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MODELES NUMERIQUES
DE SYSTEMES AUTOGRAVITANTS
III. COUCHES PLANES PARALLELES

PAR

Guy JANIN

Soit un ensemble de N masses ponctuelles mobiles le long d’une droite. C’est
un systéme uni-dimensionnel. Son correspondant tri-dimensionnel est un ensemble
de N plans matériels infiniment minces perpendiculaires & un axe et tels que leur
dimension est grande vis-a-vis de leur écartement. Le mouvement de ces masses
ponctuelles, respectivement de ces plans, est caractérisé par le fait que la force entre
deux éléments est indépendante de leur distance mutuelle. Les équations de mouve-
ment sont ainsi trés simples ce qui rend ces modéles particuliérement intéressants
pour les expériences numériques sur la dynamique des systémes a grand nombre de
particules. Des modéles comprenant jusqu’a N = 2000 masses (HoHL et CAMP-
BELL, 1968) ont pu étre étudiés avec profit.

Il est cependant possible de simplifier encore ce modéle. En effet il ne nous
intéresse guére de connaitre la trajectoire de chaque particule, seul leur comporte-
ment collectif nous importe et l1a méthode précédente nous donne trop de renseigne-
ments.

Le modeéle de I'outre. — Un systéme matériel & grand nombre de particules
n’évolue, dans sa premiére phase, que sous l’effet de son potentiel lissé (pas de
rencontres) et sa fonction de distribution obéit & I’équation de Liouville (pas de second
membre). La résolution de cette équation est équivalente a la résolution des équations
de mouvement. Une conséquence de I’équation de Liouville est la conservation des
éléments de volume du domaine représentatif du systéme dans ’espace de phase.
Si I’on choisit I’état initial du systéme tel que la densité de points dans I’espace de
phase est constante dans un certain domaine D et nulle en dehors, 1’évolution du
systétme ne se traduira que par une déformation du domaine D avec conservation
de son volume. C’est le modéle de 'outre (water-bag model ). Ainsi, au lieu d’étudier
’ensemble des particules du systéme, suffit-il de n’étudier que les particules limitant
le bord du domaine D. C’est la méthode utilisée par ROBERTS et BERK (1967) pour
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étudier I'instabilité a deux courants dans un plasma linéaire. Cette méthode illustre
le point de vue eulérien tandis que la précédente applique le point de vue lagrangien.

Mouvement d’un contour dans l’espace de phase. — L’espace de phase de notre
systéme est plan: une dimension de position et une dimension de vitesse. Le contour
sera une ligne fermée dans ce plan. Nous le représenterons par une suite de points i
de coordonnées (x;, v;) numérotés de I a n.

L’intégration du mouvement de ces points sera confiée a un algorithme trés
simple:

x; (t+dt) = x;(t) + v;(t +dt/2)dt

v (t+d1)2) = v,(t—dtf2) + a, (1) dt

A% |

FiG. 1.

a; (t), ’accélération du point 7, dépend de la différence de masse des points du systéme
situés entre la droite et la gauche du point i. Cette masse est proportionnelle a la
différence entre les surfaces D, et D, découpées dans D par la verticale d’abscisse x;
dans I’espace de phase (fig. 1).
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Ces surfaces se calculent par sommation des aires des trapézes de sommets
(X i)y (Xka 15 Vea1)s (Xk 0), (Xk41, 0). Le contour prenant assez vite une forme tour-
mentée, la verticale d’abscisse x; traversera des trapézes dont les surfaces devront
étre fractionnées. Ce dernier point rend l’estimation de a; (¢) assez compliquée et
oblige notamment a effectuer n ensembles d’opérations pour calculer 1’accélération
d’un point i. L’avance du systéme d’un pas temporel df nécessitera ainsi n* ensembles
d’opérations et on retrouve cette dépendance en n? caractéristique des méthodes
d’intégration du mouvement des problémes a » corps.

Il ne sert a rien d’utiliser une méthode d’intégration d’ordre élevé car la variation
des grandeurs est discontinue. En effet, lors de I’estimation des surfaces des trapézes
fractionnés, un léger déplacement de x; peut considérablement changer la valeur
de ces surfaces pour peu que ce déplacement nous transporte d’un trapéze au suivant,

Notons que le calcul de a; (¢) exige la connaissance de v; (¢). Nous en prenons
une valeur approximative en calculant simultanément avec x; (t-+dt)

v; (t+dt) = v, (t —dt/2) + a;(t) 3dt/2

L’expérience montre que le contour polygonal subit en certains endroits des
allongements. Pour que notre approximation polygonale conserve son sens, il est
nécessaire d’ajouter des points en cours d’évolution. Cette opération est effectuée
apres chaque pas dr: les segments dépassant une certaine longueur se voient ajouter
un point en leur milieu.

Test de [’algorithme. — Deux grandeurs globales permettent de vérifier que le
processus ne diverge pas d’un processus physique. Ce sont la surface du domaine D
et I’énergie totale E; elles doivent rester constantes. Dans nos expériences, elles ne
varient jamais plus d’un milliéme de la valeur initiale.

Calcul de [’énergie. — L’énergie totale du systéme n’est pas aussi évidente a
estimer dans notre cas que dans le cas classique des N points matériels. Il convient
d’utiliser le caractére discret de notre méthode qui se concrétise par les trapézes
définis par les points (x;, v;) du contour. Une maniére d’estimer approximativement
I’énergie du systéme consiste a supposer que chaque trapéze est un plan matériel
infiniment mince de masse proportionnelle a la surface du trapéze situé en x,. L’énergie
potentielle se calculera en construisant le systéme a partir d’'une configuration a
énergie nulle. Cette configuration, dans le cas d’un univers unidimensionnel, est celle
ou tous les plans sont confondus, a une abscisse quelconque. Mettons tous les plans
a I'origine. Le total des travaux nécessaires pour les déplacer jusqu’a leur position x;,
sera égal a ’énergie potentielle. Cette énergie sera positive.

L’énergie cinétique se calculera trés simplement en considérant des trapézes
« horizontaux » définis par leur ordonnée v,, assimilés a des plans matériels infiniment
minces de vitesse v,.
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Unités. — Afin d’éviter d’inutiles manipulations de constantes, le systéme
d’unités a été choisi tel que 2n G = 1 et que la surface du domaine D soit numé-
riquement égale a 1. Si la surface D est un carré de coté unité centré a ’origine,
un point d’un sommet mettra environ un temps unité pour parcourir 0.5; le temps
de chute 7, est donc de I’ordre de I'unité.

Expérience numérique type. — La figure 2 indique quatre stades de développe-
ment d’un domaine initialement carré défini par 80 points. Ces figures sont réalisées
par I'imprimante de 1’ordinateur. On voit la déformation du domaine D en une zone
centrale entourée de bras spiraux. Le pas temporel est de 0.1 et on a pu aller jus-
qu’a 50 7, en approximativement 4 heures d’ordinateur CDC 3800. L’intégration
cesse automatiquement lorsque le nombre de points atteint 2000 ou lorsque la surface
de D subit une fluctuation supérieure a '/,, de sa valeur initiale.

Le programme a été rédigé en FORTRAN. Lors du calcul, les coordonnées des
points sont réguliérement enregistrées sur bande magnétique.

Applications. — Les modéles d’étude de systémes autogravitant a grand nombre
de particules sont rares et les résultats qu’ils nous donnent sont extrémement précieux
pour vérifier les considérations théoriques qu’on peut formuler sur ces systémes.
Nous effectuons avec ce modéle des expériences analogues a celles de HOHL et
CAMPBELL (1968) ou GOLDSTEIN, CUPERMAN et LECAR (1969) qui, utilisant le modéle
classique, ont essayé de vérifier la théorie statistique des systémes stellaires sans
collision proposé par LYNDEN-BELL (1967).

Observatoire de Genéve
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