1 29.5 32.3 40.2 28.1 24.2 44.8	39.5 37.8 34.4 37.8 28.3 27.9 28.3 28.3 28.3 27.2 26.2 33.5	21.2 4.9 8.1 15.3 35.1 36.1 33.1 53.7 35.2 18.8 35.0 15.4 23.9	21.7 5.2 4.1 13.8 15.3 15.4 20.4 22.5 16.8 12.7 13.7 4.9 19.4	22.5 34.0 30.2 26.8 14.0 13.5 13.2 6.7 13.6 22.3 14.3 20.9 18.4	34.6 55.9 57.6 44.1 35.6 35.0 33.3 17.1 34.4 46.2 37.0 58.8 38.3	44.2 39.2 34.3 40.6 29.3 28.9 33.6 29.2 30.4 35.0 28.0 25.8 37.8	4.9< ig <53.7 4.1< gc <61.5 2.0< fc <26.8 5.0< if <58.8
4	CH 45 CH 46 CH 47 CH 48 CH 49 CH 50 CH 51	62.1 47.7 45.8 45.8 41.9 41.2 35.0	33.5 33.7 33.3 32.9 32.9 32.5 30.8	3.4 3.2 3.1 2.8 1.2 8.0 4.8	5.6 2.9 2.6 2.3 0.9 5.6 2.6	29.6 31.7 31.4 31.2 31.8 26.6 28.6	61.4 62.2 62.9 63.7 66.1 59.8 64.0	35.2 34.6 34.0 33.5 32.7 32.2 31.2	$35.0 < CG < 62.1$ $30.8 < CF < 33.7$ $1.2 < ig < 8.0$ $0.9 < gc < 5.6$ $26.6 < fc < 31.6$ $59.8 < if < 66.1$ $\overline{CG} = 45.6 \overline{ig} = 3.8$ $\overline{CF} = 32.8 \overline{gc} = 3.2$ $\overline{fc} = 30.1 \overline{if} = 62.9$
5	CH 52	49	31.1	26.9	25.8	14.7	32.6	40.5	

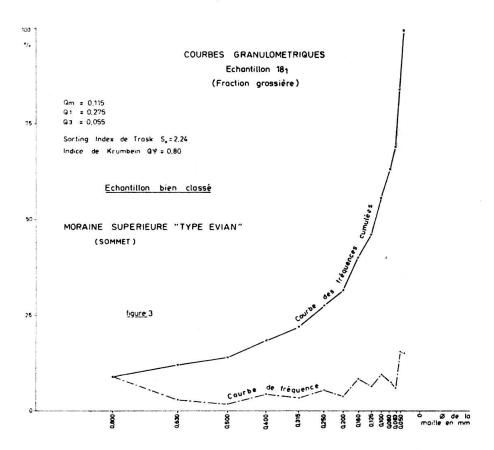
La moraine présente une teneur en carbonates relativement constante (Unité 2 — calcaire total 37,5 à 48 % — unité 4 — calcaire total 31,2 à 35,2 %), plus importante cependant dans la moraine supérieure que dans la moraine inférieure.

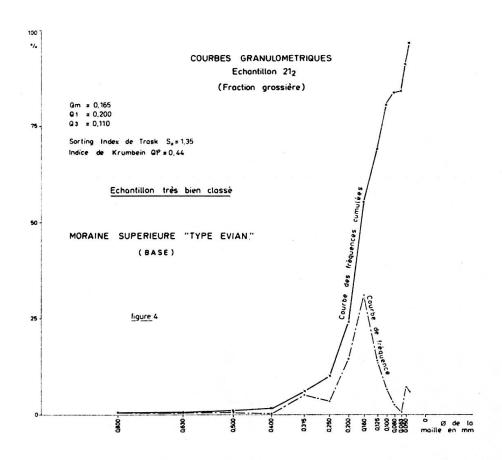
Cette constance permet, par ailleurs, de distinguer facilement les sédiments morainiques des dépôts interstadiaires ou interglaciaires caractérisés par une calcimétrie très variable (unité 1 — calcaire total compris entre 35,9 % et 58 % — unité 3 — calcaire total compris entre 25,8 et 63,5 %).

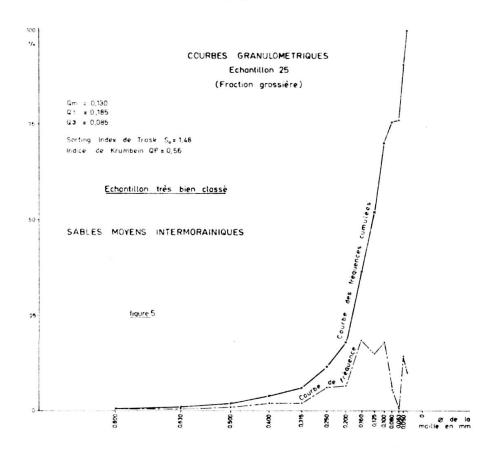
Granulométrie

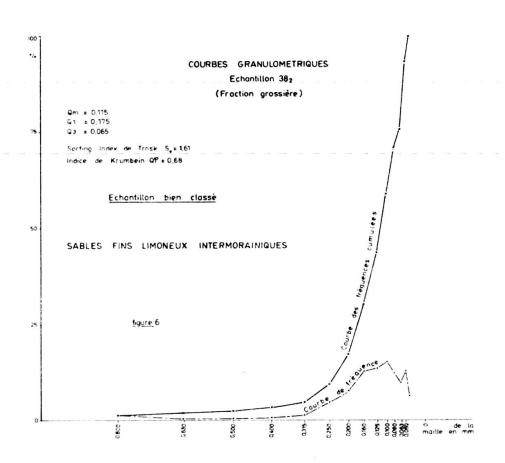
Les analyses granulométriques de 57 échantillons du sondage ont porté sur les pourcentages de galets et les indices de classement de TRASK et KRUMBEIN.

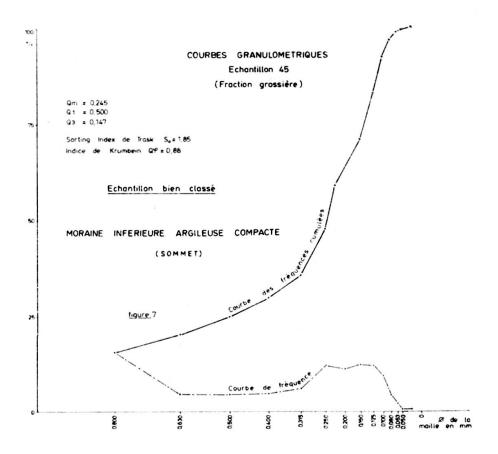

ARCHIVES DES SCIENCES. Vol. 24, fasc. 1, 1971.


- 1) Les galets (fig. 1)
- la 1^{ere} unité «fluvioglaciaire» donne des pourcentages variables qui tendent à décroître avec la profondeur. Les teneurs passent de 29.3% (CH 4) à 12.1% vers 17 m et à 0% dans le premier aquifère captif sableux (-23 à -32 m CH 15);
 - l'unité 2, « morainique », montre des teneurs oscillant autour de 30 %,
- l'unité 3, « interglaciaire », (ou interstadiaire), ne montre pratiquement pas de galets jusqu'à l'échantillon CH 36, puis les valeurs ne dépassent pas 16%;
 - l'unité 4 ne contient pas (ou très peu) de galets;
- l'unité 5, conglomératique présente plus de 50% de galets même dans sa partie la plus fine.


Ces quelques valeurs comparées entre elles permettent de montrer que:


- les deux unités morainiques sont très différentes l'une de l'autre; l'unité 2 contient une bonne quantité de galets alors que l'unité 4 n'en recèle pratiquement pas.
- les sédiments fluvioglaciaires supérieurs sont plus grossiers que les sédiments interstadiaires, sauf pour les derniers horizons argilo-sableux et sableux;
- l'interglaciaire 3 ne montre pas de galets dans les sédiments détritiques supérieurs mais seulement lorsque le sédiment devient argilo-sableux.


2) Les indices de classement (fig. 2, 3, 4, 5, 6, 7, 8 — Tableau 3)



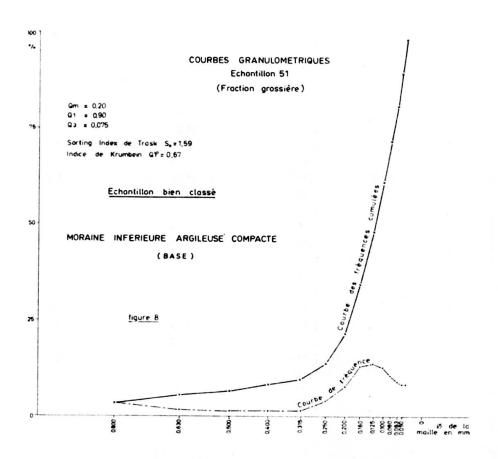


Tableau 3. — Indices de classement des échantillons du sondage de Chessy

Nº de l'échantillon	Indice de Trask S_o	Indice de Krumbfin Q de φ	Qualité du classemen
1	?	?	?
	2,88	1,51	F
2 3	2,29	1,20	F
4	1,65	0,72	В
5	?	?	?
6	1,44	0,52	ТВ
7	1,64	0,71	В
8	1,53	0,61	ТВ-В
9	2,05	1,03	В
10 Unité 1	2,05	1,03	В
11	1,53	0,61	ТВ-В
12	1,50	0,58	TB
13	1,43	0,51	ТВ
14 15	1,66	0,72	B B
16	1,62 1,15	0,69 0,20	TB
17	1,13	0,20	TB
	1,32		1 B
18 ¹	2,24	1,16	В
18 ²	2,67	1,42	F
18 ³	2,36	1,23	В
19 ¹ <i>Unité</i> 2	?	?	?
19 ²	?	?	?
201	2,67	1,42	В
202	2,0	1,00	В
211	2,60	1,37	F
212	1,35	0,44	В
22	1,55	0,63	В
23	1,57	0,65	В
24	1,41	0,49	TB
25	1,48	0,56	ТВ
26 27	1,45	0,53	TB TB
28	1,31 1,70	0,38 0,76	В
29	1,70	0,47	ТВ
30	1,39	0,47	ТВ
31	1,36	0,47	TB
32 <i>Unité</i> 3	1,34	0,41	TB
33	1,15	0,20	TB
34	1,70	0,76	B
35	1,41	0,49	TB
36	1,71	0,77	B
37	1,68	0,75	B
38	1,88	0,92	В
39	1,61	0,68	В

TABLEAU 3. — suite

Nº de l'échantillon	Indice de Trask S_o	Indice de Krumbfin Q de φ	Qualité du classement
40	1,73	0,78	В
41	1,96	0,98	В
42	1,54	0,61	В
43	1,31	0,38	TB
44	1,68	0,75	В
45	1,85	0,88	В
46	1,72	0,77	В
47	1,80	0,84	В
48 <i>Unité</i> 4	1,76	0,81	В
49	4,75	2,24	TM
50	1,45	0,53	TB
51	1,59	0,67	В
52 Unité 5	2,82	1,49	F

$1 < S_o < 1,5$	sédiment très bien classé	(TB)
$1,5 < S_o < 2,5$	» bien classé	(B)
$3 < S_0 < 4$	» faiblement classé	(F)
$4 < S_o$	» très mal classé	(TM)

La granulométrie des 57 échantillons a été effectuée par le battage classique Rotap pendant 20 minutes avec la série de tamis de 2 mm à 50 µ. Le poids initial de l'échantillon tamisé variait de 30 à 100 g. Les indices de classement calculés à partir de cette granulométrie tronquée ne montrent peu ou pas d'échantillons mal classés.

Par contre, le plus grand nombre d'échantillons très bien classés correspond aux dépôts interglaciaires (ou interstadiaires) et postglaciaires. Ce sont les sédiments des unités 1 et 3. Cette constatation nous laisse supposer pour ces dépôts, une origine fluviatile ou tout au moins fluvioglaciaire. Le classement des unités 2 et 4 est beaucoup moins bon, ce qui serait bien en accord avec une origine plus nettement glaciaire.

CONCLUSION

Le sondage de Chessy permet d'obtenir, pour la première fois sur une même verticale, une série complète des dépôts quaternaires du Bas-Chablais et de préciser, en outre, une limite inférieure nord d'une des nappes de charriage du Chablais (la nappe Ultrahelvétique).

Les observations géologiques et les analyses de laboratoire, font apparaître différentes unités liées à une origine bien spécifique.

Ce sondage met, en outre, en évidence les différences de condition de dépôt des sédiments quaternaires de part et d'autre de la rivière Dranse.

La rive gauche présente, en effet, des épaisseurs beaucoup moins fortes que la rive droite et ce malgré l'existence d'un niveau fluvioglaciaire terminal important (niveau pratiquement absent sur la rive droite).

Centre de Recherches Géodynamiques — Thonon Laboratoire de Géologie, Faculté des Sciences — Alger

¹ Une publication synthétique rendra compte des conclusions des analyses des principaux sondages du Bas-Chablais (B. Blavoux, M. Dray).

BIBLIOGRAPHIE

- (I) BLAVOUX, B. (1966). Thèse de 3e cycle Hydrologie, Paris, juin 1966.
- (II) Ce sondage, réalisé du 27 avril au 12 juillet, entre dans un programme de recherches hydrologiques en Bas-Chablais, entrepris par le Centre de Recherches Géodynamiques de Thonon depuis 1958.
- (III) BLANC, P., M. DRAY et P. OLIVE. (1969). Nouvelles données sur les caractéristiques chimiques et isotopiques des eaux du complexe quaternaire de la région de Thonon-les-Bains. Revue de Geographie Alpine. Vol. 4, 1969, pp. 823-830.
- (IV) Burri, M. (1963). Le quaternaire des Dranses. Bull. Lab. Univ. Lausanne, nº 142, 34 p., 5 fig.