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MODELES NUMERIQUES
DE SYSTEMES AUTOGRAVITANTS
II. MASSES PONCTUELLES

PAR

Guy JANIN

Ce modéle se propose de décrire I’évolution de systémes stellaires a petit nombre
de corps (N=-100). Nos hypothéses sont: corps de dimension propre négligeable
(masses ponctuelles), masse des corps invariable au cours du temps, forces gravita-
tionnelles uniquement, pas de champ extérieur (systéme isolé autogravitant).

Ce modéle s’applique ainsi aux étoiles multiples et aux petits amas.

La méthode est apparemment trés simple: pour obtenir les coordonnées des
étoiles de I'amas a un instant quelconque, on résoud par un procédé numérique
adéquat a partir de conditions initiales données les 6 X N équations différentielles
du mouvement.

Deux difficultés vont cependant nous obliger a prendre quelques précautions:
1° la nature divergente de la force gravifique entre deux particules qui tendent 'une
vers l'autre; 2° le grand nombre d’opérations nécessaires pour l'estimation de la
force exercée par le systéme sur une particule. Ces faits sont a origine de notre
limitation sur N et de la mise au point de modéles moins réalistes tels que les systémes
stratifiés (JANIN, 1970).

Choix du schéma d’intégration. — Le probléme de la singularité de la force
peut étre résolu de quatre maniéres différentes:

1) modifier la loi de force lorsque la distance interparticulaire est faible; par exemple
remplacer le terme en !/r? de la loi de gravitation universelle par /(r*+¢?)
(AARSETH, 1963);

2) changer fonctions et variable de maniére que la singularité disparaisse dans les
nouveaux axes de coordonnées (régularisation de LEvI-CivITA, SZEBEHELY, 1968);

3) considérer l'interaction proche entre deux particules comme un probléme a
deux corps perturbés par le reste de I’amas;

4) méthode d’intégration a pas variable.
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La suppression de la singularité par modification de la loi de force est dangereuse
car elle éloigne le systéme de son évolution physique. La conservation de 1’énergie
totale n’est plus satisfaite car le creux de potentiel des étoiles est partiellement
comblé. La formation des binaires proches est impossible.

La régularisation, méthode bien connue pour le probléme des trois corps,
n’est pas aisée & appliquer dans le cas de N > 3, notamment si I’on désire régulariser
plus d’un couple a la fois (PETERS, 1968).

La mise au point d’un traitement spécial des binaires, réalisé par AARSETH (1969)
sur la base de la formulation de PINES (1961) du probléme des deux corps, est délicate
et conduit a une programmation lourde ou intervient un grand nombre de para-
métres empiriques. Les résultats sont cependant intéressants puisque le gain de temps
de calcul auquel conduit ce traitement, combiné & une méthode d’intégration a pas
variable, a permis a Aarseth d’étudier des systémes de N = 250 corps.

Puisque les artifices ne conduisent pas a des solutions tout-a-fait satisfaisantes,
il faut envisager une approche directe du probléme, a savoir trouver une méthode
d’intégration des équations du mouvement qui conserve sa stabilité face a la diver-
gence de la force.

Méthode de Nordsieck pour la résolution d’un systéme d’équations différentielles
a valeurs initiales. — x et f étant des vecteurs, soit

dx £(x, 1)
pv———; (SO x,
dt

un systéme d’équations différentielles a valeurs initiales x (1=17,) = x,. C’est dans
le second membre f(x,?) que figurera ’expression de la force. Il convient donc
dc lc calculer le moins souvent possible ce qui exciut d'embiée ies méthodes d’inte-
gration a pas séparés du type Runge-Kutta. A 1'approche d’une singularité, le pas
d’intégration doit étre réduit afin que les variations des fonctions ne subissent pas
de trop grands écarts. D’autre part ’adoption d’un pas variable ne doit pas ralentir
le mouvement des étoiles de I’amas tragant a cet instant des orbites réguliéres. Le pas
doit donc étre individuel. Cela sous-entend la possibilité de déterminer & n’importe
quel instant les coordonnées de n’importe quelle étoile.

Ainsi que I’avaient déja remarqué VAN ALBADA (1967) et ALLIONE, BLACKFORD,
MENDEZ et WHITTOUCK (1968), la méthode de NORDSIECK (1962) satisfait conve-
nablement a ces conditions.

C’est une méthode a pas liés de type prédiction-correction spécialement adaptée
au calcul automatique par ordinateur. Les solutions x (¢) cherchées sont approchées
par un polynéme du cinqui¢me degré P (¢), ce qui permet de les connaitre 4 n’importe
quel instant intermédiaire. Le pas est variable, il est ajusté de telle maniére que la
stabilit¢ du processus soit conservée et que ’erreur de troncature ne dépasse pas
une certaine valeur.
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Le polynéme d’approximation P4 (¢) est identique a celui de la méthode d’Adams.
Pour démarrer l'intégration, les ccefficients sont posés égaux a zéro. On avance de
quatre pas, puis on recule de quatre pas. De retour au point initial, les solutions
calculées sont remplacées par les conditions initiales, un test est vérifié, et on recom-
mence. Au bout de trois va-et-viens, les ccefficients des polyndmes ont atteint leur
valeur correcte et I'intégration proprement dite peut commencer.

Le long d’un pas A, l'intégration se décompose en la suite des opérations sui-
vantes: 1° une premiére estimation x! (¢-4-4) de la solution est calculée (prédiction);
20 cette solution permet de déterminer le second membre au temps ¢ + h et de
calculer une meilleure estimation x2 (r++4) de la solution (premiére correction);
3° une seconde correction est calculée: x> (1-+4); 4° le premier test entre en jeu pour
vérifier la convergence: si | x,> — x,2| =< }| x> — x,' | pour toutes les compo-
santes « des vecteurs X, la solution x> sera retenue; dans le cas contraire, le cycle
est repris avec un pas A/2; 5° un second test contrdle I’erreur de troncature; s’il est
satisfait, on adoptera un pas 2 4 pour le cycle suivant, s’il ne I’est pas, on diminue
la sévérité du test (et on conservera le pas & pour le cycle suivant); si le test n’est
toujours pas satisfait, on recommence le cycle avec un pas //2; 6° on calcule les
nouveaux ceefficients du polyndme.

Cette méthode est trés prudente. Au moindre danger, le pas est immédiatement
réduit de moitié. Si les circonstances sont favorables, on risque une augmentation
du pas lors du cycle suivant. Pendant le démarrage de I'intégration, seule la condition
de stabilité est vérifiée.

La vérification du test de convergence n’est pas une condition suffisante pour
la stabilité (LEwIs et STOVALL, 1967). Le test complet, soit vérifier que toutes les
valeurs propres de la matrice de stabilité (df/0x) soient inférieures a une certaine
valeur, est pratiquement inexécutable dans notre cas. Les expériences numériques
vont effectivement nous montrer que, au bout d’un certain temps d’évolution, une
instabilité nait dans le systéme et conduit I’évolution vers une direction non physique
(’énergie totale n’est plus conservée par exemple).

Application de la méthode de Nordsieck a l’intégration du mouvement d’un
systéme stellaire. — Un cycle s’adresse aux six composantes (x.*, v.*, a=1, 2, 3) des
coordonnées du corps k. k est caractérisé par son pas d’intégration 4* et son temps ¢*.
Six polynémes Ps* () 'accompagnent et permettent de calculer les coordonnées
de k a n’importe quel temps ¢ pas trop éloigné de t*. Le programme d’intégration
s’intéresse toujours a I’étoile la plus jeune. Equations du mouvement

dx X "

s U, «a=1,2,3 (1)
dvf )

— =a k=1,...,N
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ol a* est la composante « de 1’accélération

N lrod k
m(x,'—x
s =@ T gl ]
1=1

1#k [Z (xﬂl—xpk)z] 32 o
B=1

G est la constante de gravitation universelle, m' est la masse du corps /.

La quasi-totalité du temps de calcul est consacrée a I'estimation des accélé-
rations a,*. En contemplant la formule (2), il faut se rappeler que les x,' ne sont pas
connus au temps ¢* mais au temps #', et il convient d’utiliser les polyndmes P’ (1)
pour les connaitre au temps t*.

Dans le second test (5° étape du cycle d’intégration) figure un paramétre qui
garantit ’exactitude d’un certain nombre donné e de chiffres significatifs a chaque
pas pour les solutions. Au bout d’un grand nombre de pas, la solution se dégrade
cependant au point qu’aucun chiffre significatif n’est correct. La trajectoire du point
représentatif du systéme dans I’espace de phase a 6 X N dimensions s’écarte com-
pléetement (MILLER, 1964) de la trajectoire réelle. Mais le point reste dans le domaine
de phase défini par les constantes de mouvement. Notre solution est en quelque
sorte une fluctuation statistique de la solution réelle et elle est aussi « valable » que
la solution réelle.

Cette remarque ne permet cependant pas de choisir pour e une valeur trop
petite. En effet, supposons qu’un corps k se meuve a trés grande vitesse dans une zone
a forte densité stellaire. La valeur numérique des v, pour ce corps sera beaucoup
plus élevée que pour les autres corps et I'effet de la force, qui ne dépend que des
positions des corps, sera relativement moins efficace: cette force agira numérique-
ment plutdt sur les chiffres a droite des chiffres significatifs donc son effet sera atténué
par rapport a celui qu’elle aurait sur une étoile lente. A la limite, prenons un amas
ou les vitesses, positions et forces sont numériquement de I’ordre de 1 et étudions-le
dans un systéme de coordonnées se déplacant a 10°. L’effet des forces sera totalement
plongé dans le bruit numérique des vitesses (chiffres significatifs a droite des e pre-
miers) et les étoiles ne subiront plus d’interaction entre elles.

Vérification des constantes de mouvement. — La stabilité de I’intégration n’étant
pas garantie, il est indispensable de vérifier que le systéme reste dans une zone
physiquement permise. Notre systéme étant isolé, il suffit de vérifier la conservation
des constantes de mouvement. Nous nous limitons & la vérification de la constance
de I’énergie totale E* et de la quantité de mouvement totale P':

N k2 k-1 1
Rl ] m

Et — k = i 4 o
Z (m 2 d 1;1 ki

ou r*! est la distance entre les étoiles k et /;

m* vk,

1

=

P =

k
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Conditions initiales. — Positions, vitesses et masses sont a fixer initialement.
Nous choisissons comme état initial d’'un amas une répartition homogéne des
positions dans une sphére de rayon R et des vitesses dans une sphére de rayon V.
Les masses obéissent & une loi en m~ 2 sur un intervalle de 1 3 M (M = 5 ou 10).
R et V sont choisis de maniére a satisfaire le théoréme du viriel.

Pratiquement on procéde comme suit: 1° distribution aléatoire des x* selon
une loi en (r*)? (le nombre de particules & une distance » du centre est proportionnel
ar?) entre 0 et R; 2° distribution analogue des v* entre 0 et V; 3° distribution aléatoire
des masses m* entre 1 et M; 4° calcul du centre de masse; 5° modification des x,*
de maniére a confondre le centre de masse avec le centre de coordonnée; 6° calcul
de la quantité de mouvement totale; 7° modification des v,* de maniére 4 rendre
cette quantité de mouvement totale nulle; 8° calcul de I’énergie cinétique totale E©
et de I’énergie potentielle E? de I’amas; 9° modification des modules des vitesses de
maniére a satisfaire le théoréme du viriel 2 E€/EP = 1. L’amas est ainsi centré a
I'origine du systéme de coordonnées et globalement immobile par rapport a celui-ci.

Unités. — Pour simplifier les manipulations de constantes, nous choisissons
un systéme d’unité tel que la constante de gravitation G, le rayon initial R et la masse
totale u de ’amas valent numériquement 1. Le temps de chute moyen

R3
TC = S
Gpu
est égal a 'unité. Si R vaut p parsecs et u m masses solaires, t. correspondra a
14.93 . /p/m millions d’années.

Expérience numérique type. — Des amas de 25 étoiles ont été étudiés sur une
durée de I’ordre de 25 7. Une petite coupure ¢ a été adoptée afin d’émousser les pics
des variations de la force: ¢ = 1078 Le nombre de chiffres significatifs garantis e
a été choisi égal a 6.

De 0 a 10, le calcul avance au rythme de 10 mn par 7, avec l'ordinateur
CDC 3800 de I’Etat de Geneéve. Il se ralentit considérablement par la suite et une
instabilité fatale décime le systéme vers 20 a 25 1, au bout de 4 & 6 heures de calcul.
Ce sont des binaires serrées qui accaparent le programme d’intégration et ’obligent
a travailler avec de trés petits pas (10”* a 10™7).

Le programme est rédigé en FORTRAN et une attention toute particuliére
a été consacrée a l’optimalisation du sous-programme de calcul des forces. Le
CDC 3800 utilisant des mots de 48 bits, il n’a pas été nécessaire de faire appel a la
double précision. Lors du calcul, les coordonnées sont enregistrées sur bande magné-
tique tous les temps 0.5.

Applications. — Les applications de cette méthode de dynamique stellaire sont
nombreuses et fructueuses. Citons I’étude de I'instabilité des petits systémes stellaires,
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la naissance des étoiles 4 grande vitesse, la formation des binaires dans les amas
stellaires, la détermination du taux d’évasion des étoiles d’amas, I'influence d’un
champ gravifique extérieur sur un amas. Nous nous sommes plus particuliérement
penché sur le probléme de I'influence gravitationnelle des nuages de matiére inter-
stellaire se mouvant dans le voisinage d’un amas.

Observatoire de Genéve
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