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MODELES NUMERIQUES
DE SYSTEMES AUTOGRAVITANTS

II. MASSES PONCTUELLES

PAR

Guy JANIN

Ce modöle se propose de decrire revolution de systemes stellaires ä petit nombre
de corps (A^lOO). Nos hypotheses sont: corps de dimension propre negligeable

(masses ponctuelles), masse des corps invariable au cours du temps, forces gravita-
tionnelles uniquement, pas de champ exterieur (systeme isole autogravitant).

Ce modele s'applique ainsi aux etoiles multiples et aux petits amas.
La methode est apparemment tres simple: pour obtenir les coordonnees des

etoiles de l'amas ä un instant quelconque, on resoud par un procede numerique
adequat ä partir de conditions initiales donnees les 6 x N equations differentielles
du mouvement.

Deux difficultes vont cependant nous obliger ä prendre quelques precautions:
1° la nature divergente de la force gravifique entre deux particules qui tendent l'une

vers l'autre; 2° le grand nombre d'operations necessaires pour l'estimation de la
force exercee par Ie systeme sur une particule. Ces faits sont ä l'origine de notre
limitation sur Net de la mise au point de modeles moins realistes tels que les systemes

stratifies (Janin, 1970).

Choix du schema d'integration. — Le probleme de la singularity de la force

peut etre resolu de quatre manieres differentes:

1) modifier la loi de force Iorsque la distance interparticulaire est faible; par exemple

remplacer le terme en V'"2 de la loi de gravitation universelle par 1/(r2+e2)

(Aarseth, 1963);

2) changer fonctions et variable de maniere que la singularity disparaisse dans les

nouveaux axes de coordonnees (regularisation de Levi-Civita, Szebehely, 1968);

3) considerer l'interaction proche entre deux particules comme un probleme ä

deux corps perturbes par le reste de l'amas;

4) methode d'integration ä pas variable.
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La suppression de la singularity par modification de la loi de force est dangereuse

car eile eloigne le Systeme de son evolution physique. La conservation de l'energie
totale n'est plus satisfaite car le creux de potentiel des etoiles est partiellement
comble. La formation des binaires proches est impossible.

La regularisation, methode bien connue pour le probleme des trois corps,
n'est pas aisee ä appliquer dans le cas de N > 3, notamment si Ton desire regulariser
plus d'un couple ä la fois (Peters, 1968).

La mise au point d'un traitement special des binaires, realise par Aarseth (1969)

sur la base de la formulation de Pines (1961) du probleme des deux corps, est delicate
et conduit ä une programmation lourde oil intervient un grand nombre de para-
metres empiriques. Les resultats sont cependant interessants puisque le gain de temps
de calcul auquel conduit ce traitement, combine ä une methode d'integration ä pas
variable, a permis ä Aarseth d'etudier des systemes de N 250 corps.

Puisque les artifices ne conduisent pas ä des solutions tout-ä-fait satisfaisantes,
il faut envisager une approche directe du probleme, ä savoir trouver une methode

d'integration des equations du mouvement qui conserve sa stability face ä la divergence

de la force.

Methode de Nordsieck pour la resolution d'un Systeme d'equations differentielles
ä valeurs initiales. — x et f etant des vecteurs, soit

un Systeme d'equations differentielles ä valeurs initiales x (t=^t0) x0. C'est dans
le second membre f (x, /) que figurera l'expression de la force. II convient done
dc Ic calculer le rnoins souvent possible ce qui exclut d'embiee ies methodes
d'integration ä pas separes du type Runge-Kutta. A l'approche d'une singularity, le pas
d'integration doit etre reduit afin que les variations des fonctions ne subissent pas
de trop grands ecarts. D'autre part l'adoption d'un pas variable ne doit pas ralentir
le mouvement des etoiles de l'amas tra^ant ä cet instant des orbites regulieres. Le pas
doit done etre individuel. Cela sous-entend la possibility de determiner ä n'importe
quel instant les coordonnees de n'importe quelle etoile.

Ainsi que l'avaient dejä remarque van Albada (1967) et Allione, Blackford,
Mendez et Whittouck (1968), la methode de Nordsieck (1962) satisfait conve-
nablement ä ces conditions.

C'est une methode ä pas lies de type prediction-correction specialement adaptee
au calcul automatique par ordinateur. Les solutions x (t) cherchees sont approchees

par un polynöme du cinquieme degre P5 (t), ce qui permet de les connaitre ä n'importe
quel instant intermediate. Le pas est variable, il est ajuste de telle maniere que la
stability du processus soit conservee et que l'erreur de troncature ne depasse pas
une certaine valeur.
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Le polynöme d'approximation P5 (/) est identique ä celui de la methode d'Adams.
Pour demarrer l'integration, les coefficients sont poses egaux ä zero. On avance de

quatre pas, puis on recule de quatre pas. De retour au point initial, les solutions
calculees sont remplacees par les conditions initiales, un test est verifie, et on recommence.

Au bout de trois va-et-viens, les coefficients des polynömes ont atteint leur
valeur correcte et l'integration proprement dite peut commencer.

Le long d'un pas h, l'integration se decompose en la suite des operations sui-
vantes: 1° une premiere estimation x1 (t+h) de la solution est calculee (prediction);
2° cette solution permet de determiner le second membre au temps / + h et de

calculer une meilleure estimation x2 (t+h) de la solution (premiere correction);
3° une seconde correction est calculee: x3 (t+h); 4° le premier test entre en jeu pour
verifier la convergence: si | xa3 — x2 | £ | x„2 — x^ | pour toutes les compo-
santes a des vecteurs x, la solution x3 sera retenue; dans le cas contraire, le cycle
est repris avec un pas h/2; 5° un second test contröle l'erreur de troncature; s'il est

satisfait, on adoptera un pas 2 h pour le cycle suivant, s'il ne l'est pas, on diminue
la severity du test (et on conservera le pas h pour le cycle suivant); si le test n'est

toujours pas satisfait, on recommence le cycle avec un pas /i/2; 6° on calcule les

nouveaux coefficients du polynöme.
Cette methode est tres prudente. Au moindre danger, le pas est immediatement

reduit de moitie. Si les circonstances sont favorables, on risque une augmentation
du pas lors du cycle suivant. Pendant le demarrage de l'integration, seule la condition
de stabilite est verifiee.

La verification du test de convergence n'est pas une condition süffisante pour
la stabilite (Lewis et Stovall, 1967). Le test complet, soit verifier que toutes les

valeurs propres de la matrice de stabilite (df/dx) soient inferieures ä une certaine

valeur, est pratiquement inexecutable dans notre cas. Les experiences numeriques
vont effectivement nous montrer que, au bout d'un certain temps devolution, une
instability nait dans le Systeme et conduit revolution vers une direction non physique
(l'energie totale n'est plus conservee par exemple).

Application de la methode de Nordsieck ä l'integration du mouvement d'un

systeme stellaire. — Un cycle s'adresse aux six composantes (xk, vk, a=l, 2, 3) des

coordonnees du corps k. k est caracterise par son pas d'integration hk et son temps tk.

Six polynömes Psk (t) l'accompagnent et permettent de calculer les coordonnees
de k ä n'importe quel temps t pas trop eloigne de tk. Le programme d'integration
s'interesse toujours ä l'etoile la plus jeune. Equations du mouvement

dxk
k a 1,2, 3 (1)v,adt

dvl
dt

a,2
k k 1,..., N



30 MODELES NUMER1QUES DE SYSTEMES AUTOGRAVITANTS

oil ak est la composante a de l'acceleration

m'(xj-xxk)
G I —

/= 1 r v-[I (V-V)2]
3

k\ 2-1 3/2 (2)

ß= 1

G est la constante de gravitation universelle, ml est la masse du corps /.

La quasi-totalite du temps de calcul est consacree ä l'estimation des

accelerations ak. En contemplant la formule (2), il faut se rappeler que les xß' ne sontpas
connus au temps tk mais au temps et il convient d'utiliser les polynömes PSß (t)
pour les connaitre au temps tk.

Dans le second test (5C etape du cycle d'integration) figure un parametre qui
garantit 1'exactitude d'un certain nombre donne e de chiffres significatifs ä chaque

pas pour les solutions. Au bout d'un grand nombre de pas, la solution se degrade
cependant au point qu'aucun chiffre significatif n'est correct. La trajectoire du point
representatif du Systeme dans l'espace de phase ä 6 X N dimensions s'ecarte com-
pletement (Miller, 1964) de la trajectoire reelle. Mais le point reste dans le domaine
de phase defini par les constantes de mouvement. Notre solution est en quelque
sorte une fluctuation statistique de la solution reelle et eile est aussi « valable » que
la solution reelle.

Cette remarque ne permet cependant pas de choisir pour e une valeur trop
petite. En effet, supposons qu'un corps k se meuve ä tres grande vitesse dans une zone
ä forte densite stellaire. La valeur numerique des vk pour ce corps sera beaucoup
plus elevee que pour les autres corps et l'effet de la force, qui ne depend que des

positions des corps, sera relativement moins efflcace: cette force agira numerique-
ment plutot sur les chiffres ä droite des chiffres significatifs done son effet sera attenue

par rapport ä celui qu'elle aurait sur une etoile lente. A la limite, prenons un amas

oü les vitesses, positions et forces sont numeriquement de l'ordre de 1 et etudions-le
dans un Systeme de coordonnees se depla9ant ä 10". L'effet des forces sera totalement
plonge dans le bruit numerique des vitesses (chiffres significatifs ä droite des e

premiers) el les etoiles ne subiront plus d'interaction entre elles.

Verification des constantes de mouvement. — La stabilite de l'integration n'etant

pas garantie, il est indispensable de verifier que le Systeme reste dans une zone

physiquement permise. Notre Systeme etant isole, il suffit de verifier la conservation
des constantes de mouvement. Nous nous limitons ä la verification de la Constance
de l'energie totale E' et de la quantite de mouvement totale P':

oil rkl est la distance entre les etoiles k et /;

p< £ mV.
k= 1
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Conditions initiales. — Positions, vitesses et masses sont ä fixer initialement.
Nous choisissons comme etat initial d'un amas une repartition homogene des

positions dans une sphere de rayon R et des vitesses dans une sphere de rayon V.

Les masses obeissent ä une loi en m~2 sur un intervalle de 1 k M (M 5 ou 10).

R et V sont choisis de maniere ä satisfaire le theoreme du viriel.
Pratiquement on procede comme suit: 1° distribution aleatoire des xk selon

une loi en (rk)2 (le nombre de particules ä une distance r du centre est proportionnel
kr2) entre 0 et R; 2° distribution analogue des vk entre 0 et V; 3° distribution aleatoire
des masses mk entre 1 et M; 4° calcul du centre de masse; 5° modification des xk
de maniere ä confondre le centre de masse avec le centre de coordonnee; 6° calcul
de la quantite de mouvement totale; 7° modification des vk de maniere ä rendre
cette quantite de mouvement totale nulle; 8° calcul de l'energie cinetique totale Ec
et de l'energie potentielle E" de l'amas; 9° modification des modules des vitesses de

maniere ä satisfaire le thöoreme du viriel 2ECIEP 1. L'amas est ainsi centre ä

l'origine du Systeme de coordonnees et globalement immobile par rapport ä celui-ci.

Unites. — Pour simplifier les manipulations de constantes, nous choisissons

un Systeme d'unite tel que la constante de gravitation G, le rayon initial R et la masse
totale p de l'amas valent numeriquement 1. Le temps de chute moyen

est egal ä l'unite. Si R vaut p parsecs et p m masses solaires, xc correspondra ä

14.93 yjplm millions d'annees.

Experience numerique type. — Des amas de 25 etoiles ont ete etudies sur une
duree de l'ordre de 25 rc. Une petite coupure s a ete adoptee afin d'emousser les pics
des variations de la force: s2 10"8. Le nombre de ch iffres significatifs garantis e

a ete choisi egal ä 6.

De 0 ä 10 tc, le calcul avance au rythme de 10 mn par xc avec l'ordinateur
CDC 3800 de l'Etat de Geneve. II se ralentit considerablement par la suite et une
instability fatale decime le Systeme vers 20 ä 25 xc au bout de 4 ä 6 heures de calcul.
Ce sont des binaires serrees qui accaparent le programme d'integration et l'obligent
ä travailler avec de tres petits pas (10-4 ä 10~5).

Le programme est redige en FORTRAN et une attention toute particuliere
a ete consacree ä l'optimalisation du sous-programme de calcul des forces. Le
CDC 3800 utilisant des mots de 48 bits, il n'a pas ete necessaire de faire appel ä la
double precision. Lors du calcul, les coordonnees sont enregistrees sur bände magne-
tique tous les temps 0.5.

Applications. — Les applications de cette methode de dynamique Stellaire sont
nombreuses et fructueuses. Citons l'etude de I'instabilite des petits systemes stellaires,
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la naissance des etoiles ä grande vitesse, la formation des binaires dans les amas
stellaires, la determination du taux d'evasion des etoiles d'amas, l'influence d'un
champ gravifique exterieur sur un amas. Nous nous sommes plus particulierement
penche sur le probleme de l'influence gravitationnelle des nuages de matiere inter-
stellaire se mouvant dans le voisinage d'un amas.

Observatoire de Gendve
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