Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 22 (1969)

Heft: 2

Artikel: Contribution à l'étude de séparations rapides : basées sur la formation

d'amalgames application à l'argent

Autor: Baumgartner, Aldo Reto

DOI: https://doi.org/10.5169/seals-739155

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CONTRIBUTION A L'ÉTUDE DE SÉPARATIONS RAPIDES, BASÉES SUR LA FORMATION D'AMALGAMES APPLICATION A L'ARGENT

PAR

Aldo Reto BAUMGARTNER

TABLE DES MATIÈRES.

I.	Généralités
	 Introduction
II.	EXTRACTION DE L'ARGENT PAR ÉCHANGE REDOX AVEC LE MERCURE ET AMALGAMATION
	1. Introduction
	2. Bases théoriques de l'échange Redox argent-mercure
	2.1. Conditions électrochimiques
	2.2. Conditions chimiques
	3. Partie expérimentale
	3.1. Appareillage
	3.2. Réactifs
	3.3. Traceurs
	3.4. Mode opératoire
	3.5. Analyse spectrométrique
	3.7. Extraction de l'argent par le mercure en milieu complexant
	hydroxyle
A	Archives des Sciences. Vol. 22, fasc. 2, 1969.

r
3.7.1. Etude analytique — Complexes, calcul des $\alpha_{M(L)}$, calcul des
potentiels
3.7.2. Etude expérimentale — Influence du pH sur l'extraction
vitesse d'extraction
3.8. Extraction de l'argent par le mercure en milieu bromure
3.8.1. Etude analytique
3.8.2. Etude expérimentale
3.9. Extraction de l'argent par le mercure en milieu chlorure
3.9.1. Etude analytique
3.9.2. Etude expérimentale
3.10. Extraction de l'argent par le mercure en milieu acétate
3.10.1. Etude analytique
3.10.2. Etude expérimentale
3.11. Extraction de l'argent par le mercure en milieu SCN ⁻
3.11.1. Etude analytique
3.11.2. Etude expérimentale
3.12. Extraction de l'argent par le mercure en milieu éthylènediamine
(EDA)
3.12.1. Etude analytique
3.12.2. Etude expérimentale
3.13. Extraction de l'argent par le mercure en milieu EDTA
3.13.1. Etude analytique
3.13.2. Etude expérimentale
3.14. Extraction de l'argent par le mercure en milieu ammoniacal
3.14.1. Etude analytique
3.14.2. Etude expérimentale
III. RÉEXTRACTION DE L'ARGENT AMALGAMÉ
1. Introduction
2. Réextraction de l'argent amalgamé par échange isotopique
3. Réextraction de l'argent amalgamé par un métal plus noble
3.1. Réextraction de l'argent amalgamé par l'or (Au ⁺³)
4. Réextraction de l'argent amalgame par un oxydant, en presence d'un
complexant fort de Ag ⁺
4.1. Introduction
4.2. Réextraction en milieu SCN ⁻
4.2.1. Etude analytique
4.2.2. Etude expérimentale

BASÉES SUR LA FORMATION D'AMALGAMES APPLICATION A L'ARGENT	499
4.3. Réextraction en milieu cyanure	Pages 544 544 545
V. APPLICATIONS	
1. Dosage de l'argent dans une galène	548
1.1. Dosage non destructif, par activation aux neutrons thermiques.	548
1.1.1. Introduction	548
1.1.2. Dosage par étalon interne	548
1.1.3. Dosage avec étalon de flux	552
1.1.4. Dosage par étalon externe	554
1.2. Dosage de l'argent après séparation	554
1.2.1. Etude de l'extraction de l'argent en présence d'un excès de	
plomb	554
chlorhydrique)	557
1.2.3. Double extraction de l'argent	558
1.3. Résultats des différents dosages de l'argent	559
2. Séparation or-argent	560
2.1. Introduction	560
 2.2. Extraction de l'or par le mercure en milieu SCN⁻ 2.2.1. Influence de la concentration de l'or (Au⁺³) sur le rende- 	561
ment d'extraction	561
ment d'extraction	561
2.2.3. Etude de la vitesse d'extraction de l'or	562
2.2.4. Séparation or-argent en milieu SCN	562
2.3. Extraction de l'or et de l'argent par le mercure en milieu SCN ⁻ -	
éthylènediamine	563
2.4. Extraction de l'or et de l'argent par le mercure en milieu chlorure	563
2.5. Dosage de l'argent et de l'or dans un alliage d'or jaune	565
Conclusions	
Programme pour le calcul d'une droite de régression (ordinateur	
IBM 1620)	568
Références bibliographiques	569

SYMBOLES ET ABRÉVIATIONS

```
concentration (mole) ( )
   , conc.
                      activité
a
M
                      mole (molarité)
|M|_t
                      concentration totale de M
 M
                      concentration totale de M libre (non complexé)
 |M|_a
                      concentration de M dans le mercure (amagalme)
                      concentration de M dans l'amalgame à saturation
|M|_{as}
                      coefficient alpha (Ringbom) = |M_t|/|M|
α
\beta_n
                      constante de stabilité globale
\beta'_n
                      constante de stabilité globale pour les complexes avec Hg<sup>+2</sup>
                      constante du couple acide-base
K_{ab}
                      -\log
log
                      logarithme à la base 10
                      part pour million
ppm
                      microgramme (= 10^{-6} g)
μg
                      gramme
g
                      millilitre
ml
%
                      pourcent
\boldsymbol{E}
                      potentiel d'oxydo-réduction
                      potentiel normal d'oxydo-réduction
E_o
                      rayonnement gamma
Y
n
                      neutron
β
                      particule béta
m
                      métastable
                      million électron-volt
Mev
                      amalgame de M
                      plus grand que..., plus que...
                      plus grand ou égal que..., plus ou égal que...
                      plus petit que..., moins que...
                      plus petit ou égal à..., moins ou égal à...
L
                      ligand
Σ
                      somme
\bar{\sigma}
                      déviation standard moyenne
                      valeur moyenne de x
\bar{x}
pté
                      précipité
                      colloidal
coll
                      liquide
liq
                      référence bibliographique n.
(n)
                      centimètre
cm
                      secondes
sec
                      minutes
min
                      heures
h
Fig
                      figure
Tab
                      tableau
*M
                      radioisotope de M
(II.12.1.)
                      Renvoi à la partie II, chapitre 12, paragraphe 1.
(fig. 3)
                      Renvoi à la figure 3.
                      Renvoi au tableau 3
(tab. 3.)
```

I. GÉNÉRALITÉS

1. INTRODUCTION

En chimie minérale, le dosage de traces et d'ultra-traces doit dans la plupart des cas être précédé d'une séparation relativement sélective de l'élément à analyser. Les méthodes classiques de séparation, telles l'extraction, la précipation, la chromatographie, la distillation, l'échange d'ions, etc. sont souvent longues et ne peuvent pas être utilisées lors d'un dosage par activation aux neutrons thermiques avec formation d'isotopes à courte période de vie.

W. W. Meinke et coll. [20] ont introduit en 1955 une nouvelle technique de séparation rapide: L'échange isotopique hétérogène. Il s'agit d'un échange quantitatif d'une espèce d'ions radioactifs en solution contre un nombre égal de particules inactives de la même espèce renfermées dans une deuxième phase non miscible (précipité ou amalgame). Les applications de l'échange isotopique solution — précipité sont restées limitées aux halogénures d'argent surtout, alors que l'échange solution — amalgame a fait l'objet de nombreuses recherches. La technique de cet échange, ou échange amalgamique isotopique a été décrite par W. W. Meinke et coll. [21]. Elle est basée sur l'équilibre suivant:

$$*M^{+n} + M_a \longrightarrow *M_a + M^{+n}$$
 (11.1) sol.aqueuse amalgame amalgame sol.aqueuse

 ${}^*M^{+n}$ est le cation métallique (radioisotope) à échanger, M_a son amalgame liquide L'équilibre de cette réaction se déplace fortement vers la droite, si le nombre des ions M_a est beaucoup plus élevé que celui des ions ${}^*M^{+n}$. Les ions métalliques des éléments dont le potentiel redox est inférieur à celui de M restent en solution, alors que les ions des éléments plus nobles sont réduits et passent dans la phase mercurique, dans la mesure de leur solubilité dans le mercure. Ce dernier exemple d'échange est appelé échange amalgamique redox.

Partant des travaux de Meinke, E. Loepfe et coll. ont étudié l'extraction de quelques métaux nobles (or, platine, argent) par le mercure métallique [22, 23]. Des essais de sélectivité ont montré, que seul ces 3 éléments sont extraits [23], ainsi que le mercure éventuellement présent dans la solution qui est extrait par échange isotopique.

2. PRINCIPE DE LA MÉTHODE D'EXTRACTION

L'ion de l'élément à séparer est réduit à l'état métallique par le mercure, puis extrait de la phase aqueuse par amalgamation au mercure:

$$2 M^{+n} + n Hg \xrightarrow{} 2 M_a + n Hg^{+2}$$

$$(ou n/2 Hg_2^{+2})$$
(12.1)

Cette réaction est possible si $E_o^M > E_o^{Hg}$. La méthode d'extraction mise au point par E. Loepfe et coll. est basée sur cette réaction.

Les ions des métaux dont le potentiel normal d'oxydo-réduction est proche ou légèrement inférieur à celui du mercure, peuvent être réduits et extraits par le mercure en présence d'un complexant fort de ce dernier:

$$2 M^{+n} + n Hg + n k L^{p} \longrightarrow 2 M_a + n Hg L_k^{(2+pk)}$$
 (12.2)

Il faut que

$$E^{HgL_k} < E^M.$$

La réduction et l'extraction peuvent se faire par échange amalgamique isotopique (Meinke):

$$*M^{+n} + M_a \longrightarrow M^{+n} + *M_a \tag{11.1}$$

Ce genre de dosage ne s'applique qu'à un dosage radiochimique, *M étant un radioisotope de M.

Les ions des métaux moins nobles que le mercure peuvent être réduits par un couple réducteur introduit dans la phase aqueuse:

$$(m-p) M^{+n} + n X^{+p} (m-p) M_a + n X^{+m}$$

$$X^{+m}/X^{+p} = \text{couple réducteur}$$
(12.3)

Il faut que

$$E^X < E^M$$
.

L'extraction quantitative par ces méthodes n'est possible que si le métal en question est suffisamment soluble dans le mercure. E. Loepfe a classé les métaux suivant leur solubilité dans le mercure [22], et il a en outre constaté que cette dernière doit être au minimum de 10^{-4} % en poids pour une extraction de $2 \cdot 10^{-6}$ g de M^{+n} avec 0,3 ml de mercure.

3. LA RÉEXTRACTION

Une simple extraction sur le mercure n'est pas toujours suffisante. Si plusieurs métaux ont été amalgamés en même temps, il est possible de les séparer par une réextraction sélective (réoxydation). Elle peut se faite de la manière suivante:

a) Par Hg^{+2} :

$$2 M_a + n Hg^{+2} \longrightarrow n Hg + 2 M^{+n}$$
 (13.1)

Cette réaction est possible si $E_o^M < E_o^{Hg}$.

b) Par Hg^{+2} , en présence d'un complexant fort du cation de l'élément à extraire:

$$2 M_a + n Hg^{+2} + 2 k L^p \longrightarrow n Hg + 2 M L_k^{(n+pk)}$$
 (13.2)

Il faut que

$$E^{ML} < E^{Hg} .$$

c) Par échange isotopique:

$$n^*M_a + M^{+n} \stackrel{\longleftarrow}{\longrightarrow} n M_a + M^{+n} \tag{13.3}$$

Cette méthode ne peut être appliquée qu'à un dosage radiochimique.

d) Par un cation d'un métal plus noble

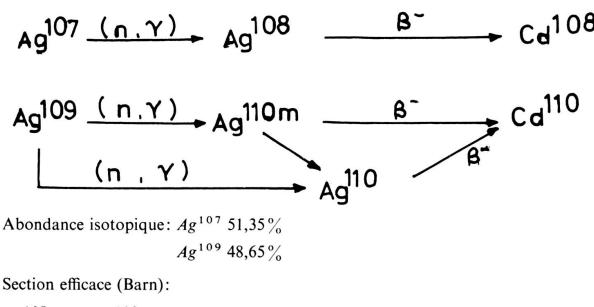
$$mM_a + n'M^{+m} \longrightarrow n'M_a + mM^{+n}$$
 (13.4)

On doit avoir:

$$E_{o}^{'M} > E_{o}^{M}$$

e) Par un couple oxydant: (X^p/X^m)

$$(m-p) M_a + nX^m \longleftrightarrow (m-p) M^{+n} + nX^p$$
 (13.5)


Il faut que

$$E^X > E^M$$
.

EXTRACTION DE L'ARGENT PAR ÉCHANGE REDOX

1. INTRODUCTION

L'argent se laisse doser facilement par activation aux neutrons thermiques. Deux radioisotopes peuvent se former: Ag^{108} et Ag^{110} , selon le schéma suivant:

$$Ag^{107}(n, \gamma) Ag^{108} = 44$$
 Barr
 $Ag^{109}(n, \gamma) Ag^{110 m} = 2,8$ »
 $Ag^{109}(n, \gamma) Ag^{110} = 110$ »

Les radioisotopes formés sont des émetteurs béta et gamma.

TABLEAU 1

Radioisotope	Periode	Energie des rayons γ émis (Mev)
Ag ¹⁰⁸	2,3 min.	0,43 et 0,60
Ag ¹¹⁰	24,2 sec.	surtout 0,66
Ag110m	253 jours	0,116 - 1,51

On constate qu'il est plus facile de former dans un réacteur l'argent 110 que l'argent 108. La formation de ce dernier peut être évitée en fixant un temps d'activation suffisamment court.

Le dosage effectué sur Ag^{110} présente certains avantages:

- Court temps d'activation de l'échantillon.
- Temps d'analyse rapide.
- Décontamination rapide.
- La quasi-totalité du rayonnement gamma est émis avec une énergie de 0,66 Mev.
 Il y a donc formation d'un seul pic photoélectrique.

Vu la période courte de Ag^{110} (24,2 sec), l'analyse et, s'il y a lieu la séparation, doivent s'effectuer rapidement. Ceci montre l'intérêt d'une méthode rapide de séparation de l'argent.

Des essais de sensibilité effectués sur des solutions pures d'argent, irradiées pendant 3 min (à saturation) avec un flux de 10¹⁰ neutrons · cm⁻² · sec⁻¹ ont donné les résultats suivants:

Isotope formé	ppm d'argent dosables pour des temps de décroissance de					
	30 sec	60 sec	90 sec			
Ag^{110}	0,4	1,0	1,5			

TABLEAU 2

2. BASES THÉORIQUES DE L'ÉCHANGE REDOX ARGENT-MERCURE (EXTRACTION)

2.1. CONDITIONS ÉLECTROCHIMIQUES

L'équilibre chimique d'oxydo-reduction qui est à la base de cet échange est commandé par les potentiels ox/red des couples Ag/Ag^+ , Hg/Hg^{+2} et éventuellement $2 Hg/Hg_2^{+2}$. Les potentiels normaux Ox/red de ces couples sont:

TABLEAU 3

Réaction	E _o (volt)
$Ag \stackrel{\rightarrow}{\rightleftharpoons} Ag^{+} + e$ $Hg \stackrel{\leftarrow}{\hookrightarrow} Hg^{+2} + 2e$ $2 Hg \stackrel{\rightarrow}{\rightleftharpoons} Hg^{+2}_{2} + 2e$	+0,799 +0,852 +0,798
,	

Etant donné la faible différence de potentiel entre ces couples, un échange quantitatif entre des ions d'argent et le mercure n'est pas possible. Des calculs théoriques ont en effet montré, que pour réduire 1μ g d'argent, il faut que le potentiel électrochimique du système Ag/Ag^+ soit supérieur de environ 0,1 v à celui du système Hg/Hg ionique [25]. Pour rendre l'échange quantitatif, il faut donc augmenter cette différence de potentiel entre les deux couples qui prennent part à la réaction d'oxydoréduction. On sait que la complexation d'un cation déplace son potentiel de demivague vers des valeurs plus faibles de E (fig. 1):

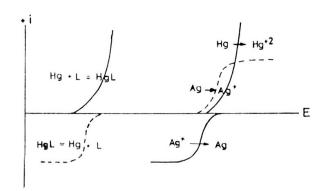


Fig. 1. — Courbes polarisation représentant le déplacement de $E_{1/2}$ du mercurepar complexation de Hg^{+2} au moyen du ligand L.

L'introduction dans la phase aqueuse d'un complexant fort du mercure ionique (le plus souvent de Hg^{+2}) permet de créer la différence de potentiel nécessaire. En appliquant l'équation 12.2. à l'échange $Hg-Ag^+$, il vient:

$$2 Ag^{+} + Hg + kL^{p} - 2 Ag_{a} + Hg L_{k}^{2+pk}$$
 (221.1)

Une étude systématique de l'extraction de l'argent par le mercure en milieu complexant est faite dans le chapitre 3.

2.2. CONDITIONS CHIMIQUES

La solubilité de l'argent dans le mercure est relativement faible, elle n'est que de 0,04% en poids [26], ce qui correspond à 1,6 mg d'argent dans 0,3 ml de mercure. Des essais ont cependant montré que le rendement d'extraction de l'argent diminue déjà à partir de 0,25 mg pour 0,3 ml de mercure [25], ce qui fait que cette méthode ne permet que la séparation de traces d'argent.

2.3. CINÉTIQUE DE L'ÉCHANGE REDOX ARGENT-MERCURE

La réaction d'échange entre l'ion argent et le mercure est d'ordre 1 [31], comme c'est le cas de la réaction mercure-ions mercure, étudié par Haissinski et coll. [32]. Des études, faites notamment par Okashita [30] montrent, que la vitesse d'extraction de l'argent par le mercure obéit à la loi exponentielle des réactions d'échange hétérogènes.

3. PARTIE EXPÉRIMENTALE

3.1. APPAREILLAGE

Pour nos essais, nous avons repris le dispositif expérimental déjà utilisé par Loepfe.

L'appareillage (fig. 2) consiste en un vibreur « Chémap » du type E1 (4). L'échange se fait dans une ampoule à sceller de 1 à 10 ml, au col élargi (1), permettant l'introduction rapide des réactifs. L'ampoule est fermée par soudure du col (2) et placée dans une manchette en caoutchouc de 3 cm de long (6). La partie inférieure de l'ampoule repose légèrement sur l'aile métallique du bras du vibreur (7) de sorte que les deux phases (aqueuse et mercure) étalées, se prêtent bien aux mouvements verticaux du vibreur. Grâce à la fixation élastique de l'ampoule, le mercure se disperse en de fines gouttelettes. Une vis (8) permet de régler facilement l'intensité de la vibration.

Cette technique présente certains avantages:

- Pas de pertes dans les rodages et les bouchons, grâce à l'emploi des ampoules.
- Possibilité d'immerger le tout dans un bain thermostatisé (fig. C).
- Facilité de travailler en absence d'oxygène si cela est nécessaire.
- Séparation facile des deux phases après l'échange:

L'ampoule est ouverte à l'endroit le plus étroit (3) et reversée. La phase métallique sort par son propre poids, tandis que la quasi-totalité de la phase aqueuse reste dans l'ampoule.

Certains échanges ont été faits par agitation manuelle (notamment des essais de cinétique). Dans ce cas, l'extraction se fait dans des éprouvettes en polystyrène de 6 ml, munis d'un bouchon en plastique. Pour séparer les deux phases, on pipette la phase aqueuse surnageante.

3.2. RÉACTIFS

Tous les réactifs utilisés sont de qualité « puriss.p.a. ». L'eau est bidistillée.

3.3. TRACEURS

Les essais systématiques sur l'extraction de l'argent sont effectués à l'aide de l'argent 110m comme traceur (période = 253 j.).

Pour les essais de sélectivité nous utiliserons soit des traceurs radioactifs préparés par nos propres soins par activation neutronique (Au¹⁹⁸, Cu⁶⁴ et Cu⁶⁶ etc.), soit des traceurs de plus longue période tel le Pb²¹⁰, Zn⁶⁵ etc. achetés chez le producteur.

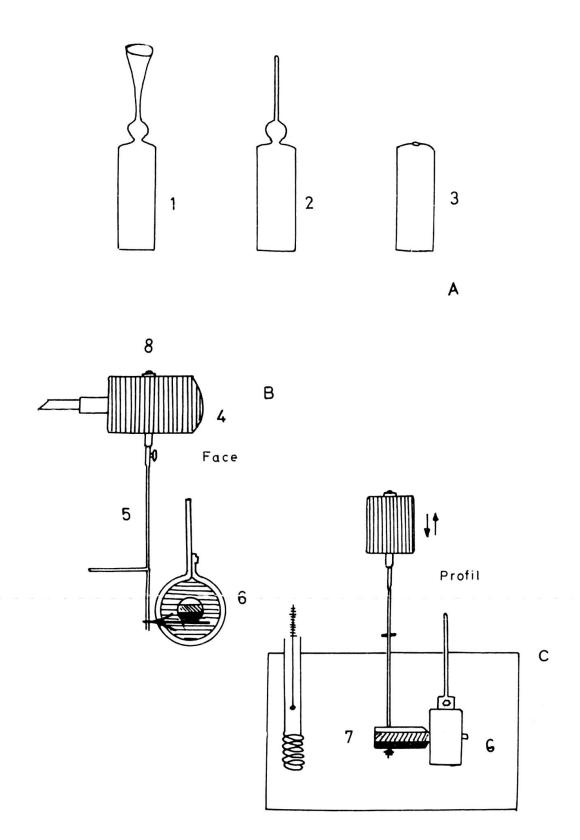


Fig. 2. — Appareillage.

A. Ampoules d'échange de 5 ml.
 B. Vue de côté de l'échangeur
 C. Vue de face de l'échangeur plongé dans un ultra-thermostat

3.4. MODE OPÉRATOIRE

On introduit dans l'ampoule à sceller les réactifs en solution, ainsi que le mercure métallique. L'ampoule est fermée sur une flamme (éventuellement après avoir chassé au préalable l'air par un courant d'azote). L'ampoule est ensuite placée sur le bras du vibreur comme indiqué plus haut.

Une fois l'agitation terminée, on ouvre l'ampoule avec une lime, la renverse, et reçoit le mercure dans une petite éprouvette en polystyrène de 6 ml. La phase métallique est lavée avec 2 fois 4 ml d'une solution renfermant le même complexant que celui utilisé pour l'extraction de l'argent.

3.5. ANALYSE SPECTROMÉTRIQUE

Les mesures quantitatives d'activité sont effectuées à l'aide de l'équipement électronique suivant:

- A) Pour des mesures d'activité sur des solutions pures (radioisotopes d'un seul élément):
 - Un spectromètre gamma monocanal Landis-Gyr ELB 5, muni d'un timer du type ELD 5 et d'une alimentation THT.
- B) Pour des mesures sur des spectres complexes, études de sélectivité et applications (radioisotopes de plusieurs éléments):

Un spectromètre gamma multicanaux SA 40 (à 400 canaux) « Intertechnique », muni d'un cristal plat de NaI 5 · 5 cm, d'une alimentation THT VH 20, d'un chassis de commande BK 21, d'un calculateur intermédiaire RG 23 et d'une machine imprimante IBM (ou « ADDOX-X »).

3.6. CALCULS THÉORIQUES DE POTENTIEL

L'étude expérimentale de l'extraction de l'argent dans les divers milieux complexants est précédée par une étude théorique qui doit permettre de fixer les conditions d'extraction optima. Cette étude comprend:

A) Une détermination des $\alpha_{M(L)}$ selon Ringbom [27].

Définition:

$$\alpha_{M(L)} = \frac{|M| total}{|M| libre} = \frac{|M|_t}{|M|}$$
 (236.1.)

Les $\alpha_{M(L)}$ sont une mesure du degré de complexation du cation M^{+n} par un complexant L. Plus $\alpha_{M(L)}$ est grand, plus M est complexé.

- B) Une détermination des potentiels électrochimiques de l'argent et du mercure dans le milieu considéré.
- a) Le potentiel de la solution d'argent après une extraction (réduction et amalgamation) de 99 % d'argent (rendement quantitatif).

D'après une théorie développée et vérifiée expérimentalement par Jangg et H. Kirchmayr [28], le potentiel d'un amalgame d'un métal ne présentant aucune surtension avec le mercure (comme c'est le cas pour l'argent), varie avec la concentration de ce métal dans le mercure entre le potentiel du mercure pur et le potentiel standard E_0 du système M solide/ M^{+n} (fig. 3).

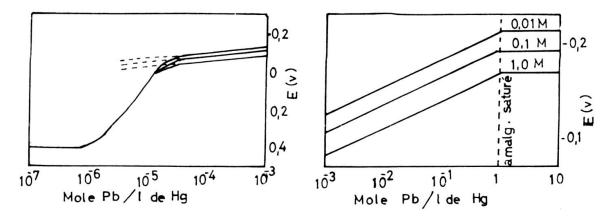


Fig. 3a. — Variation du potentiel de l'amalgame de Pb avec la concentration en Pb de l'amalgame et de la solution.

Nous donnons le diagramme E_a (pot. amalgamme) en fonction de a_M (activité de M^{+n}) pour le système Pb_a/Pb^{+2} (fig. 3), en guise d'exemple. Pour un amalgame très dilué en plomb (> $10^{-6}M$ de Pb_a), le potentiel électrochimique de l'amalgame, sous l'influence de la polarisation, se rapproche rapidement de celui du mercure pur. En augmentant la concentration de Pb_a , le potentiel fait un saut assez brusque, pour varier ensuite conformément à l'équation:

$$E_a = E_0 + \frac{RT}{nF} ln \frac{a_{M+n} \cdot a_{Mas}}{a_{Ma}}$$
 (236.2.)

Enfin, le potentiel d'un amalgame saturé est égal au potentiel du métal pur (dans ce cas, du système Pb/Pb⁺²).

 a_{M+n} = activité du ion métallique en solution

 a_{Mas} = activité du métal amalgamé à saturation

 a_{Ma} = activité du métal amalgamé

 E_0 = potentiel normal du système M/M^{+n} .

Sachant que

$$a_{M+n} = \frac{a_{Mt}}{\alpha_{M(L)}} ,$$

l'équation ci-dessus devient, pour un échange de 99 %: $(M_t=\text{quant. totale de }M)$.

$$E_a = E_0 + \frac{RT}{nF} \ln \frac{10^{-2} \cdot a_{Mt} \cdot a_{Mas}}{\alpha_{M(L)} - \alpha_{Ma}}$$
 (236.3.)

Pour nos calculs de potentiel nous remplaçons les activités par les concentrations. La formule appliquée est donc:

$$E_a = E_0 + \frac{RT}{nF} \ln \frac{|M^{+n}| \cdot |M_{as}|}{|M_a|}$$
 (236.4.)

ou

$$E_a = E_0 + \frac{0,059}{n} \log_{10} \frac{10^{-2} |M^{+n}|_t \cdot |M_{as}|}{\alpha_{M(L)} |M_a|}$$
 (236.5.)

Pour l'argent on a les constantes suivantes:

$$-E_0 = 0.80 \text{ volt}$$

 $- |M_{as}| = 10^{-2.3}$ Mole (ce qui correspond à une solubilité en poids de 0,04 % d'argent dans le mercure (26).

2) Calcul du potentiel de la solution de mercure (II) obtenue après une extraction de 99% d'argent:

Le calcul est fait à l'aide de la formule de Nernst:

$$E_{Hg} = E_0 + \frac{RT}{nF} \ln |Hg^{+2}|$$
 (236.6.)

en introduisant les α selon Ringbom, il vient:

$$E_{Hg} = E_0 + 0.030 \log_{10} \frac{|Hg|_t}{\alpha_{Hg(L)}}$$
 (236.7.)

$$E_0(Hg/Hg^{+2}) = 0.85 \text{ volt}$$

 $|Hg|_t = 1/2 |Ag|_t$ car l'extraction est basée sur l'équation:

$$2 Ag^{+} + Hg^{o} = 2 Ag^{o} + Hg^{+2}$$

Un exemple de calcul détaillé est donné dans le chapitre suivant (3.7.1.).

3.7. EXTRACTION DE L'ARGENT PAR LE MERCURE EN MILIEU COMPLEXANT HYDROXYLE

3.7.1. *Etude analytique*

3.7.1.1. Complexes possibles

$$Ag^{+} + OH^{-} = AgOH$$
 $\log \beta_{1} = 3.0$ (1)
 $Ag^{+} + 2OH^{-} = Ag(OH)_{2}^{-}$ $\log \beta_{2} = 4.7$
 $Hg^{+2} + OH^{-} = HgOH^{+}$ $\log \beta'_{1} = 11.5$ (2)
 $Hg^{+2} + 2OH^{-} = Hg(OH)_{2}$ $\log \beta'_{2} = 22.6$

3.7.1.2. Calcul des $\alpha_{M(OH)}$.

$$\alpha_{Ag(OH)} = \frac{|Ag|_{t}}{|Ag^{+}|} = \frac{|Ag^{+}| + |AgOH| + |Ag(OH)_{2}^{-}|}{|Ag^{+}|}$$

mais

$$AgOH = \beta_1 | Ag^+ | | OH^- |$$

et

$$Ag(OH)_{2}^{-} = \beta_{2} |Ag^{+}| |OH^{-}|^{2}$$

d'où:

$$\alpha_{Ag(OH)} \, = \, 1 \, + \, 10^{3,0} \, | \, OH^- \, | \, + \, 10^{4,7} \, | \, OH^- \, |^2$$

Pour le mercure on a:

$$\alpha_{Hg(OH)} = \frac{|Hg|_t}{|Hg^{+2}|} = \frac{|Hg^{+2}| + |HgOH^+| + |Hg(OH)_2|}{|Hg^{+2}|}$$

et, en introduisant les constantes de stabilité des complexes formés, il vient:

$$\alpha_{Hq(OH)} = 1 + 10^{11.5} |OH^-| + 10^{22.6} |OH^-|^2$$

3.7.1.3. Calculs de potentiel

Conditions de calcul:

$$|Ag|_t = 10^{-4} M$$
 $|Hg|_t = 5 \cdot 10^{-5} M$

Volume de la phase mercurique = 0.3 ml

$$E_{0 Ag/Ag}^{+} = 0.80 v$$

$$E_{0 Hg/Hg}^{+2} = 0.85 v$$

Formules appliquées:

a) Pour le calcul du potentiel du système Hg/Hg^{+2} :

$$E_{Hg} = 0.85 v + 0.030 \log \frac{5 \cdot 10^{-5}}{\alpha_{Hg(OH)}}$$
 (Nernst)

b) Pour le calcul du potentiel du système Ag/Ag^+ , après une extraction de 99% d'argent:

$$E_{Ag} = 0.80 v + 0.059 \log \frac{|Ag|_t |Ag|_{as}}{100 \cdot \alpha_{Ag(OH)} \cdot |Ag|_a}$$

Dans nos conditions, 42,8 μg d'argent ont passé dans 0,3 ml de mercure, ce qui correspond à une concentration $|Ag|_a$ de $10^{-2.9}M$.

La solubilité de l'argent dans le mercure est de 0.04% en poids [7], ce qui correspond à $10^{-2.3}M$ d'argent dans 1 litre de mercure. Donc:

$$E_{Ag} = 0.80 v + 0.059 \log \frac{10^{-6} \cdot 10^{-2.3}}{\alpha_{Ag(OH)} \cdot 10^{-2.9}}$$

Tant que le potentiel électrochimique du couple Hg/Hg^{+2} est supérieur à celui du couple Ag/Ag^{+} , l'équilibre de l'équation

$$2 Ag^+ + Hg \longrightarrow Hg^{+2} + 2 Ag$$

est déplacé vers !a gauche. Un rendement d'extraction supérieur à 99 % est théoriquement possible à partir du pH 6,7 (fig. 3), car alors

$$E_{Ag}/_{Ag} + > E_{Hg}/_{Hg}^{+2}.$$

$$0.6 - II$$

$$0.4 - A_{g}(OH)$$

$$0.2 - E_{Hg}/_{Hg}^{2}$$

$$- - E_{Ag}/_{Ag}^{4g} - (extraction de 99 \%)$$

$$Valeurs calculées pour |Ag|_{t} = 10^{-4} \text{ M}$$

$$et pour 0.3 ml de mercure$$

Fig. 3. — Echange redox argent-mercure en milieu complexant hydroxyle.

I. Courbes des $\alpha_{M(OH)}$ selon Ringbom.

II. Variation des potentiels redox de l'argent et du mercure avec le pH.

3.7.2. Etude expérimentale

3.7.2.1. Influence du pH sur l'extraction de l'argent

Conditions expérimentales:

Volume de la phase aqueuse: 4 ml

 $|Ag|_t$ variable pH variable

Volume de la phase mercurique: 0,3 ml Agitation mécanique pendant 5 min.

Résultats:

TABLEAU 4

Ag t (M)	рН	rapport molaire $\frac{ OH - }{ Ag _{t}}$	% de Ag extrait
2,5 · 10-6	7,0	4 · 10-2	81,0
$1,0 \cdot 10^{-7}$	7,0	1	81,5
$2.5 \cdot 10^{-6}$	9,8	6	86,3
$2,5 \cdot 10^{-6}$	10,7	$2 \cdot 10^{2}$	87,5
$2,5 \cdot 10^{-6}$	11,7	2 · 10 ³	98,7
$2.5 \cdot 10^{-6}$	12,7	2 · 104	98,0
$1,0 \cdot 10^{-4}$	12,7	$5 \cdot 10^{2}$	97,7
$1,0 \cdot 10^{-4}$	13,0	1 · 10 ³	98,2
$1,0 \cdot 10^{-4}$	13,4	4 · 103	98,8
1,0 · 10 - 4	13,7	$5 \cdot 10^{3}$	98,8

Il faut que le rapport molaire $|OH^-|/|Ag|_t$ soit supérieur à 500 pour que l'extraction de l'argent soit optimum.

3.7.2.2. Etude de cinétique

Conditions expérimentales:

 $|Ag|_t 8.6 \cdot 10^{-6} g$ ou $86.4 \cdot 10^{-6} g$ renfermant Ag 110 m (traceur). pH = 13.0

Volume de la phase aqueuse: 5 ml

Volume de la phase mercurique: 0,3 ml

Agitation manuelle.

Résultats: (fig. 4).

Chaque point résulte de la moyenne de deux essais. On constate, que la vitesse d'extraction de l'argent ne dépend pratiquement pas de la concentration initiale de ce dernier. Le rendement maximum d'extraction est obtenu après une agitation de 1 min.

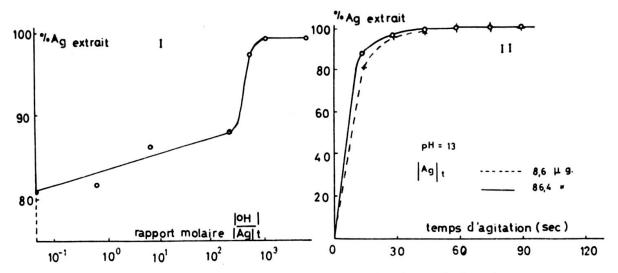


Fig. 4. — Extraction de l'agent en milieu complexant hydroxyle.

- I. Influence de la concentration du complexant sur le rendement d'extraction de l'argent. Conditions expérimentales: voir tab. 4.
- II. Etude de cinétique.

 Conditions d'extraction: Volume de la phase mercure 0,3 ml

 Volume de la phase aqueuse 5 ml

3.8. EXTRACTION DE L'ARGENT PAR LE MERCURE EN MILIEU COMPLEXANT BROMURE

3.8.1. Etude analytique

3.8.1.1. Complexes possibles

Avec Hg^{+2} :

$$Hg^{+2} + Br^{-} = Hg Br^{+}$$
 $\log \beta_{1}' = 9,1$ (3)
 $Hg^{+2} + 2 Br^{-} = Hg Br_{2}$ $\log \beta_{2}' = 17,3$
 $Hg^{+2} + 3 Br^{-} = Hg Br_{3}^{-}$ $\log \beta_{3}' = 19,7$
 $Hg^{+2} + 4 Br^{-} = Hg Br_{4}^{-2}$ $\log \beta_{4}' = 21,0$

Avec Ag^+ :

$$Ag^{+} + Br^{-} = Ag Br$$
 $\log \beta_{1} = 4,1$ (3b)
 $Ag^{+} + 2 Br^{-} = Ag Br_{2}^{-}$ $\log \beta_{2} = 7,1$
 $Ag^{+} + 3 Br^{-} = Ag Br_{3}^{-2}$ $\log \beta_{3} = 8,0$
 $Ag^{+} + 4 Br^{-} = Ag Br_{4}^{-3}$ $\log \beta_{4} = 8,9$

Suivant les conditions, il faut également tenir compte des complexes hydroxylés:

$$Hg OH^{+}$$
 $\log \beta'_{1} = 11,5$ (2)
 $Hg(OH)_{2}$ $\log \beta'_{2} = 22,6$
 $Ag OH$ $\log \beta_{1} = 3,0$ (1)
 $Ag(OH)_{2}^{-}$ $\log \beta_{2} = 4,7$

3.8.1.2. Calcul des $\alpha_{M(Br,OH)}$

$$\alpha_{Hg(Br,OH)} = 1 + 10^{9,1} |Br|_{t} + 10^{17,3} |Br|_{t}^{2} + 10^{19,7} |Br|_{t}^{3} + 10^{21,0} |Br|_{t}^{4} + 10^{11,5} |OH| + 10^{22,6} |OH|^{2}$$

En posant $\alpha_{Br(H)} = 1$, c'est-à-dire en négligeant l'action complexante des protons sur Br^- (pH supérieur à 3).

$$\alpha_{Ag(Br,OH)} = 1 + 10^{4,1} |Br|_{t} + 10^{7,1} |Br|_{t}^{2} + 10^{8,0} |Br|_{t}^{3} + 10^{8,9} |Br|_{t}^{4} + 10^{3,0} |OH| + 10^{4,7} |OH|^{2}$$

Remarques:

On constate (fig. 5) que les conditions électrochimiques pour une réduction quantitative de l'argent sont satisfaites, lorsque la concentration en bromure n'excède pas $10^{-2} M$.

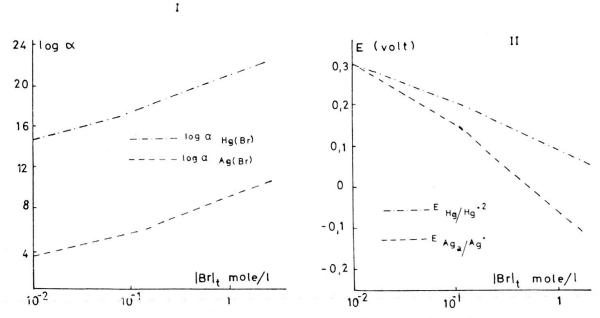


Fig. 5. — Echange redox argent-mercure en milieu complexant bromure

- I. Courbes des $\alpha_{M(Br)}$ selon Ringbom. pH 3 à 9.
- II. Courbes des potentiels redox de l'argent et du mercure.

Conditions de calcul: pH 3-9

 $|Ag|_t = 10^{-4} M$ Mercure: 0,3 ml.

3.8.2. Etude expérimentale

3.8.2.1. Influence de la concentration du bromure sur l'extraction de l'argent

Conditions expérimentales:

Volume de la phase aqueuse: 4 ou 5 ml $|Ag|_t$: 43,2·10⁻⁶ g renfermant Ag 110m (traceur). $|Br|_t$: variable.

Volume de la phase mercurique: 0,3 ml Agitation mécanique pendant 10 min.

Résultats:

TABLEAU 5

Br _t (M)	Volume phase aqueuse (ml)	% d'argent extraits	Remarques
$2.0 \cdot 10^{-2}$ $2.4 \cdot 10^{-1}$	4 5	100 100	Pté. de $Hg Br_2$ Air chassé par N_2
$2.5 \cdot 10^{-1}$	4	99,6 99,1	Pas de pté. Pté. de <i>Hg Br</i> ₂ Pas de pté.
1,0 1,8	4	86,2	Pas de pté. Pas de pté.

Remarques:

Il est possible d'extraire quantitativement l'argent par le mercure en milieu bromure, la concentration de ce dernier ne devant pas dépasser 1 M/1. On constate que ceci n'est pas tout à fait en accord avec les prévisions théoriques (fig. 5) à cause probablement de l'inexactitude des constantes de stabilité, et éventuellement des formules utilisées. (v.p.96).

L'oxygène présent dans l'ampoule dans laquelle se fait l'échange oxyde le mercure. Cette oxydation se fait après la réduction de l'argent, elle ne gêne donc pas l'extraction de ce dernier.

Dans des solutions diluées en bromure (moins de 1 M), il y a formation de $Hg Br_2$ qui précipite partiellement. En chassant l'oxygène de l'ampoule, on évite une formation excessive de mercure ionique et le précipité qui en résulte. En milieu bromure 1 M et plus, il y a formation de $Hg Br_3^-$ et $Hg Br_4^{-2}$ solubles, on n'observe donc pas de précipitation, même en présence d'oxygène. A noter aussi que la formation de Ag Br insoluble ne gène pas l'échange dans nos conditions.

3.8.2.2. Etude de la vitesse d'extraction

Conditions expérimentales:

Volume de la phase aqueuse: 5 ml

Quantité totale d'argent (y compris Ag 110m): 43,2·10⁻⁶ g

 $|Br|_{t}$: variable

pH: 4 à 5

Volume de la phase mercurique: 0,3 ml Agitation mécanique pendant 1 min.

Résultats:

TABLEAU 6

Br ₁ (M)	% d'argent extrait		
1,2	100		
1,0	100		
$4,0 \cdot 10^{-1}$	98,8		
$2,0 \cdot 10^{-1}$	80,0		
$2,0 \cdot 10^{-2}$	41,5		
$8,0 \cdot 10^{-3}$	34,5		

La concentration en complexant a donc une forte influence sur la vitesse d'extraction de l'argent.

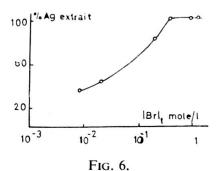


Fig. 7. — Influence de la concentration du bromure sur la vitesse d'extraction de l'argent. Conditions d'expérience: pH 5

Volume de la phase aqueuse = 5 ml L'oxygène est chassé de l'ampoule Ag introduit = 43,2 µg Mercure = 0,3 ml

3.9. EXTRACTION DE L'ARGENT PAR LE MERCURE EN MILIEU COMPLEXANT CHLORURE

3.9.1. Etude analytique

3.9.1.1. Complexes possibles:

Dans nos conditions de travail (pH>2), les protons n'ont pas d'action complexante sur Cl^- . Comme nous admettons d'autre part que le complexant est en grand excès par rapport à l'argent et au mercure, nous pouvons écrire que $|Cl^-| = |Cl|_t$.

3.9.1.2. Remarques

La figure 8 nous donne les $\alpha_{M(C1)}$ en fonction de la concentration en chlorure, pour des pH supérieurs à 2, ainsi que les potentiels redox calculés de l'argent et du mercure.

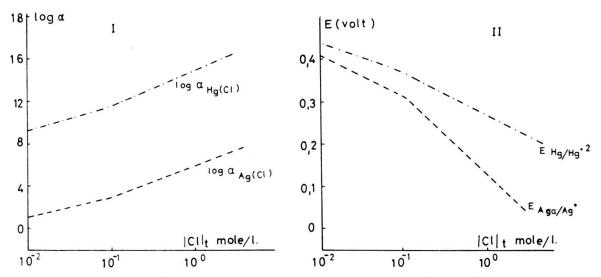


Fig. 8. — Echange redox argent-mercure en milieu complexant chlorure.

I. Courbes des $\alpha_{(MCl)}$ selon Ringbom. pH > 2.

II. Variation des potentiels redox de l'argent et du mercure en fonction de la concentration en Cl^- .

Conditions:
$$|Ag|_t = 10^{-4} M \text{ pH} > 2$$

Mercure = 0,3 ml

Volume phase aqueuse = 4 ml

Les potentiels sont calculés pour un rendement d'extraction de 99%.

En milieu chlorure suffisamment dilué ($<10^{-1} M$), une extraction partielle de l'argent semble théoriquement possible. Le rendement de l'extraction semble diminuer avec l'augmentation de la concentration en Cl^- .

3.9.2. Etude expérimentale

3.9.2.1. Influence de la concentration du chlorure sur l'extraction

Conditions expérimentales:

Volume de la phase aqueuse: 4 ml $|Ag|_t$: $10^{-4} M$ ou $43,2 \cdot 10^{-6}$ g pH environ 4 $|C1|_t$: variable.

Volume de la phase mercurique: 0,3 ml Agitation mécanique pendant 10 min.

Résultats:

TABLEAU 7

$ Cl _{t}$ (M)	% de Ag extrait	Remarques
$\begin{array}{c} 2.5 \cdot 10^{-1} \\ 4.0 \cdot 10^{-1} \end{array}$	98,6	Pté de $Hg_2 Cl_2$
4,0 · 10 - 1	99,2	»
$5,0 \cdot 10^{-1}$	99,1	»
1,0	99,3	»
1,2	100	Pas de précipité
2,0	96,7	«
4,0	95,8	»

Remarques:

La formation de chlorure mercureux, qui a lieu en milieu $Cl^- \le {}^1 M$, n'empêche pas la réduction et l'amalgamation de l'argent. La concentration idéale en Cl^- est de 1,2 M, car le mercure se trouve alors sous forme de $Hg Cl_4^{-2}$ soluble.

En milieu plus concentré, le rendement d'extraction diminue, comme le laissait prévoir d'ailleurs l'étude théorique (3.9.1.).

3.9.2.2. Etude de la vitesse d'extraction

Conditions d'expérience:

Volume de la phase aqueuse: 4 ml $|C1|_t$: 1,2 M $|Ag|_t$: $10^{-4} M (43,2\cdot10^{-6})$ pH environ 4 Volume de la phase mercurique: 0,3 ml

Agitation manuelle.

Résultats:

TABLEAU 8

Temps d'agitation (sec)	% d'argent extrait
15	98,7
30	99,1
45	100

Remarque:

L'argent est quantitativement extrait par le mercure en milieu Cl^- , bien que son potentiel E soit légèrement inférieur à celui du mercure (fig. 8). Ceci a également été constaté par Bigliocca [29] et par Okashita [30].

3.10. EXTRACTION DE L'ARGENT PAR LE MERCURE EN MILIEU COMPLEXANT ACÉTATE

3.10.1. *Etude analytique*

3.10.1.1. Complexes possibles:

$$CH_3COO\ Ag$$
 $\log \beta_1 = 0.4$ (5)
 $(CH_3COO)_2Ag^ \log \beta_2 = 0.5$
 $Ag\ OH$ $\log \beta_1 = 3.0$
 $Ag(OH)_2^ \log \beta_2 = 4.7$ (1)
 $(CH_3COO)_2Hg$ $\log \beta'_2 = 8.4$ (6) (La première cte. n'est pas connue)
 $Hg\ OH^+$ $\log \beta'_1 = 11.5$ (2)
 $Hg(OH)_2$ $\log \beta'_2 = 22.6$
 CH_3COOH dont la cte. de stabilité est $10^{4.75}$ (5).

3.10.1.1. Calcul des $\alpha_{M(CH_3COO,OH)}$.

Ici on ne peut plus négliger l'action complexante des protons sur le ion acetate. Dans les formules des

 $\alpha_{M(CH_{3}COO,OH)}$ il faut donc introduire $\alpha_{CH_{3}COO(H)}$.

$$\alpha_{CH_3COO(H)} = \frac{|CH_3COO|_t}{|CH_3COO^-|} = 1 + 10^{4.75} |H^+|$$

On trouve:

$$\alpha_{Ag(CH_{3}COO,OH)} = 1 + 10^{0.4} \frac{|CH_{3}COO|_{t}}{\alpha_{CH_{3}COO(H)}} + 10^{0.5} \frac{|CH_{3}COO|_{t}^{2}}{\alpha_{CH_{3}COO(H)}^{2}} + 10^{3.0} |OH| + 10^{4.7} |OH|^{2}$$

Il faut encore préciser, que l'acétate sous forme de complexe avec l'argent ou le mercure est négligeable par rapport à la quantité totale présente.

De même:

$$\alpha_{Hg(CH_{3}COO,OH)} = 1 + 10^{8.4} \frac{|CH_{3}COO|_{t}^{2}}{\alpha^{2}_{CH_{3}COO(H)}} + 10^{11.5} |OH| + 10^{22.6} |OH|^{2}$$

3.10.1.3. *Remarques*:

Le calcul des $\alpha_{Hg(CH_3COO,OH)}$ montre, que le mercure se trouve sous forme de $(CH_3COO)_2Hg$ jusqu'au pH 6-7; à partir du pH 7 il se trouve sous forme de $Hg(OH)_2$. (Fig. 9).

L'argent reste dissocié jusqu'au pH 5, puis il est légèrement complexé par CH_3COO^- et, à partir du pH 12, on a exclusivement $Ag\ OH$ et $Ag(OH)_2^-$.

En milieu acétate $5 \cdot 10^{-1} M$, un rendement d'extraction supérieur à 99 % est théoriquement possible à partir du pH 7.

3.10.2. Etude expérimentale

3.10.2.1. Influence de la concentration du complexant sur l'extraction

Conditions expérimentales:

Volume de la phase aqueuse: 4 ml $|Ag|_t = 10^{-4} M (43.2 \mu g)$ pH: 4,75 (tampon CH_3COO^-/CH_3COOH) ou 7 Volume de la phase mercurique: 0,3 ml Agitation mécanique pendant 10 min.

Résultats: voir figure 10.

Remarques:

Contrairement aux prévisions théoriques, l'extraction quantitative de l'argent est possible au pH 4,75 déjà.

3.10.2.2. Etude de la vitesse d'extraction

Conditions expérimentales:

Volume de la phase aqueuse: 4 ml $|Ag|_t = 10^{-4} M (43, 2 \mu g)$ $|CH_3COO|_t = \text{variable}$ -** Avec de la gélatine à $2 \cdot 10^{-2} \%$. PH 7 ou 4,75 Volume de la phase mercurique: 0,3 ml Agitation manuelle.

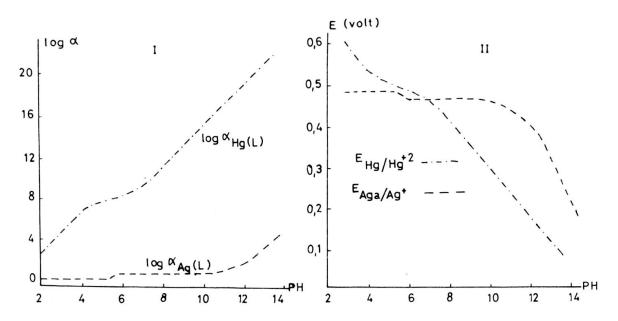


Fig. 9. — Echange redox argent-mercure en milieu complexant acetate.

I. Variation des $\alpha_{M(CH_3COO,OH)}$ avec le pH, pour $|CH_3COO|_t = 5 \cdot 10^{-1} M$. II. Variation des potentiels redox avec le pH, pour $|CH_3COO|_t = 5 \cdot 10^{-1} M$. Conditions: $|Ag|_t = 10^{-4} M$ $|CH_3COO|_t = 5 \cdot 10^{-1} M$

pH variable

Volume phase aqueuse = 4 ml

Volume phase mercure = 0.3 ml

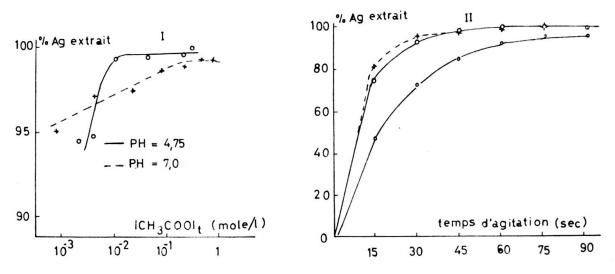


Fig. 10. — Extraction de l'argent en milieu complexant acetate.

- I. Influence de la concentration du complexant sur le rendement d'extraction. Conditions expérimentales, voir 3.10.2.1.
- Etude de la vitesse d'extraction (tab. 9).

......
$$|CH_3COO|_t = 0.25 M, \text{ pH } 7.0$$

 $= 0.25 M, \text{ pH } 4.7$
 $= 0.5 M, \text{ pH } 4.7$

Résultats:

TABLEAU 9

IGU-GOOL ON	% d'argent extrait après une agitation de: [sec]							
CH3COO ₁ (M)	15	30	45	60	75	90	105	120
25 10 1			0.50	1.00	00.5			
$2.5 \cdot 10^{-1}$ pH = 7	73,6	92,3	97,8	100	99,6			_
6,0 · 10 - 1	80,8	94,8	97,6	99,6	99,6			_
pH = 7 2,5 · 10 ⁻¹	73,7	92,5	98,0	100	99,6	100		
pH = 4.75	73,7	92,3	96,0	100	99,0	100		
$5,0 \cdot 10^{-1}$	46,6	71,6	85,0	91,8	96,0	95,0	95,0	95,2
pH = 4,75 **								
l			1			1	I	

Remarques:

La concentration en acétate et le pH (du moins dans le domaine où nous l'avons étudié) n'influencent pratiquement pas la vitesse d'extraction de l'argent.

La présence de gélatine diminue fortement la vitesse d'extraction. La surface de la phase métallique est fortement augmentée, mais le contact entre la phase aqueuse et le mercure est moins bon par suite de la présence de gélatine, ce qui explique la diminution de la vitesse d'extraction.

3.11. EXTRACTION DE L'ARGENT PAR LE MERCURE EN MILIEU COMPLEXANT SCN

3.11.1.1. *Complexes possibles*

H SCN dont la constante de stabilité
$$K = 10^{0.8}$$
 (7)
 $Ag(SCN)_{2}^{-}$ $\log \beta_{2} = 8.2$ (8)
 $Ag(SCN)_{4}^{-3}$ $\log \beta_{4} = 9.6$
 $Hg(SCN)_{2}$ $\log \beta'_{2} = 17.2$ (9)
 $Hg(SCN)_{4}^{-2}$ $\log \beta'_{4} = 21.9$

3.11.1.2. $\alpha_{M(SCN,OH)}$.

L'action complexante des protons sur SCN^- ne se fait sentir qu'aux pH inférieurs à 2. La valeur de

$$\alpha_{SCN(H)} \; = \; 1 \; + \; 10^{o,8} \; | \; H^{+} \; | \; = \; 1$$

dans nos conditions de travail (pH > 3).

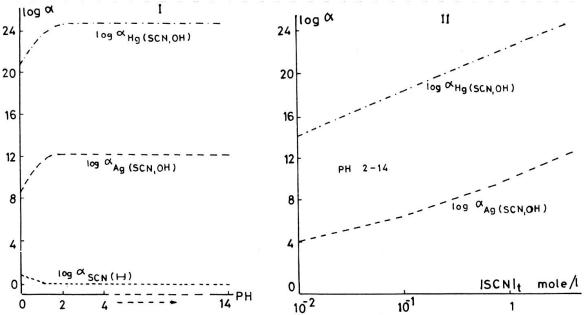


Fig. 11. — Echange redox argent-mercure en milieu complexant SCN-

- Variation des $\log \alpha_{M(SCN)}$ avec le pH $|SCN|_t = 5 \cdot 10^{-1} M$. Variation des $\log \alpha_{M(SCN,OH)}$ avec la concentration de SCN^- .

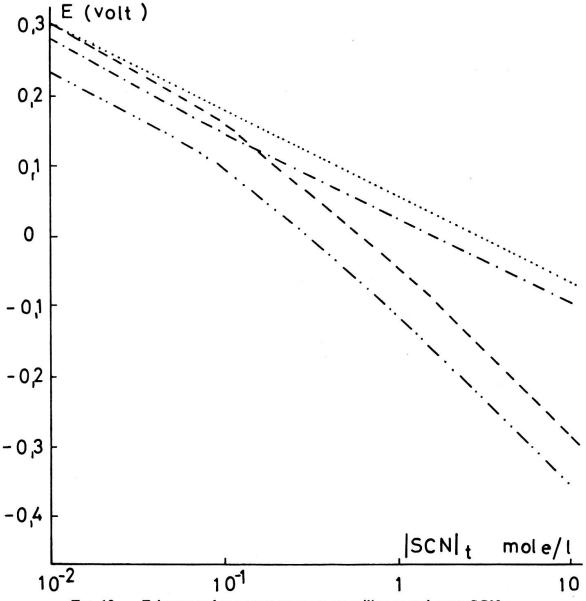


Fig. 12. — Echange redox argent-mercure en milieu complexant SCN-. Variation du potentiel redox de l'argent et du mercure avec la concentration du complexant. $E_{Hg}/_{Hg} + 2 (99\% \ Ag \ \text{extrait})$ — — $E_{Ag}/_{Ag} + (90\% \ Ag \ \text{extrait})$ $E_{Hg}/_{Hg} + 2 (90\% \ Ag \ \text{extrait})$ — ... — $E_{Ag}/_{Ag} + (99\% \ Ag \ \text{extrait})$ Pour $|Ag|_t = 10^{-4} \ M \ \text{et}$ 0,3 ml de mercure

On a donc:

$$\alpha_{Ag(SCN,OH)} = 1 + 10^{8.2} \frac{|SCN|_t^2}{\alpha_{SCN(H)}^2} + 10^{9.6} \frac{|SCN|_t^4}{\alpha_{SCN(H)}^4} + 10^{3.0} |OH| + 10^{4.7} |OH|^2$$

Mais

$$\alpha_{SCN(H)} = 1$$

Donc:

$$a_{Ag(SCN,OH)} = 1 + 10^{8.2} |SCN|_t^2 + 10^{9.6} |SCN|_t^4 + 10^{3.0} |OH| + 10^{4.7} |OH|^2$$

$$\alpha_{Hg(SCN,OH)} = 1 + 10^{17.2} |SCN|_t^2 + 10^{21.9} |SCN|_t^4 + 10^{11.5} |OH| + 10^{22.6} \cdot |OH|^2$$

Remarques:

On constate, qu'une extraction quantitative (>99 %) n'est pas possible théoriquement. Le rendement d'extraction diminue avec l'augmentation de la concentration en SCN^- , en milieu $SCN^- < 10^{-1} M$ il est supérieur à 90 %.

3.11.2. Etude expérimentale

3.11.2.1. Influence de la concentration du complexant sur l'extraction

Conditions d'expérience:

Volume de la phase aqueuse: 4 ml $|Ag|_t$ et $|SCN|_t$ variables pH 5 à 7

Volume de la phase mercurique: 0,3 ml Agitation mécanique pendant 3 min.

Résultats:

TABLEAU 10

$[Ag]_{t}$ (M)	SCN t (M)	Rapport molaire SCN t/ Ag t	% d'argent extrait	
$ \begin{array}{c} 1,0 \cdot 10^{-4} \\ 5,0 \cdot 10^{-4} \\ 5,0 \cdot 10^{-4} \\ 5,0 \cdot 10^{-4} \\ 5,0 \cdot 10^{-6} \\ 5,0 \cdot 10^{-6} \end{array} $	$2,5 \cdot 10^{-3}$ $2,5 \cdot 10^{-3}$ $5,0 \cdot 10^{-3}$ $1,25 \cdot 10^{-2}$ $2,5 \cdot 10^{-2}$ $1,25 \cdot 10^{-2}$ $2,5$	$2,5 \cdot 10^{1}$ $5,0 \cdot 10^{1}$ $1,0 \cdot 10^{2}$ $2,5 \cdot 10^{2}$ $5,0 \cdot 10^{2}$ $5,0 \cdot 10^{3}$ $5,0 \cdot 10^{4}$	88,9 95,9 95,2 100 99,2 100 20,0	

3.11.2.2. Etude de la vitesse d'extraction

En milieu SCN^- 1,25 · 10⁻¹ M, l'argent est extrait quantitativement après une agitation manuelle de 15 sec. (fig. 13). La concentration en SCN^- semble avoir une assez grande influence sur la vitesse d'extraction de l'argent.

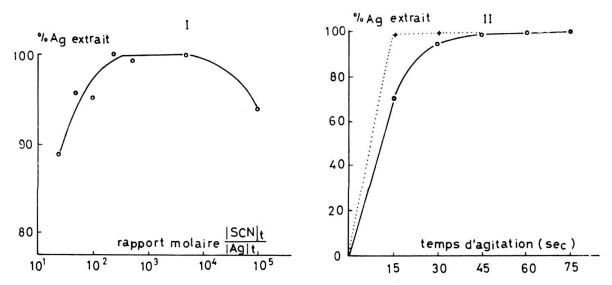


Fig. 13. — Extraction de l'argent en milieu complexant SCN⁻.

- I. Influence de la concentration du complexant sur le rendement d'extraction de l'argent. (Voir tab. 10).
- II. Etude de cinétique.

Conditions d'expérience: Volume de la phase Hg 0,3 ml Volume de la phase aqueuse 4 ml $|Ag|_t$ 43,2 microg $(10^{-4} M)$ $|SCN^-|_t$ 1,25 . $10^{-1} M$ —— 2,5 . $10^{-2} M$ Agitation manuelle

3.12. EXTRACTION DE L'ARGENT PAR LE MERCURE EN MILIEU COMPLEXANT ETHYLÈNEDIAMINE (EDA)

3.12.1. Etude analytique

3.12.1.1. Complexes possibles

EDA H dont la constante de stabilité
$$K_1 = 10^{10.1}$$
 (10a)
EDA H_2 » » » » $K_2 = 10^{7.3}$
EDA Ag $\log \beta_1 = 4.7$ (10b)
EDA₂ Ag $\log \beta_2 = 7.7$
EDA₂ Hg $\log \beta'_2 = 23.4$ (10c)
EDA Hg $\log \beta'_1$ n'est pas donné dans la littérature.

Pour le calcul des $\alpha_{M(EDA,OH)}$ il faut aussi tenir compte des complexes hydroxylés de l'argent et du mercure.

3.12.1.2. $\alpha_{M(EDA,OH)}$

$$\alpha_{EDA(H)} = 1 + 10^{10,1} |H| + 10^{17,4} |H|^{2}$$

$$\alpha_{Ag(EDA,OH)} = 1 + 10^{4,7} \frac{|EDA|_{t}}{\alpha_{EDA(H)}} + 10^{7,7} \frac{|EDA|_{t}}{\alpha_{EDA(H)}^{2}} + 10^{3,0} |OH| + 10^{4,7} |OH|^{2}$$

$$\alpha_{Hg(EDA,OH)} = 1 + 10^{23,4} \frac{|EDA|_{t}^{2}}{\alpha_{EDA(H)}^{2}} + 10^{11,5} |OH| + 10^{22,6} |OH|^{2}$$

Remarques:

En milieu éthylènediamine 1 M une extraction quantitative d'argent est possible à partir du pH 5 (fig. 14).

L'argent commence à être complexé par *EDA* à partir du pH 6, et le mercure n'est complexé par les ions hydroxyle qu'à partir du pH 14.

3.12.2. Etude expérimentale

3.12.2.1. Influence de la concentration de l'éthylènediamine sur l'extraction

Conditions d'expérience:

Volume de la phase aqueuse: 4 ml $|Ag|_t = 2.5 \cdot 10^{-5} M$ (ou 10,8 μ g) $|EDA|_t$ variable pH 7 à 10 Volume de la phase mercurique: 0,3 ml Agitation mécanique pendant 10 min.

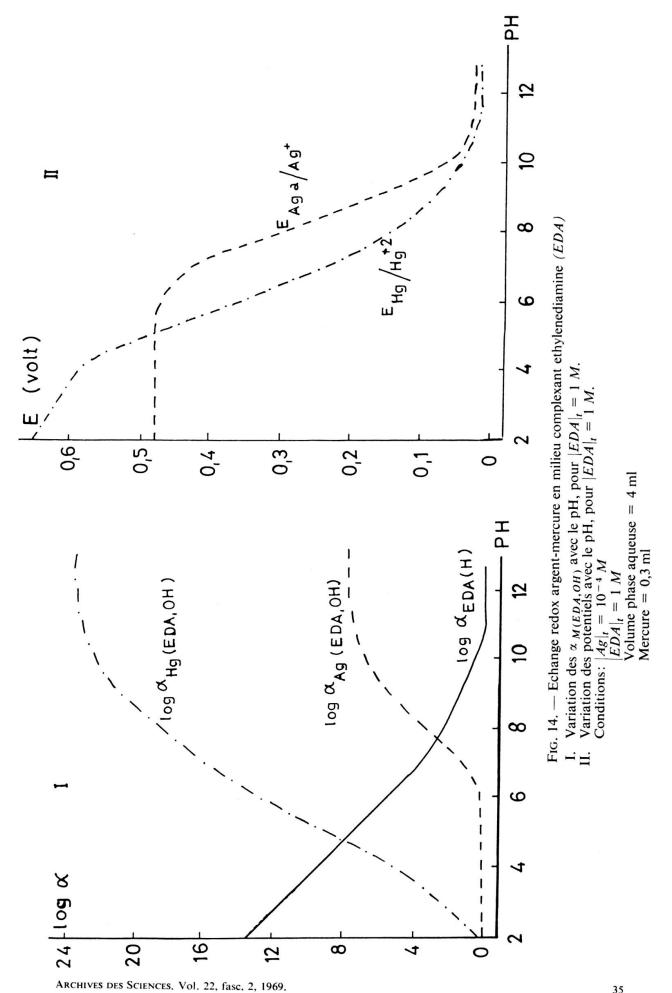

Résultats:

TABLEAU 11

% Ag extrait		
93,9		
94,8		
97,8		
99,0		
99,2		
99,4		
99,2		
100		

Dans les mêmes conditions, mais avec $|Ag|_t = 10^{-4} M (43.2 \mu \text{ g/4 ml})$, on trouve:

Pour
$$|EDA|_t = 3.7 \cdot 10^{-1} M$$
, 100% d'argent extrait.
Pour $|EDA|_t = 3.7 M$, 99.8% d'argent extrait.

Pour que l'extraction de l'argent soit quantitative en milieu EDA, il faut que le rapport $\frac{|EDTA|}{t}/|Ag|_t$ soit > à environ $6\cdot10^2$.

3.12.2.2. Etude de la vitesse d'extraction

Conditions d'expérience:

Volume de la phase aqueuse: 4 ml $|Ag|_t = 10^{-4} M (43.2 \ \mu \ g)$ $|EDA|_t$ variable Essai ** en présence de gélatine à $2 \cdot 10^{-2} \%$. pH 7 à 10

Volume de la phase mercurique: 0,3 ml

Agitation manuelle

Résultats:

TABLEAU 12

EDA _t (M)	% d'argent extrait après sec:						
	15	30	45	60	75	90	
7,4 · 10 - 1	86,6	95,0	97,8	98,5	100		
3,7	88,4	95,6	98,8	100	99,9	100	
7,4	88,8	97,2	99,1	99,7	99,7	99,7	
7,4 **	73,2	84,9	92,0	97,4	100	99,9	

La concentration en *EDA* ne semble pas influencer beaucoup la vitesse d'extraction de l'argent qui est extrait quantitativement après 45 à 60 sec. La vitesse d'extraction est diminuée par la présence de gélatine, ce que nous avons déjà constaté en milieu acétate (3.10.2.2.).

3.13. EXTRACTION DE L'ARGENT PAR LE MERCURE EN MILIEU COMPLEXANT EDTA (ACIDE ÉTHYLENEDIAMINE-TÉTRACÉTIQUE)

3.13.1. *Etude analytique*

3.13.1.1. Complexes possibles

Réaction Constante de dissociation

1) $Y^{-4} + H^{+} = HY^{-3}$ $pK_{1} = 10,3$ 2) $HY^{-3} + H^{+} = H_{2}Y^{-2}$ $pK_{2} = 6,2$ 3) $H_{2}Y^{-2} + H^{+} = H_{3}Y^{-}$ $pK_{3} = 2,7$ 4) $H_{3}Y^{-} + H^{+} = H_{4}Y$ $pK_{4} = 2,0$ (11) $(H_{4}Y = EDTA = acide éthylènediamine-tetracétique)$

5)
$$Hg^{+2} + H^{+} + Y^{-4} = HgHY^{-}$$
 $\log \beta' = 14,6$ (12)
6) $Hg^{+2} + Y^{-4} = HgY^{-2}$ $\log \beta'' = 21,6$

7)
$$Hg^{+2} + OH^{-} + Y^{-4} = Hg(OH)Y^{-3} \quad \log \beta''' = 26,6$$

8)
$$Ag^{+} + Y^{-4} = AgY^{-3} \qquad \log \beta' = 7,3$$
(13)
9)
$$Ag^{+} + AgY^{-3} = Ag_{2}Y^{-2} \qquad \log \beta_{21} = 4,0$$

9)
$$Ag^{+} + AgY^{-3} = Ag_{2}Y^{-2} \qquad \log \beta_{21} = 4.0$$

Cette dernière réaction n'a lieu qu'en présence d'un excès d'ions argent.

$3.13.1.2. \ \alpha_{M(EDTA,OH)}$.

En tenant compte des équations 1 à 4 on trouve:

$$\alpha_{Y(H)} = 1 + 10^{10.3} |H^{+}| + 10^{16.5} |H^{+}|^{2} + 10^{19.2} |H^{+}|^{3} + 10^{21.2} |H^{+}|^{4}$$

$$\alpha_{Ag(EDTA,OH)} = 1 = 10^{7.3} \frac{|EDTA|_{t}}{\alpha_{EDTA(H)}} + 10^{3.0} |OH| + 10^{4.7} |OH|^{2}$$

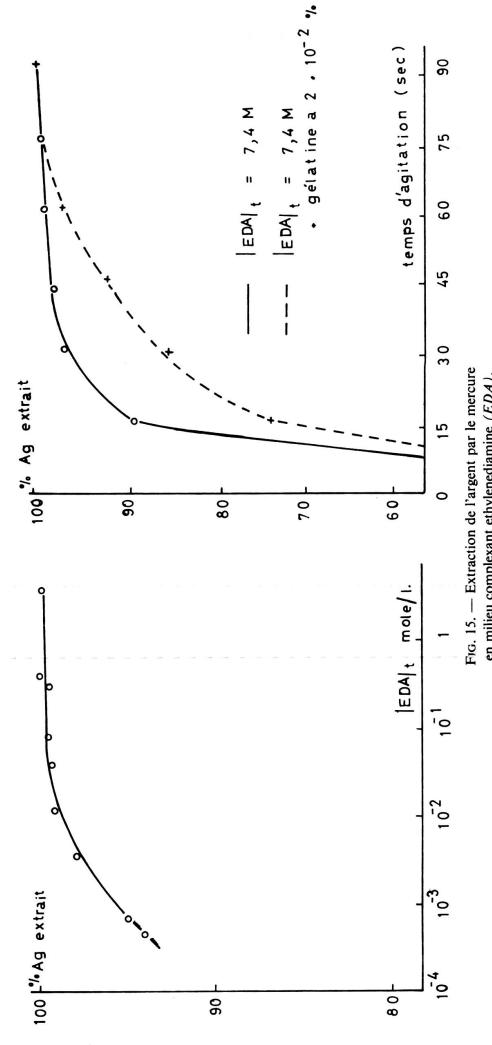
$$\alpha_{Hg(EDTA,OH)} = 1 + 10^{14.6} \frac{|H^{+}| |EDTA|_{t}}{\alpha_{EDTA(H)}} + 10^{21.6} |\frac{EDTA|_{t}}{\alpha_{EDTA(H)}} + 10^{26.6} |OH| |EDTA|_{t} + 10^{11.5} |OH| + 10^{22.6} |OH|^{2}$$

Remarques:

En milieu EDTA 5·10⁻² M, l'argent n'est complexé qu'à partir du pH 4 par Y^{-4} . Jusqu'au pH 14, les ions hydroxyle ne complexent pas l'ion argent. (fig. 16). Les complexes dominants du mercure sont:

Jusqu'au pH 9:
$$HgY^{-2}$$

A partir du pH 9: $Hg(OH)Y^{-3}$.


Le pH optimum pour une extraction quantitative d'argent en milieu EDTA $5 \cdot 10^{-2}$ M est environ 5 (fig. 15, II).

3.13.2. Etude expérimentale

3.13.2.1. Influence de la concentration du complexant sur l'extraction

Conditions d'expérience:

Volume de la phase aqueuse: 4 ml
$$|Ag|_t = 2.5 \cdot 10^{-6} M (1 \mu g/4 ml)$$
 $|EDTA|_t$ variable pH 4.5 Volume de la phase mercurique: 0,3 ml Agitation mécanique pendant 10 min.

en milieu complexant ethylenediamine (EDA). Influence de la concentration de l'EDA sur le rendement d'extraction. Voir tab. 11. It. Etude de la vitesse d'extraction.

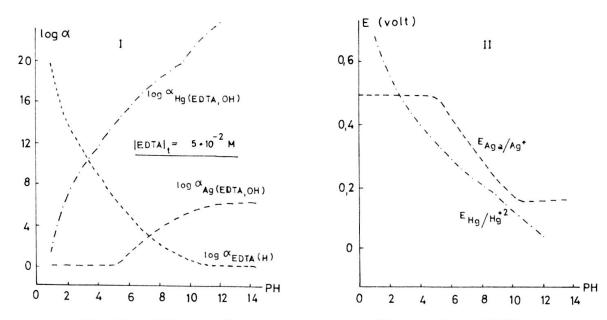


Fig. 16. — Echange redox argent-mercure en milieu complexant EDTA.

I. Courbes des $\alpha_{M(EDTA,OH)}$ selon Ringbom.

II. Variation des poetntiels redox de l'argent et du mercure en fonction du pH. Conditions: $|Ag|_t = 10^{-4} M$ $|EDTA|_t = 5 \cdot 10^{-2} M$

Conditions:
$$|Ag|_t = 10^{-4} M$$

 $|EDTA|_t = 5 \cdot 10^{-2} M$
Mercure = 0,3 ml
Phase aqueuse = 4 ml

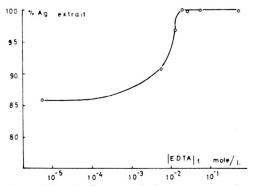


Fig. 17. — Influence de la concentration du complexant (EDTA) sur l'extraction de l'argent.

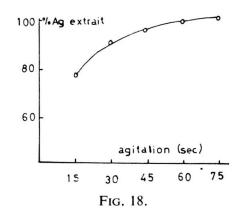


TABLEAU 13

EDTA (M)	EDTA t/ Ag t	% Ag extrait
5,0 · 10 ⁻⁶	2,0	86,5
$5,0 \cdot 10^{-3}$	$2.0 \cdot 10^{3}$	91,0
$1,25 \cdot 10^{-2}$	$5,0 \cdot 10^{3}$	98,5
$1.8 \cdot 10^{-2}$	$7.2 \cdot 10^{3}$	100
$2.5 \cdot 10^{-2}$	$1.0 \cdot 10^4$	99,7
$5,0 \cdot 10^{-2}$	$2,0 \cdot 10^4$	99,8

Remarques:

Les expériences montrent, que le rapport molaire $|^{EDTA}|t/|Ag|_t$ doit être $\geq 5,6\cdot 10^3$ pour que l'extraction de l'argent soit quantitative. Pour extraire de plus grandes quantités d'argent ($\geq 1 \mu$ g/ml de solution), l'emploi de l'EDTA comme agent complexant du mercure donne de moins bons résultats, du fait qu'il est relativement difficile de préparer des solutions suffisamment concentrées en EDTA. En formant le complexe $Hg(OH)Y^{-3}$ (pH>9) il est cependant possible de travailler avec des solutions plus concentrées en argent, comme le montre l'expérience ci-dessous:

Conditions d'expérience:

Volume de la phase aqueuse 4 ml |Ag|, 10^{-4} M (=43,2 μ g) |EDTA|, $2.5 \cdot 10^{-2}$ M pH 12,6 Volume de la phase mercurique 0,3 ml Agitation manuelle pendant 1 min.

Résultat: 100% d'argent extrait.

3.13.2.2. Etude de la vitesse d'extraction

Conditions d'expérience:

Volume de la phase aqueuse: 4 ml $|Ag|_t = 10^{-4} M (43.2 \mu g)$ $|EDTA|_t = 2.5 \cdot 10^{-2} M$ pH = 12.6 Volume de la phase mercurique: 0.3 ml Agitation manuelle

TABLEAU 14

temps d'agitation (sec)	% d'argent extrait
15	77,9
30	90,0
45	95,4
60	100
75	99,9

3.14. EXTRACTION DE L'ARGENT PAR LE MERCURE EN MILIEU COMPLEXANT NH3

3.14.1. Etude analytique

3.14.1.1. Complexes possibles

$$NH_3 + H^+ = NH_4^+ \qquad pK_{NH_3}/_{NH_4^+} = 9,2$$
 (14)

$$Hg(NH_3)_4^{+2} \log \beta_4' = 19.3$$
 (15)

$$Ag(NH_3)_2^+$$
 $\log \beta_2 = 7.2$ (16)

Pour le calcul des $\alpha_{M(N_{\frac{1}{3}},OH)}$ nous devons également tenir compte des complexes hydroxylés de l'argent et du mercure (3.7.1.1.).

3.14.1.2. $\alpha_{M(NH_3,OH)}$.

$$\alpha_{NH_{3}(H)} = 1 + 10^{9.2} |H^{+}|$$

$$\alpha_{Ag(NH_{3},OH)} = 1 + 10^{7.2} \frac{|NH_{3}|_{t}^{2}}{\alpha^{2}_{NH_{3}(H)}} + 10^{3.0} |OH| + 10^{4.7} |OH|^{2}$$

$$\alpha_{Hg(NH,OH)} = 1 + 10^{19.3} \frac{|NH_{3}|_{t}^{4}}{\alpha^{4}_{NH_{2}(H)}} + 10^{11.5} |OH| + 10^{22.6} |OH|^{2}$$

Remarques:

En milieu NH_3 1 M, l'argent n'est complexé qu'à partir du pH 5 par NH_3 , en milieu 10^{-1} M à partir du pH 6 (fig. 19). Le complexe ammoniacal du mercure est prédominant entre le pH 6 et 12 pour $NH_3 = 1$ M, et entre les pH 9 et 11 pour $NH_3 = 10^{-1}$ M. En dehors de ces limites, le mercure est complexé par les ions hydroxyle.

3.14.2. Etude expérimentale

3.14.2.1. *Influence de la concentration du complexant sur l'extraction* Conditions d'expérience:

Volume de la phase aqueuse = 4 ml $|Ag|_t$ = variable (de 1,0·10⁻⁵ à 2,5·10⁻⁶ M) $|NH_3|_t$ = variable pH = environ 9 Volume de la phase mercurique = 0,3 ml Agitation mécanique pendant 10 min.

Résultats:

-							_
-	A	DI	LE	A 1	T	- 1	5
	А	DI	LC	A	\cup	- 1	J

Ag t	NH ₃ _t	rapport molaire	% d'argent
(Mole/1)	(Mole/1)	NH3 _t / Ag _t	extrait
$ \begin{array}{r} 1,25 \cdot 10^{-4} \\ 1,0 \cdot 10^{-4} \\ 2,5 \cdot 10^{-6} \\ 2,5 \cdot 10^{-6} \end{array} $	$ \begin{array}{c} 1,11 \cdot 10^{-1} \\ 1,18 \cdot 10^{-1} \\ 5,0 \cdot 10^{-1} \\ 1,0 \end{array} $	$ \begin{array}{r} 8,9 \cdot 10^{3} \\ 1,18 \cdot 10^{4} \\ 2,0 \cdot 10^{4} \\ 4,0 \cdot 10^{4} \end{array} $	96,8 99,8 99,9 99,5

Remarque:

On constate, que le rapport molaire $|NH_3|_t/|Ag|_t$ doit être au minimum de 10^4 pour que l'extraction de l'argent par le mercure soit quantitative. Dans nos conditions de travail (pH 9 et $|NH_3|_t$ compris entre 10^{-1} M et 1 M), l'argent et le mercure se trouvent sous forme de complexes ammoniacals (fig. 19).

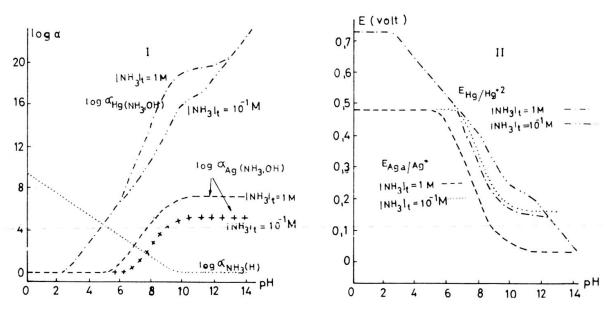


Fig. 19. — Echange redox argent-mercure en milieu complexant ammoniacal.

- I. Variation des $\alpha_{M(NH_3, OH)}$ avec le pH.
- II. Variation des potentiels redox avec le pH.

$$|Ag|_t = 10^{-2} M$$

Mercure = 0,3 ml
Phase aqueuse = 4 ml

3.14.2.2. Etude de la vitesse d'extraction

Conditions d'expérience:

volume de la phase aqueuse = 4 ml
$$|Ag|_t = 10^{-5} M (4.3 \mu g)$$

$$|NH_3|_t$$
 = variable
Volume de la phase mercurique = 0,3 ml
Agitation manuelle

Résultats:

TABLEAU 16

NH ₃ _t			%	d'argent exti	rait après	sec.		
(Mole/1)	10	15	20	30	40	45	60	75
5 · 10 ⁻¹		86,9		93,8		98,2	98,5	100
1		95,0		99,1		100	99,8	
7,2	85,9		95,9	99,4	99,4	99,4		

Remarque:

La vitesse d'extraction de l'argent est d'autant plus grande, que la concentration en NH_3 est grand. Dans les meilleures conditions ($|NH_3|_t \ge 1 M$), l'extraction est quantitative après 30 sec. d'agitation.

Fig. 20. — Conditions: $|Ag|_t = 4.3 \mu \text{ g/4 ml}$ (Hg) = 0.3 mlAgitation manuelle

III. RÉEXTRACTION DE L'ARGENT AMALGAMÉ

1. INTRODUCTION

Une simple extraction sur le mercure n'est pas toujours suffisante pour séparer un élément des autres. Pour augmenter la sélectivité de la méthode de séparation, il faut faire une réextraction de l'élément amalgamé, ce qui permet en plus son dosage chimique. Nous étudions les méthodes de réextraction suivantes:

1) Réextraction de l'argent amalgamé par échange isotopique:

$$*Ag_a + Ag^+ = Ag_a + *Ag^+ (31.1)$$

Cette méthode ne peut être appliquée qu'à un dosage radiochimique.

2) Réextraction de l'argent amalgamé par un métal plus noble que l'argent (par exemple Au^{+3}):

exemple
$$Au^{+3}$$
):
$$m Ag_a + M^{+m} = M_a + m Ag^{+}$$
Il faut que $E_o^M > E_o^{Ag}$.
$$(31.2)$$

3) Réextraction de l'argent amalgamé par un oxydant $(0_2 \text{ ou } Hg^{+2})$ en présence d'un complexant fort de l'argent:

$$2 Ag_a + Hg^{+2} + 2k L^p = 2 Ag L_k^{(1+pk)} + Hg$$
 (31.3)

Il faut que

$$E^{AgL} < E^{Hg}$$

En présence de 0_2 on a:

$$2 Ag_a + \frac{1}{2} O_2 + H_2 O + 2k L^p = 2 Ag L_k^{(1+pk)} + 2 OH^-$$

RÉEXTRACTION DE L'ARGENT AMALGAMÉ PAR ÉCHANGE ISOTOPIQUE

Conditions d'expérience:

Amalgame: 0,3 ml de mercure contenant 1 μ g d'argent, traceur Ag^{110m} .

Phase aqueuse: volume variable (3 ou 4 ml)

 $AgNO_3$ de concentrations variables

pH environ 7

Agitation mécanique pendant 8 min.

Résultats:

TABLEAU 17

Pha	ase aqueuse	
volume (ml)	Ag + introduit (g)	% d'argent réextrait
4	$4,32 \cdot 10^{-6}$ $1,08 \cdot 10^{-3}$ $2,16 \cdot 10^{-2}$	0
3	$1,08 \cdot 10^{-3}$	16,8
3	$2,16 \cdot 10^{-2}$	7,8

Remarques:

L'échange isotopique ne permet pas une réextraction rapide de l'argent amalgamé. Quand on agite l'amalgame avec une solution contenant plus que 2 mg d'argent, il apparaît à la surface de la goutte de mercure un précipité d'argent métallique qui ne peut plus s'amalgamer, car le mercure est très vite saturé en argent, ce dernier y étant relativement peu soluble (0,04% en poids). Ce précipité empêche l'échange isotopique de se poursuivre, d'où le faible rendement d'extraction obtenu.

3. RÉEXTRACTION DE L'ARGENT AMALGAMÉ PAR UN MÉTAL NOBLE

3.1. RÉEXTRACTION DE L'ARGENT AMALGAMÉ PAR L'OR

La réaction d'échange est la suivante:

$$3 Ag_a + Au^{+3} = Au_a + 3 Ag^{+}$$

Conditions expérimentales:

Amalgame: 0,3 ml de mercure contenant 1 μ g d'argent. Traceur = Ag^{110m} .

Phase aqueuse: volume = 4 ml

pH environ 2

H Au Cl₄ de conc. variables.

Agitation mécanique pendant 10 min.

Résultats:

TABLEAU 18

Au+3 introduit (g)	% d'argent réextrait
4,8 · 10 - 3	27,5
4,8 · 10 - 4	23,5

Remarques:

Nous avons effectué ces essais en milieu acide, car le sel d'or n'est pas stable à des pH trop élevès. Dans nos conditions de travail, il y a formation d'un sel mercureux insoluble, qui s'adsorbe à la surface de la goutte de mercure, ce qui rend impossible une réextraction quantitative de l'argent.

3.2. RÉEXTRACTION DE L'ARGENT AMALGAMÉ PAR LE MERCURE

La réaction d'échange est la suivante:

$$2 Ag_a + Hg^{+2} = Hg^0 + 2 Ag^+$$

On a les 2 couples:

$$Ag/Ag^{+}$$
 dont $E_{0} = 0.80 \text{ v}$ (10)
 Hg/Hg^{+2} dont $E_{0} = 0.85 \text{ v}$

Une oxydation (du moins partielle) de l'argent par le mercure (II) est donc théoriquement possible.

Conditions expérimentales:

Amalgame: 0,3 ml de mercure contenant 1 μ g d'argent. (Traceur= Ag^{110m}).

Phase aqueuse: volume = 4 ml, pH environ 7

 $|Hg^{+2}|$ introduit variable.

Agitation mécanique pendant 5 min.

Résultats:

TABLEAU 19

Hg+2 introduit (M)	% d'argent réextrait
2,5 · 10-2	36,0
$5.0 \cdot 10^{-2}$	50,0
$8.0 \cdot 10^{-2}$	50.0

La réextraction n'est donc pas quantitative, car les potentiels des 2 couples sont trop proches.

4. RÉEXTRACTION DE L'ARGENT AMALGAMÉ PAR UN OXYDANT, EN PRÉSENCE D'UN COMPLEXANT DE L'ARGENT

4.1. INTRODUCTION

Pour réextraire l'argent (c'est-à-dire le réoxyder), il faut travailler dans un milieu où ce dernier est moins noble que le mercure. L'introduction d'un complexant

fort de l'argent permet de déplacer le potentiel de demi-vague $E_{1/2}$ vers des valeurs plus basses (fig. 21), ce qui permet d'oxyder l'argent, soit par du mercure ionique préalablement introduit dans la phase aqueuse, soit par O_2 présent dans l'ampoule d'extraction.

Fig. 21. — Déplacement du potentiel $E_{1/2}$ de l'argent par complexation de Ag^+ au moyen du ligand L.

4.2. RÉEXTRACTION DE L'ARGENT AMALGAMÉ EN MILIEU SCN

4.2.1. Etude analytique

Nous avons déjà étudié analytiquement les systèmes argent- SCN^- et mercure- SCN^- (chapitre II, 3.11.1.). En milieu SCN^- concentré (>1 M), l'argent devient moins noble que le mercure (fig. 12), de sorte qu'une réextraction est théoriquement possible. Nous avons d'ailleurs constaté une diminution du rendement d'extraction en milieu complexant très concentré (tab. 10).

4.2.2. Etude expérimentale

4.2.2.1. Influence de la concentration du complexant sur le rendement de la réextraction

Conditions: expérimentales:

Amalgame: 0,3 ml de mercure, contenant 1 μ g d'argent (traceur= Ag^{110m}).

Phase aqueuse: 4 ml, contenant le complexant (SCN^{-}) en concentrations variables.

Echangeur: ampoule à sceller de 5 ml.

L'air n'en est pas chassé, l'oxygène devant jouer le rôle d'oxydant.

Agitation mécanique pendant 10 min.

Résultats:

$ SCN^- _t$ (M)	% d'argent réextrait
$1,0 \cdot 10^{-1}$	0
1,0	42,0
2,5	81,0
5,0	94,0
9,0	99,6

TABLEAU 20

Le rendement de réextraction reste le même pour des quantités plus élevées d'argent:

Essai: Comme ci-dessus, mais avec 50 μ g d'argent amalgamé et $|SCN^-|_t = 9 M$. Rendement de réextraction après 1 min. d'agitation manuelle > 99 %.

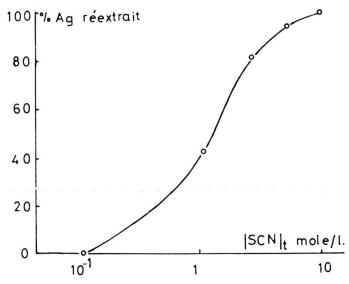


Fig. 22. — Influence de la concentration en *SCN* – sur le rendement de la réextraction de l'argent amalgamé.

4.2.2.2. Etudes de la vitesse de réextraction

Conditions expérimentales:

Amalgame: 0,3 ml de mercure contenant 1 μ g d'argent (traceur= Ag^{110m}).

Phase aqueuse = 4 ml d'une solution de SCN^- 9 M.

Agitation mécanique ou manuelle.

Pas de désoxygénation de l'ampoule.

Résultats:

-				2	
	AR	F	II	21	n

Type d'agitation	temps d'agitation (sec)	% d'argent réextrait	
manuelle	15	90,0	
manuelle	30	94,0	
manuelle	60	96,2	

TABLEAU 21b

Type d'agitation	temps d'agitation (sec)	% d'argent réextrait
mécanique	60	96,1
mécanique	180	99,0
mécanique	300	>99
mécanique	600	>99
	S.	

Remarques

La réextraction de l'argent en milieu SCN^- est un peu plus lente que l'extraction (II: 3.11.2.2.), puisqu'il faut un peu plus de 60 sec. pour qu'elle soit quantitative.

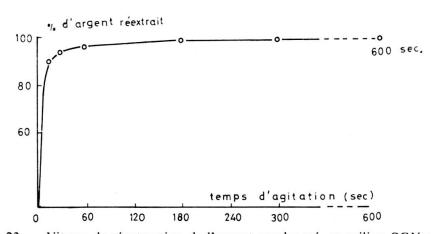


Fig. 23. — Vitesse de réextraction de l'argent amalgamé, en milieu SCN - 9 M.

4.2.2.3. Réextraction de l'argent en présence de Hg⁺² et de SCN⁻

Conditions expérimentales:

Amalgame = 0,3 ml de mercure contenant 1 μ g d'argent (traceur = Ag^{110m}). Phase aqueuse = 4 ml contenant une solution de SCN^- 6 M et Hg^{+2} 1,25· 10⁻² M. (pH environ 12)

La phase aqueuse et l'ampoule d'extraction sont désoxygénés par un courant d'azote. Agitation mécanique pendant 5 min.

Résultat:

Rendement de la réextraction = 97%,

Un essai effectué dans les mêmes conditions, mais en absence de mercure ionique (donc en absence d'oxydant) nous a donné un rendement de réextraction inférieur à 1%.

4.3. RÉEXTRACTION DE L'ARGENT AMALGAMÉ EN MILIEU CYANURE

4.3.1. Etude analytique

4.3.1.1. Complexes possibles

$$H \ CN = \log K_{HCN} = 9,3 \quad (17)$$
 $Ag \ OH = \log \beta_1 = 3,0 \quad (1)$ $Ag(CN)_2^- = \log \beta_2 = 20,7 \quad (17)$ $Ag(OH)_2^- = \log \beta_2 = 4,7$ $Ag(CN)_3^{-2} = \log \beta_3 = 21,4$ $Hg \ OH^+ = \log \beta_1' = 11,5 \quad (2)$ $Hg(CN)_2 = \log \beta_2' = 34,7 \quad (17)$ $Hg(OH)_2 = \log \beta_2' = 22,6$ $Hg(CN)_4^{-2} = \log \beta_4' = 41,5$

4.3.1.2. $\alpha_{M(CN,OH)}$.

$$\alpha_{CN(H)} = 1 + 10^{9.3} | H^{+} |$$

$$\alpha_{Ag(CN.OH)} = 1 + 10^{20.7} \frac{|CN|_{t}^{2}}{\alpha_{CN(H)}^{2}} + 10^{21.4} \frac{|CN|_{t}^{3}}{\alpha_{CN(H)}^{3}} + 10^{3.0} |OH| + 10^{4.7} |OH|^{2}$$

$$\alpha_{Hg(CN,OH)} = 1 + 10^{34.7} \frac{|CN|_{t}^{2}}{\alpha_{CN(H)}^{2}} 10^{41.5} \frac{|CN|_{t}^{4}}{\alpha_{CN(H)}^{2}} + 10^{11.5} |OH| + 10^{22.6} |OH|^{2}$$

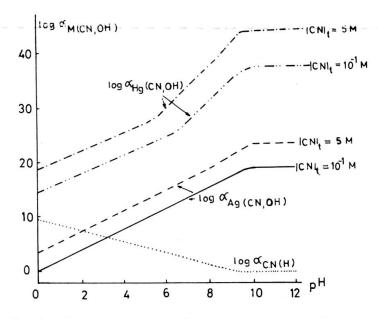


Fig. 24. — Courbes des $\alpha_{M(CN,OH)}$ en fonction du pH, pour $|CN|_t = 10^{-1} M$ et 5 M.

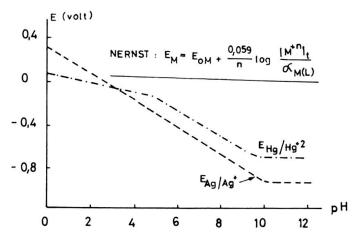


Fig. 25. — Courbes des potentiels redox des systèmes Ag/Ag^+ et Hg/Hg^{+2} calculées par les formules de Nernst.

Conditions de calcul: $|CN|_t$ 5 M $|Ag|_t = 10^{-5.6} M$ $|Hg|_t = 10^{-7.9} M$

Remarques:

Une réextraction quantitative de l'argent est théoriquement possible à partir du pH 4.

4.3.2. Etude expérimentale

4.3.2.1. Influence de la concentration en cyanure sur la réextraction de l'argent

Conditions expérimentales:

0,3 ml de mercure contenant 1 μ g d'argent amalgamé (traceur= Ag^{110m}).

4 ml d'une solution de cyanure de conc. variables (pH 8 à 9).

Echange fait dans ampoule de 5 ml, non désoxygénée.

Agitation mécanique pdt. 1 min. (équilibre pas atteint).

Résultats:

TABLEAU 22

CN t (M)	% d'argent réextrait	
5,0 · 10 ⁻²	74	
$5,0 \cdot 10^{-1}$	94,3 96,4	
$6,25 \cdot 10^{-1}$		
2,5	98,4	
5,0	>99	

Vitesse de réextraction en milieu cyanure 5 M.

Conditions d'expérience:

comme ci-dessus, mais avec $|CN|_t = 5 M$. Agitation mécanique.

Résultats:

TABLEAU 23

temps d'agitation (sec)	% d'argent réextrait
15	85
30	95
45	98
60	>99
75	>99 >99

Vitesse de réextraction en milieu cyanure 5·10⁻² M.

Les conditions d'expérience sont les mêmes que ci-dessus, mais $|CN|_t = 5 \cdot 10^{-2} M$.

Résultats:

TABLEAU 24

temps d'agitation (min)	% d'argent réextrait
1	74
5	81
10	82

Remarques:

La vitesse de réextraction en milieu CN^- varie fortement avec la concentration du complexant (tab. 22 à 24, fig. 26). Dans les meilleures conditions ($|CN|_t=5~M$), la réextraction est quantitative après une agitation de 45 à 60 sec.

La concentration en argent amalgamé n'influence pratiquement pas la vitesse de réextraction, cette dernière étant quantitative après 1 min. d'agitation pour les amalgames suivants:

0,3 ml de mercure contenant 1μ g d'argent,

0,3 ml » » 10
$$\mu$$
 g » 0,4 ml » » 43 μ g »

4.3.2.2. Concentration de l'argent par double extraction

On peut augmenter la sensibilité du dosage de l'argent en le concentrant par double extraction sur le mercure. Pour ce faire, on procède comme suit:

- a) On extrait l'argent de la phase aqueuse en milieu complexant fort du mercure, par une des méthodes que nous avons décrites dans le chapitre II.
- b) On réextrait ensuite l'argent amalgamé dans un très faible volume de CN^- ou de SCN^- , en présence de $Hg^{+\,2}$ ou de O_2 .

Il est possible de concentrer par cette méthode l'argent d'un facteur de 10 à 20. Une application pratique sera décrite dans le chapitre IV.

Essai:

0,3 ml de mercure contenant 21 μ g d'argent amalgamé.

0,5 ml d'une solution de cyanure 2 M.

Echange effectué dans une ampoule à sceller de 2 ml.

Agitation mécanique de 5 min.

Rendement de la réextraction: > 98 %.

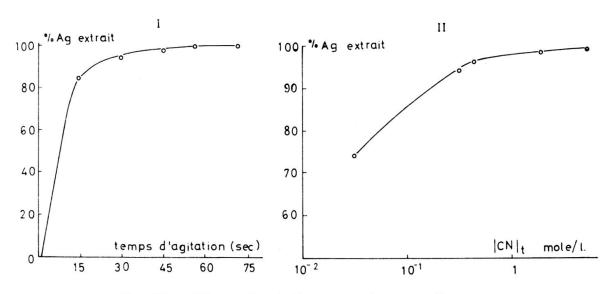


Fig. 26. — Réextraction de l'argent amalgame par l'oxygene en milieu complexant CN^- .

I. Cinetique d'extraction en milieu CN^- 5 M.

II. Influence de la concentration du complexant sur le rendement d'extraction de l'argent. Conditions expérimentales: 0,3 ml d'amalgame contenant 1 microg. d'argent.

Phase aqueuse = 4 ml Agitation mécanique pdt. 1 min Ampoule de 5 ml, dont l'air n'a pas été chassée.

IV. APPLICATIONS

1. DOSAGE DE L'ARGENT DANS UNE GALÈNE

1.1. DOSAGE NON DESTRUCTIF (SANS SÉPARATION PRÉALABLE) DE L'ARGENT DANS UNE GALÈNE PAR ACTIVATION AUX NEUTRONS THERMIQUES

1.1.1. Introduction

La galène est un minerai à base de sulfure de plomb. Elle contient presque toujours de l'argent, ainsi que quelques autres éléments présents en traces. Le tableau 25 donne une liste de quelques éléments qui peuvent accompagner les minerais et alliages de plomb en général, ainsi que leurs propriétés radiochimiques.

Isotope	Abondance %	Activation sect. efficace (barn)	Isotope formé	Période	Energie gamma (Mev)
Pb ²⁰⁶	23,6	0,026	$Pb^{207}{\rm m}$	0,84 sec	1,06;0,55
Cu^{65}	30,9	2,1	Cu ⁶⁶	5,1 min	0,83 ; 1,04
Sb^{121}	57,25	6,4	Sb^{122m}	3,5 min	0,059
Sb^{123}	42,75	2,5	Sb124m	1,3 min	0,012
Sn^{124}	5,98	0,2	Sn^{125m}	9,5 min	0,326
Zn^{70}	0,62	0,085	Zn^{71}	2,2 min	1,09;0,9;
		19032			0,51; 0,12

TABLEAU 25. — Activités interférentes.

Il apparait, qu'un dosage de l'argent par activation, avec formation du radioisotope Ag^{110} (periode=24,2 sec) est possible, sans séparation chimique, mais avec séparation instrumentale, en se limitant à la mesure du pic photo-électrique de Ag^{110} (0,66 Mev) et, si nécessaire, en analysant la courbe de décroissance.

Nous avons étudié les méthodes suivantes de dosage non destructif:

- 1) Dosage par la méthode de l'étalon interne.
- 2) Dosage par un étalon interne, avec un étalon de flux.
- 3) Dosage par la méthode de l'étalon externe.

1.1.2. Dosage de l'argent par la méthode de l'étalon interne

1.1.2.1. Préparation des échantillons

La galène est d'abord finement pulverisée et homogénéisée dans un mortier en agathe. On ajoute au mineraî une quantité connue d'argent, sous forme d'une solution

de $AgNO_3$. Le poids des différents échantillons de galène est de 0,3140 g \pm 0,0025 g, celui de l'argent ajouté comme étalon interne de respectivement 64,8 μ g, 97,2 μ g, 118,8 μ g, 151,2 μ g, et 162,0 μ g. La poudre est séchée à la lampe IR, puis introduite dans des porte-échantillons en polyéthylène (longeur environ 4 cm, contenance 0,4 ml) munis d'un bouchon.

La pesée de la galène peut être faite directement dans le porte-échantillon. Le nitrate d'argent en solution est alors introduit dans la poudre au moyen d'une pipette, dont le bout est muni d'un capillaire en polyéthylène. De cette manière on évite des pertes, mais l'étalon est moins bien dispersé dans le minerai que dans le premier cas.

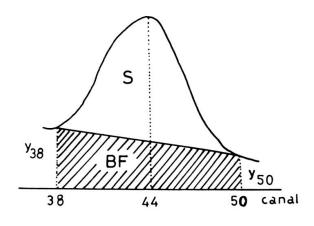
Le porte-échantillon est ensuite placé dans un petit « container » en matière plastique, qu'on injecte dans le cœur du réacteur pour l'activation.

1.1.2.2. Conditions d'activation et de mesure

Les échantillons sont irradiés pendant 2 min. dans le réacteur, avec un flux de 10^9 neutrons/cm². sec.

Les mesures d'activité se font à l'aide d'un spectromètre gamma multicanaux SA 40 « Intertechnique » (1.3.5.).

Réglage du spectromètre:


Nombre de canaux utilisés: 100

Seuil = 0-10

Gain = 1/8-0.75

Dans ces conditions, le pic photoélectrique dû à l'émission gamma de l'argent 110 a son maximum entre les canaux 44 et 46. Le temps de décroissance, imposé par le transfert de l'échantillon du réacteur à l'appareil de mesure, est de 15 sec, le temps d'accumulation du spectre est de 60 sec.

1.1.2.3. Calcul de la surface du pic photoélectrique

S = surface du pic dû à Ag^{110} . BF = surface dû au bruit de fond. y_n — nombre d'impulsions mesurées dans le canal n. S = S_{totale} — BF BF = Nombre de can. utilisés . $y^{38} + y^{50}$ S = $\sum_{n=38}^{50} y_n$ — 13 . $y_{38} + y_{50}$

1.1.2.4. Résultats

Tableau 26. — Dosage de l'argent dans une galène par activation aux neutrons thermiques. Calculs pour la détermination de la teneur en argent de la galène.

No.	ppm Ag ajouté (x)	Surface pic Ag ¹¹ " (y)	x · y · 10 ³	x ² · 10 ²	y ² · 10 ⁶
1	0	700	0	0	0,49
2	0	702	0	0	0,49
3	0	832	0	0	0,69
4	0	925	0	0	0,85
5	206	1172	241	4,36	1,37
6	206	1403	288	4,36	1,96
7	309	1623	502	9,71	2,62
8	378	1734	655	14,54	3,00
9	378	1743	660	14,54	3,04
10	480	2390	1145	23,40	5,68
11	480	2393	1148	23,40	5,70
12	515	2523	1300	27,05	6,33

Sommations:

Nombre de mesures:

$$N = 12$$
 $\Sigma y^2 = 32,78 \cdot 10^6$ $\Sigma y = 1,8140 \cdot 10^4$ $(\Sigma x)^2 = 8,85 \cdot 10^6$ $\bar{x} = 246$ $\Sigma x^2 = 1,214 \cdot 10^6$ $\Sigma x = 2952$ $(tab. 26)$

Grâce à ces valeurs, il est possible de calculer la droite de régression, qui est de la forme y = Ax + B.

Calcul de la droite de régression:

1) Calcul du coefficient A, représentant la pente de la droite.

$$N\Sigma x^2 - (\Sigma x)^2 = D$$
 On trouve $D = 5.73 \cdot 10^6$ (tab. 26)

On a

Posons

$$A = \frac{N\Sigma x \cdot y - \Sigma x \cdot \Sigma y}{D}$$

A = 3,12

b) Calcul du coefficient B, représentant l'intersection de la droite de régression avec l'axe des ordonnées (y).

$$B = \frac{\sum x^2 \sum y - \sum x \sum x \cdot y}{D} = 767$$

c) Teneur en argent de la galène:

Elle est donnée par le rapport

$$\frac{B}{A} = \frac{767}{3,12} = 246 \text{ ppm d'argent}$$

Calcul d'erreur:

A) Erreur sur B:

Déviation standard

(tab. 26)

$$\overline{\sigma} = \sqrt{\frac{\sum (\overline{y} - y_i)^2}{N}}$$

$$\bar{y} = y \text{ moyen} = 754$$

On trouve

$$\bar{\sigma} = 53$$

D'où

$$B = 767 \pm 53$$

ou
$$B = 767 \pm 6.9\%$$

B) Erreur sur A:

$$A' = A \pm \frac{\overline{\sigma}}{\overline{x}} \qquad \frac{\overline{\sigma}}{\overline{x}} = 53$$

$$\frac{\overline{\sigma}}{\overline{x}} = 246$$
(tab. 26)

D'où

$$A = 3.12 \pm \frac{53}{246} = \frac{3.12 \pm 0.21}{3.12 \pm 6.8\%}$$
 (tab. 26)

C) Erreur sur le résultat, $S_{(x)}$:

$$S_{X} = \pm \sqrt{(\text{erreur sur A})^2 + (\text{erreur sur B})^2}$$

= $\pm \sqrt{(6.9\%)^2 + (6.8\%)^2} = \pm 9.7\%$

Le résultat du dosage est donc:

246 ppm d'argent
$$\pm$$
 9,7% ou 246 ppm d'argent \pm 24 ppm d'argent

En fait, nous avons effectué ces calculs à l'aide d'un ordinateur.

Un deuxième dosage, effectué dans les mêmes conditions sur le même échantillon, nous a donné les résultats suivants:

Teneur en argent: 230 ppm \pm 23 ppm (9,9%)

Précision sur A: $\pm 6.8 \%$ Précision sur B: $\pm 7.3 \%$

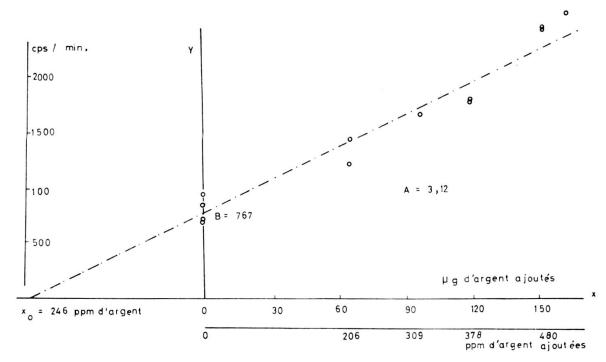


Fig. 28. — Dosage de l'argent dans une galene par activation aux neutrons thermiques établissement de la droite de regression y = Ax + B.

1.1.3. Dosage par étalon interne, avec étalon de flux

1.1.3.1. *Principe*

Au lieu de faire une courbe d'étalonnage pour chaque série de dosage, on peut comparer l'activité des échantillons à une courbe d'étalonnage, établie une fois pour toutes. Pour tenir compte des variations éventuelles du flux neutronique, il faut faire intervenir dans les calculs un facteur correctif. Ce dernier peut être déterminé en comparant l'activité gamma d'un étalon de flux, irradié en même temps que les échantillons à analyser, à celle d'un même étalon, irradié au moment de l'établissement de la courbe d'étalonnage.

Nous avons choisi comme étalon le cuivre (sous forme de sel: $CuSO_4$ 5 H_2O). L'activation neutronique donne naissance à deux radioisotopes du cuivre:

$$Cu^{64}$$
 période = 12,8 h énergie gamma émise = 0,66 Mev Cu^{66} » = 5,1 min » » = 1,04 Mev

1.1.3.2. Conditions d'activation de l'étalon

Poids de l'étalon ($Cu SO_4 5 H_2O$): 0,3 g

Temps d'activation: 2 min

Temps de décroissance: 10 sec

Temps d'accumulation du spectre: 60 sec.

1.1.3.3. Conditions de dosage

a) Etablissement de la courbe d'étalonnage: y = Ax + B (expérience I). Nous avons trouvé A = 2.9 et B = 700, ce qui donne une teneur en argent B/A = 242 ppm. Les conditions expérimentales sont les mêmes que celles décrites plus haut (1.1.2.). En même temps que les échantillons de galène, nous avons irradié l'étalon de cuivre.

Lors d'une expérience effectuée quelques jours plus tard nous avons irradié un échantillon de galène (sans étalon interne) et l'étalon de cuivre. Nous avons trouvé: (expérience II)

Surface pic Pente droite de Surface pic Expérience ppm Ag Ag110 (B) régression (A) I 700 2,9 15315 242 H 851 19153 239

TABLEAU 27

Calculs:

$$\frac{pic \ Cu^{64} \left(II\right) \cdot B\left(I\right)}{pic \ Cu^{64} \left(I\right)} = B\left(II\right)$$

$$B(I) = \text{surf. pic } Ag^{110} \text{ (expérience I)}$$

 $B(II) = 863$

863 correspond à une teneur en argent de 242 ppm. Mais, lors de l'expérience, II nous avons trouvé B(II) = 851, ce qui correspond à

$$\frac{851.242}{863} = 239 \text{ ppm d'argent}$$

Remarque:

Les avantages de la méthode ci-dessus résident surtout dans la plus grande rapidité. Alors qu'il faut compter environ 70 min pour effectuer le dosage comme il est décrit sous 1.1.2. (sans tenir compte de la préparation des divers échantillons),

il ne faut ici qu'environ 15 min. Par contre, la précision est moins grande, car en plus de l'erreur faite sur la droite de régression (1.1.2.4.), il faut ajouter celle faite sur la détermination de l'activité de l'étalon cuivre.

1.1.4. Dosage par étalon externe

Méthode:

L'activité d'un échantillon de galène est comparé à une courbe d'étalonnage, obtenue en irradiant différents étalons d'argent (sous forme de $AgNO_3$ liquide) de poids connu.

Les résultats obtenus sont inférieurs de 15% environ à ceux obtenus plus haut. Ceci est probablement dû en grande partie au fait que le plomb, principal constituant de la galène, absorbe une certaine quantité de rayonnement gamma émis par Ag^{110} . La méthode de dosage par étalon interne est donc la seule valable, pour un dosage non destructif par activation. Ces inconvénients peuvent cependant être évités par une séparation préalable de l'argent du plomb.

1.2. DOSAGE DE L'ARGENT DANS UNE GALÈNE APRÈS SÉPARATION

1.2.1. Etude de l'extraction de l'argent par le mercure en présence d'un excès de plomb

1.2.1.1. Introduction

Pour séparer quantitativement des traces d'argent du plomb, certaines conditions doivent être remplies:

- a) Le grand excès de plomb doit être soluble dans le milieu où se fait l'extraction.
- b) Autant que possible, il faut éviter d'utiliser un complexant du mercure qui complexe également le plomb.
- c) Il ne faut pas former des complexes trop stables du mercure, pour que le potentiel électrochimique de ce dernier ne soit inférieur à celui du plomb, ce qui entraînerait la réduction du dernier nommé.
- d) Il faut éviter la formation de composés du plomb, susceptibles d'être adsorbés à la surface de la goutte de mercure, comme c'est le cas par exemple avec les iodures de plomb.

1.2.1.2. Séparation Argent-Plomb. Résultats

Nous avons étudié systématiquement l'extraction de l'argent par le mercure, en présence d'un grand excès de plomb.

Conditions expérimentales:

Volume de la phase mercurique = 0,3 ml Volume de la phase aqueuse = 4; 4,5 ou 5 ml $|Ag|_t$ et $|Pb|_t$ variables (introduits sous forme de $AgNO_3$ et $Pb(NO_3)_2$) Agitation mécanique pendant 5 min.

TABLEAU 28. — Extraction de l'argent par le mercure en présence d'un excès de plomb.

Vol. ph. aqueuse ml.	$ Ag ^t$ (g)	Pb t (g)	ppm Ag dans Pb.	Complexant utilisé	conc. compl. (M) pH	% d'argent extrait
4	1,0 · 10-7	2,0 · 10 - 3	50	CI-	2,5 · 10 ⁻¹ pH 1	88
4	$1,0 \cdot 10^{-7}$	2,0 · 10 - 3	50	CH ₃ COOH	5,0 · 10 ⁻¹ pH 7	85
5	$1,0 \cdot 10^{-6}$	2,0 · 10 - 2	50	CH ₃ COOH	5,0 · 10 ⁻¹ pH 7	82
5	$5,4 \cdot 10^{-8}$	5,0 · 10 - 2	1,08	EDTA	5,0 · 10 ⁻² pH 4,5	86
4	$1,0 \cdot 10^{-7}$	$2,0 \cdot 10^{-3}$	50	EDTA	5,0 . 10 ⁻² pH 4,5	86
5	$1,0 \cdot 10^{-7}$	2,0 · 10 - 2	5	EDTA NH ₃	$2.0 \cdot 10^{-2}$ $3.0 \cdot 10^{-1}$	82
4,5	$5,4 \cdot 10^{-6}$	2,0 · 10 - 2	270	EDTA EDA	5,0 . 10 ⁻² 3,5 (pH 9)	99
4,5	5,4 · 10 - 6	2,0 · 10 - 2	270	EDA EDA NH ₃	3,5 3,5 3,2 (pH 1I)	91

Réduction de l'argent par un couple réducteur

Conditions expérimentales:

Volume de la phase mercurique = 0,3 ml Volume de la phase aqueuse = 5 ml Quantité d'argent introduit = 1 μ g* Quantité de plomb introduit = 3.10⁻² g.* (*sous forme de nitrates) Agitation mécanique de durée variable.

Résultats:

- a) Couple réducteur = Sn^{+2}/Sn^{+4} dont le $E_0 = 0.14$ v La réduction de l'argent est très lente, après 2 min d'agitation, le rendement d'extraction n'est que de 54.5%, alors qu'après 10 min il est de 72.5%.
- b) Couple réducteur = $Fe(CN)_6^{-2}/Fe(CN)_6^{-3}$, dont le $E_0 = 0.35$ v Après 5 min d'agitation, 84% d'argent sont extraits.

On constate, que la réduction par cette méthode est beaucoup moins rapide que la réduction par le mercure en milieu complexant. Pour ces essais, la conc. des réducteurs était $5.10^{-2} M$.

1.2.1.3. Remarques sur l'extraction de l'argent par le mercure en milieu complexant (Tab. 28)

a) Extraction en milieu acétate:

On constate, qu'une diminution de la concentration en Pb^{+2} augmente quelque peu le rendement de l'extraction de l'argent. L'argent en présence d'un excès de plomb ne peut cependant pas être extrait quantitativement, car le plomb forme un complexe avec CH_3COO^- , dont la cte. de stabilité global log $\beta_3=3,5$ (18). La quantité de CH_3COO^- restant ne suffit plus à abaisser suffisamment le potentiel du mercure en le complexant.

b) Extraction en milieu EDTA

On peut faire les mêmes remarques que plus haut. La cté. de stabilité du complexe formé avec le plomb est de log $\beta_1 = 17.9$ (19).

Nous avons donc pensé à introduire deux complexants dans la phase aqueuse l'un servant exclusivement à complexer le plomb, l'autre à complexer le mercure,

c) Extraction en milieu complexant « mixte » EDTA-EDA

(EDA = 'ethyl'e nediamine, EDTA = ac. 'ethyl'e nediamine-tetrac'e tique).

Nous avons étudié les systèmes EDA-Hg, EDA-Ag, EDTA-Hg et EDTA-Ag dans les chapitres II.3.12. et II.3.13. Le plomb ne forme pas de complexe avec l'EDA, par contre le complexe EDTA-Pb est très stable (log $\beta_1 = 17.9$).

Le calcul des $\alpha_{M(EDTA,EDA)}$ montre, que le mercure est complexé par EDA à. partir du pH 7, l'argent étant complexé simultanément par l'EDTA et l'EDA jusqu'au pH 7.

En effectuant l'extraction à un pH supérieur à 7, les particules prédominantes seront donc:

Pb(EDTA) $Hg(EDA)_2$ $Ag(EDA)_2.$

Les essais (tab. 28) ont été effectuées à pH 8. Dans ces conditions, la séparation argent-plomb est quantitative et rapide, des essais de cinétique ayant montré que le rendement d'extraction de l'argent est supérieur à 99% après 1 min d'agitation manuelle (même condit. expérimentales que celles indiquées dans le tab. 28). Le

plomb reste quantitativement dans la phase aqueuse (vérifié au moyen de Pb²¹⁰ comme traceur)

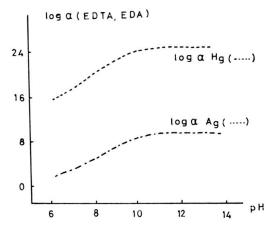
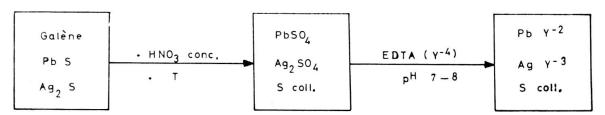


Fig. 29. — Variation des $\alpha_{M(EDA,EDTA)}$ avec le pH. $|EDTA|_t = 5 \cdot 10^{-2} M \text{ et } |EDA|_t = 3,7 M.$

1.2.2. Mise en solution de la galène

Nous avons étudié deux méthodes de mise en solution:


- A) Par attaque à l'acide nitrique.
- B) Par attaque à l'acide chlorhydrique.

A) Attaque à l'acide nitrique

Le minerai est finement pulvérisé dans un mortier en agathe. 0,4 à 0,5 g sont attaqués par 5 ml d'acide nitrique concentré; on chauffe à reflux pendant 20 min environ. Lorsque toute la galène est décomposée, on dilue à 30 ml et ajuste le pH à 7-8 avec *NaOH*. On solubilise le plomb et l'argent par addition d'*EDTA* en excès (pour 1 mole de Pb, on prend 3 à 5 mole de complexant). On porte le volume de la solution à 250 ml.

Le soufre colloïdal formé est filtré et lavé, d'abord avec une solution de HNO_3 1 M, puis avec 10 ml de H_2O , et enfin avec une solution d'EDTA 0,1 M. La solution de lavage doit être ajoutée à la solution mère.

Schéma de l'attaque nitrique:

Le soufre retient toujours une certaine quantité d'argent. Une prise de 0,4328 g de galène a été traitée comme indiqué ci-dessus. Le soufre a été activé dans le réacteur pendant 2 min, et le dosage de l'argent a été effectué dans les conditions suivantes:

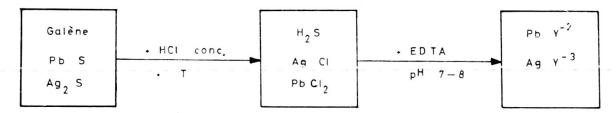
Temps de decroissance- 10 sec.

Temps d'accumulation: 2 min.

Sommation du pic photoélectrique à 0,66 Mev, et comparaison à un étalon externe de $AgNO_3$, activé et compté dans les mêmes conditions.

Résultat: 26 ppm d'argent ont été retenus par le soufre (> 10%).

Pour récupérer tout l'argent, il faut procéder de la manière suivante: Le soufre est calciné dans un creuset en porcelaine, et éliminé sous forme de SO_2 . Le résidu, contenant l'argent est repris par quelques ml de HNO_3 concentré à chaud. On filtre si nécessaire, ajuste le pH avec NaOH et ajoute de l'EDTA.


L'attaque de la galène par l'acide nitrique nécessite donc une calcination. Pour éviter cette opération, nous avons pensé à employer une méthode permettant de détruire les sulfures sans formation de soufre.

B) Attaque par l'acide chlorhydrique

Lors de l'attaque chlorhydrique, les sulfures sont éliminés sous forme de H_2S . On procède de la manière suivante:

Environ 0,5 g de galène finement pulvérisée sont attaquées dans un petit ballon de 50 ml, muni d'une colonne à reflux, par 5 ml de *HCl* concentré. On chauffe pendant environ 15 min, puis évapore à sec et reprend par 5 ml de *HCl* conc. On effectue la même opération, puis on ajoute 20 ml d'eau. Les chlorures formés sont dissouts par addition à la solution d'*EDTA* en excès, à pH 7-8. L'attaque chlorhydrique est plus longue que l'attaque nitrique, mais elle permet d'éviter la formation de soufre.

Schéma de l'opération:

Après avoir porté la solution au volume désiré (dans notre cas 250 ml), on peut procéder à l'extraction de l'argent par le mercure.

1.2.3. Double extraction de l'argent

Pour doser l'argent, nous le séparons prélablement du plomb par une extraction sur le mercure. Dans une éprouvette en polystyrène de 5 ml on introduit:

- a) 3 ml de la solution obtenue par la mise en solution de la galène (milieu *EDTA*, pH 7-8).
- b) 1 ml d'éthylènediamine pure (environ 14,8 M), servant comme complexant du mercure. La concentration totale en EDA sera environ 3,7 M, le pH \geqslant 7.

c) 0,3 ml de mercure

Il n'est pas nécessaire de chasser l'oxygène contenu dans l'éprouvette; on la ferme avec un bouchon en plastique, et on agite manuellement pendant 1 min. La phase aqueuse surnageante est séparée du mercure par aspiration au moyen d'une pipette. La goutte de mercure est lavée avec une solution $10^{-2} M$ d'EDTA puis avec de l'eau.

L'argent amalgamé est ensuite réextrait par réoxydation. La goutte de mercure est transférée dans une ampoule à sceller de 2 ml. On ajoute 0,8 ml d'une solution de KCN2 M (ou de KSCN9 M) et on ferme l'ampoule sans chasser l'air qui s'y trouve, l'oxygène jouant le rôle d'oxydant. On agite manuellement ou mécaniquement pendant 90 sec. L'argent est dosé dans la phase aqueuse par activation ou par absorption atomique.

Pour le dosage par activation, on prélève 0,4 ml au moyen d'une pipette, munie au bout d'un capillaire. La solution est introduite dans un tube en polyéthylène de 0,45 ml, qui est ensuite placé dans le porte-échantillon pour être irradié dans le réacteur. Les conditions d'activation et de dosage sont les mêmes que celles décrites plus haut (1.1.2.2.). Pour certains essais nous avons utilisé un système de transfert automatique de l'échantillon du réacteur à la sonde de l'appareil de mesure, permettant d'accumuler le spectre 3 sec après l'activation,

Pour le dosage par absorption atomique, la solution de réextraction est diluée à 4 ml. L'argent se laisse doser directement en milieu CN^- ou SCN^- sans que la sensibilité de la méthode soit diminuée.

1.3. RÉSULTATS DES DIVERS DOSAGES DE L'ARGENT DANS UNE MÊME GALÈNE

Genre de dosage	Séparation préalable	Genre d'étalon utilisé	Teneur en Ag (ppm)
Activation non		and a NO L'a	205
destructive	_	externe AgNO ₃ liq.	205
Activation non	_	interne AgNO ₃ liq.	246 ± 24
destructive			230 ± 23
Activation non destructive		interne AgNO ₃ liq. + étalon de flux (cuivre)	239
Activation	+	interne. AgNO, liq.	
mise en sol. HNO ₃			231
mise en sol. HC1			234
Absorption atom. attaque HC1	+	interne AgNO ₃ liq.	222

TABLEAU 29

Remarques:

Les échantillons, et plus spécialement les étalons internes, doivent être préparés avec le plus grand soin (absorption de rayonnement gamma par le plomb). Une séparation préalable de l'argent, par double extraction sur le mercure, ne permet pas seulement un dosage radiochimique, mais également un dosage chimique de ce dernier. La deuxième méthode est plus longue, mais la question de l'homogénéité de l'étalon ne se pose plus, puisqu'on travaille avec des solutions, ce qui présente certainement un avantage sur le dosage non destructif.

2. SÉPARATION OR-ARGENT

2.1. INTRODUCTION

La séparation or-argent par échange redox sur le mercure peut s'effectuer de deux manières:

- a) Extraction simultanée de l'or et de l'argent en milieu complexant du mercure, puis réextraction sélective de l'or et de l'argent en divers milieux oxydants.
- b) Extraction sélective de l'or ou de l'argent par le mercure.

Les potentiels normaux des systèmes en présence sont:

$$Ag/Ag^{+}$$
 $E_{0} = 0.80 \text{ v}$
 Hg/Hg^{+2} $E_{0} = 0.85 \text{ v}$
 Au/Au^{+3} $E_{0} = 1.45 \text{ v}$

L'extraction simultanée de l'or et de l'argent ne présente pas de difficulté. Le potentiel redox de l'or est suffisamment élevé, pour que sa réduction par le mercure soit possible dans les divers milieux complexants déjà étudiés pour l'extraction de l'argent. Si la concentration de l'or est très élevée par rapport à celle de l'argent, il faut procéder à une extraction sélective, pour éviter une saturation éventuelle du mercure.

Nous allons étudier expérimentalement l'extraction de l'or par échange redox sur le mercure. En milieu chlorure légèrement acide on a la réaction suivante:

$$2 AuCl_{4} + 6 Hg = 2 Au_{a} + 3 Hg_{2}Cl_{2} + 2 Cl_{3}$$

Cette réaction d'échange a été étudiée par Loepfe. Le composé mercureux qui se forme s'absorbe à la surface de la goutte de mercure, ce qui limite l'extraction de l'or à moins de 100μ g/ml de solution. Il est à prévoir qu'en milieu complexant fort du mercure on pourra extraire des quantités plus importantes d'or, tout en évitant la formation d'un précipité adsorbable sur la goutte de mercure.

2.2. EXTRACTION DE L'OR PAR LE MERCURE EN MILIEU SCN

2.2.1. Influence de la concentration de l'or sur le rendement d'extraction

Conditions expérimentales:

Volume de la phase aqueuse = 4 ml

 $|SCN|_t = 4.5 M$

 $|Au|_t$ = variable (introduit sous forme de HCl_4Au)

pH environ 8

Volume de la phase mercurique = 0,5 ml

Agitation manuelle pendant 90 sec

Traceur: Au^{198} , obtenu par activation de HCl_4Au pendant 15 min dans un flux de 10^9 neutrons/cm². sec.

Résultats:

TABLEAU 30

Au t introduit (μg)	μ g Au/m l	% de Au extraits
225	56,2	99,5
450	112,5	98,2
900	225	98,0
1125	281,2	98,0

2.2.2. Influence de la concentration du complexant sur le rendement d'extraction.

Conditions expérimentales:

Volume de la phase aqueuse = 4 ml $|Au|_t = 384 \mu \text{ g (traceur } Au^{198})$ $|SCN^-|_t = \text{variable.}$ pH environ 8.

Volume de la phase mercurique = 0,5 ml Agitation manuelle pendant 150 sec.

Résultats:

TABLEAU 31

SCN _t (M)	% d'or extrait
0,125	98,0
0,2	98,6
4,5	98,2
9	95,0

On remarque qu'il y a une diminution du rendement d'extraction en milieu SCN 9 M. Il y a formation d'une pellicule jaune à la surface de la goutte de mercure (probablement un sulfure d'or) qui rend l'extraction quantitative impossible.

2.2.3. Etude de la vitesse d'extraction

Conditions expérimentales:

Volume de la phase aqueuse = 4 ml $|Au|_t = 384 \mu \text{ g (traceur } Au^{198})$ $|SCN|_t = 0,125 M$ Volume de la phase mercurique = 0,5 ml Agitation manuelle.

Résultats:

TABLEAU 32

Temps d'agitation (sec)	% d'or extraits
30	96,7
90	98,2
120	98,0
150	98,0

2.2.4. Séparation or-argent en milieu SCN

Il est possible d'extraire simultanément l'or et l'argent par le mercure, en milieu SCN dilué (II.3.11.).

Conditions expérimentales:

Volume de la phase aqueuse = 5 ml $|Au|_t = 248 \mu \text{ g}$ $|Ag|_t = 75 \mu \text{ g}$ (traceur Ag^{110m}) Volume de la phase mercurique = 0,5 ml Agitation mécanique pendant 5 min

Résultats:

TABLEAU 33

% d'argent extrait	
0	
37	
85	
94	
> 99	

En milieu $|SCN|_t > 6 M$, seul l'or est extrait par le mercure.

2.3. EXTRACTION DE L'OR ET DE L'ARGENT EN MILIEU SCH - ÉTHYLENEDIAMINE

Conditions experimentales:

Volume de la phase aqueuse = 5 ml $|Au|_t = 248 \,\mu$ g (traceur Au^{198}) $|Ag|_t = 75 \,\mu$ g (traceur Ag^{110m}). $|SCN|_t$ et $|EDA|_t$ variables. Volume de la phase mercurique = 0,5 ml Agitation mécanique pendant 5 min.

Résultats:

TABLEAU 34

SCN _t (M)	EDA ₁ (M)	% d'or extrait	% d'argent extrait
0,2 0,125 1,0	3,7 3,7 6	99,0 98,9 98,5	99 99 99,0
1,8	6	98,5	98,0

Nous avons utilisé ce milieu pour séparer l'or et l'argent du cuivre; ce dernier forme un complexe relativement stable avec l'éthylènediamine, de sorte qu'il n'est pas réduit par le mercure. Seul l'or et l'argent sont extraits. On les sépare par réextraction sélective.

Conditions de séparation:

- a) Extraction: On agite la solution des sels d'or, d'argent et de cuivre en milieu EDA 3,7 M et SCN 0,2 M en présence de 0,5 ml de mercure, pendant 75 à 90 sec. L'amalgame d'argent et d'or est lavé. Le cuivre reste dans la phase aqueuse.
- b) Réextraction: On agite l'amalgame en présence de O_2 et d'une solution de SCN^- 9 M pendant 90 sec. L'or reste dans le mercure, alors que l'argent est quantitativement réextrait (fig. 30).

2.4. EXTRACTION DE L'OR ET DE L'ARGENT PAR LE MERCURE EN MILIEU CHLORURE

En milieu chlorure suffisamment concentré (>1 M), le mercure est complexé sous forme de $HgC1_4^{-2}$ (II.3.9.), même en milieu légèrement acide (pH 4 à 5). Ce

milieu permet en outre d'extraire l'argent en moins de 15 sec. Il nous a donc semblé intéressant, d'étudier l'extraction simultanée de l'or et de l'argent.

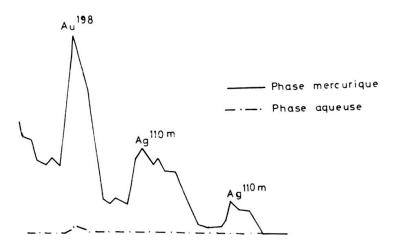


Fig. 30a. — Conditions d'extraction: Volume de la phase aqueuse = 5 ml $|Ag|_t = 75 \mu \text{ g.}$ $|Au|_t = 248 \mu \text{ g.}$ Volume de la phase mercurique = 0.5 m

Volume de la phase mercurique = 0,5 ml Agitation manuelle pendant 75 sec.

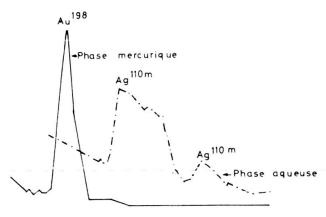


Fig. 30b. — Conditions expérimentales: 0,5 ml de mercure contenant 75 μ g d'argent et 248 μ g d'or 4 ml d'une solution de SCN^- 9 M 1 cc d'air Agitation manuelle pendant 75 sec

Conditions expérimentales:

Volume de la phase aqueuse = 5 ml

 $|C1|_t = 1.2 M$ (pH environ 6).

 $|Ag|_t = 40 \,\mu$ g (traceur Ag^{110m})

 $|Au|_t = 180 \,\mu$ g (traceur Au^{198})

Volume de la phase mercurique = 0.5 ml

Agitation manuelle pendant 60 sec.

Rendements d'extraction:

Nous avons appliqué cette méthode d'extraction au dosage de l'argent et de l'or dans un alliage d'or jaune (Au-Ag-Cu).

2.5. Dosage de l'argent et de l'or dans un alliage d'or jaune

Principe de dosage:

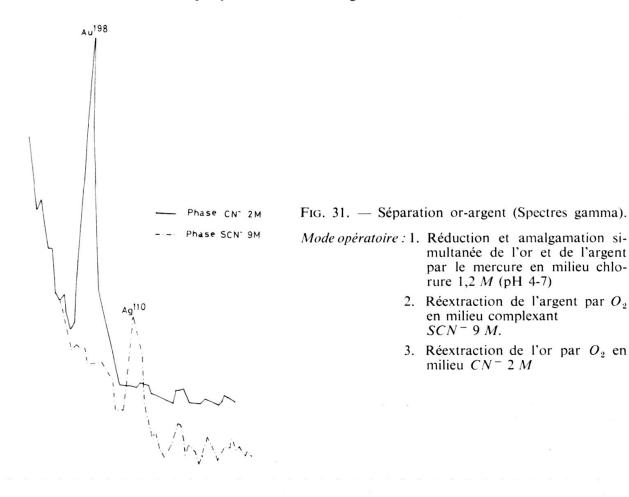
a) Dissolution:

L'or jaune est dissout dans l'eau régale. $5 \cdot 10^{-2}$ g d'alliage sont attaqués avec environ 6 ml d'eau régale (HNO_3 : HCl=1:3). On chauffe doucement à reflux, jusqu' à décomposition complète de l'alliage (si nécessaire, rajouter un peu d'eau régale). L'excès de HNO_3 est décomposé par quelques gouttes de HCl conc. On dilue avec 50 ml d'eau, puis on ajuste le pH à 5-7 par addition de NaOH. On porte le volume total de la solution à 250 ml, par addition d'une solution de NaCl. La concentration totale en chlorure de la solution est de 1,2 M/1. Dans ces conditions, l'argent et l'or forment des complexes solubles avec Cl^- .

b) Extraction:

On introduit dans une ampoule d'échange de 6 ml 1 ml de solution d'or jaune, 4 ml de $C1^-$ 1,2 M (sous forme d'une solution de NaCl) et 0,5 ml de mercure. On ferme l'ampoule et agite les deux phases pendant environ 60 sec. Puis on isole la phase métallique, qui est lavée avec 4 ml de NH_4OH 10^{-1} M, ceci afin d'éliminer toute trace de cuivre. L'amalgame ne contient alors que l'or et l'argent, qui doivent être séparés par réextraction sélective de la manière suivante:

c) Réextraction sélective de l'argent :


On agite l'amalgame dans une ampoule à sceller de 2 ml avec une solution de 0.8 ml de SCN^-9 M. Après 60 sec d'agitation, l'argent doit avoir passé quantitativement dans la phase aqueuse. On prélève au moyen d'une pipette munie d'un capillaire 0.4 ml de solution qu'on introduit dans un tube en polyéthylène pour être activé et dosé dans les conditions déjà décrites (IV.1.1.2.).

d) Réextraction de l'or:

Nous utilisons la méthode déjà décrites par Loepfe. L'amalgame est introduit dans une ampoule de 2 ml avec 1 ml d'une solution de CN^- 2 M. L'oxygène présent dans l'ampoule oxyde l'or en milieu CN^- (comme c'est le cas pour l'argent en

milieu SCN^-9M). L'extraction de l'or est cependant plus longue que celle de l'argent, il faut agiter mécaniquement les deux phases pendant environ 10 min. Le dosage de l'or peut ensuite se faire directement sur la solution de réextraction, par activation aux neutrons thermiques.

Nous illustrons ce qui précède dans la figure 31.

CONCLUSIONS

1. EXTRACTION DE L'ARGENT

L'extraction quantitative de traces d'argent (0,3 à 20 μ g/ml) par le mercure est possible dans les milieux complexants suivants: OH^- , $C1^-$, Br^- , CH_3COO^- , SCN^- , EDTA, EDA et NH_3 .

La vitesse d'extraction ne dépend pratiquement pas de la concentration initiale de Ag^+ , mais elle peut augmenter fortement avec la concentration en complexant. Dans les conditions optima, l'argent est extrait quantitativement après 45 à 60 sec. d'agitation manuelle, sauf en milieu $C1^-$, Br^- ou SCN^- , où il l'est déjà après 15 sec.

D'après une étude bibliographique faite par E. Loepfe sur le mécanisme d'échange redox en milieu complexant [25], il semble qu'on ait les étappes suivantes:

- a) Diffusion d'une particule adsorbable $Ag L_k^{+n}$, en équilibre avec d'autres complexes de l'argent, vers la surface du mercure.
- b) Adsorption de la particule à la surface métallique.
- c) Réaction d'échange entre Ag^+ adsorbé sous forme de complexe et le mercure.
- d) Complexation du mercure ionique formé.

On peut alors penser, que les complexes chlorés, bromés ou thiocyanés diffusent rapidement vers la surface du mercure et s'y adsorbent plus facilement que les autres complexes étudiés. Il y a alors une augmentation de la concentration en argent ionique au voisinage de la goutte de mercure, ce qui pourrait expliquer, qu'en milieu bromure, chlorure ou SCN^- l'argent est réduit quantitativement par le mercure, bien que les conditions électrochimiques ne soient pas remplies (voir II: 3.8.1., 3.9.1., 3.11.1.).

2. LA RÉEXTRACTION DE L'ARGENT

La réextraction de l'argent amalgamé est possible en milieu CN^- ou SCN^- (6 à 9 M), en présence d'un oxydant (soit O_2 , soit $Hg^{+\,2}$). Elle est un peu plus lente que l'extraction (environ 60 sec.). Elle permet d'augmenter la sélectivité de la méthode de séparation (voir IV.2.: séparation Au-Ag), et de doser chimiquement l'élément réextrait. La double extraction (extraction sur le mercure, suivie d'une réextraction) permet en outre de concentrer un élément, par une réextraction dans un faible volume (III.4.).

3. APPLICATIONS

Nous avons appliqué la méthode au dosage de traces d'argent dans une galène (minerai à base de sulfure de plomb). L'extraction de l'argent se fait en milieu complexant « mixte » EDTA-éthylènediamine, puis il est réextrait en milieu CN^- ou SCN^- et dosé en solution, soit par activation neutronique, soit par absorption atomique. Nous avons également étudié le dosage non destructif de l'argent, par activation neutronique.

Nous avons mis au point une méthode de séparation or-argent-cuivre. L'or et l'argent sont séparés du cuivre par réduction et amalgamation au mercure, puis ils sont séparés l'un de l'autre par réextraction sélective, en divers milieux complexants, en présence d'un oxydant.

PROGRAMME DE RÉGRESSION LIÉNAIRE

Programmé pour IBM 1620

```
*LDISKREGR
                                                                                                                                  CALL LINK (SUITE)
                                                                                                                                  END
\mathbf{C}
                DIMENSION X(105), Y(105),
                     XY(105), X2(105)
                                                                                                                  *LDISKSUITE
                COMMON Y,X,N,A, ,X0,SY,R,
                     SYP
                                                                                                                                  DIMENSION X(105), Y(105)
               SXY = 0.
                                                                                                                                  COMMON Y,X,N,A,B,X0,SY,R,
               SY2=0.
                                                                                                                                       SYP
               SY=0.
                                                                                                                                  PRINT 903.A, ,X0
               SX = 0.
                                                                                                                        903 FORMAT(10X. 12 COEFFI-
               SX2=0.
                                                                                                                                       CIENTS, 10X,4HA = E10.
               SXXYY = 0.
                                                                                                                                        3/31X,4HB = E10.3/31X,5
               SYY2 = 0.
                                                                                                                                   1 \text{ X0} = \text{,E10.3//)}
               SXX2 = 0.
                                                                                                                                  PRINT 905, SY, R, SYP
               DO 10 I=1,N
                                                                                                                        905 FORMAT(20X. 6HSY = ,E10.
               XY(I) = X(I)*Y(I)
                                                                                                                                        3/5X, 15HVERIFICATION
               X2(I)=X(I)*X(I)
                                                                                                                                        20X,20HCOEFF. DE C
               SXY = SXY + XY(I)
                                                                                                                                1ORREL. = F7.3/20X,6HSYP = F7.3/20X,6H
               SY = SY + Y(I)
                                                                                                                                        E10.3//)
               SX = SX + X(I)
                                                                                                                                  CALL LINK (PRINCI)
         10 \text{ SX2} = \text{SX2} + \text{X2}(I)
                                                                                                                                  END
               AN = N
               D=AN*SX2-SX*SX
                A = (AN*SXY - SX*SY)/D
                                                                                                                  *LDISPRINGI
                B = (-SX*SXY + SX2*SY)/D
               X0 = -/A
                                                                                                                                  DIMENSION X(105), Y(105)
                                                                                                                                  COMMON Y,X,N,A, ,X0,SY,R,
               SYP = AN*B+A*SX
               XMOY = SX/AN
                                                                                                                                       SYP
               YMOY = SY/AN
                                                                                                                                  READ 100.N
                                                                                                                         100 FORMAT(13)
               DO 20 I = 1 N
               SXXYY = SXXYY + (X(I) -
                                                                                                                                  IF(N) 5000,5000,20
                     XMOY)*(Y(I)—YMOY)
                                                                                                                           20 \text{ DO } 10 \text{ I} = 1, \text{N}
               SXX2 = SXX2 + (X(I) - XMOY)
                                                                                                                           10 READ 101, X(I),Y(I)
                     *(X(I)-XMOY)
                                                                                                                        101 FORMAT(2E10.3)
         20 \text{ SYY2} = \text{SYY2} + (\text{Y(I)} - \text{YMOY})
                                                                                                                                  CALL LINK(REGR)
                     *(Y(I)-YMOY)
                                                                                                                      5000 CALL EXIT
                R = SXXYY/S0RT(SXX2*SYY2)
                                                                                                                                  END
```

RÉFÉRENCES BIBLIOGRAPHIQUES

RÉFÉRENCES SE RAPPORTANT AUX CONSTANTES DE STABILITÉ DES COMPLEXES.

- 1. A. O. GUBELI and J. Ste. MARIE: Canadian J. of Chem. 45, 827 (1967).
- 2. A. B. GARRET and W. W. Howell: J. Am. Chem. Soc. 61, 1730 (1939).
- 3. L. G. SILLÉN: Acta Chem. Scand. 3, 539 (1949).
- 3b. E. Berne und I. Leden: Z. Naturforsch. 8a, 719 (1953).
- 4. E. Berne and I. Leden: Svensk kem. Tidskr. 65, 88 (1953).
- 4b. L. G. SILLÉN: Acta Chem. Scand. 3, 539 (1949).
- 5. L. G. SILLÉN and A. E. MARTELL: Stability constants of Metal—ion complexes spec. publ. 17 London Chem. Soc. 114 (1964).
- 6. P. MAHAPATRA and coll.: J. Indian Chem. Soc. 30, 509 (1953).
- 7.-8. G. Charlot: Les méthodes de la chimie analytique: *Anal. quant. minérale 20* (1961) éd. Masson & Cie.
- 9. N. TANAKA and coll.: Bull. Chem. Soc. Japan 35, 124 (1962).
- 10a. J. Bjerrum: Metal-amine formation, (P. Haase & son, Copenhaguen 1941).
- 10b. G. SCHWARZENBACH: Helv. Chim. Acta 35, 2337 (1952).
- 10c. J. BJERRUM: Chem. Rev. 46, 381 (1950).
- 11. G. SCHWARZENBACH and coll.: Helv. Chim. Acta 40, 1773 (1957).
- 12. J. I. WATTERS and coll.: J. Am. Chem. Soc. 78, 5782 (1956).
- 13. G. SCHWARZENBACH and coll.: Helv. Chim. Acta 37, 937 (1954).
- 14 à 16. G. CHARLOT: Les méthodes de la chimie analytique: *Anal. quant. min. 20* (1961) éd. Masson & Cie.
- 17. G. CHARLOT: idem., p. 18.
- 18. E. A. Burns and coll.: J. Am. Chem. Soc. 78, 3958 (1956).
- 19. B. D. SARMA and coll.: J. Ind. Chem. Soc. 33, 841 (1956).

AUTRES RÉFÉRENCES

- 20. D. M. SUNDERMAN and W. W. MEINKE: Anal. Chem. 29, 1578 (1957).
- 21. W. W. Meinke and coll.: Talanta 3, 298 (1959).
- 22. D. Monnier and E. Loepfe: Anal. Chim. Acta 37, 339 (1967).
- 23. E. LOEPFE, D. MONNIER, W. HAERDI: Zeit Anal. Chem. 221, 109 (1966).
- 24. D. F. C. MORRIS and R. A. KILLICK: Anal. Chim. Acta 20, 587 (1959).
- 25. E. LOEPFE: Dissertation (en voie de publication).
- 26. P. PASCAL: Nouveau traité de chimie minérale XX (1963).
- 27. A. RINGBOM: Complexation in analytical chemistry, vol. 16 (Interscience).
- 28. G. JANGG and KIRCHMAYR: Zè. Chem. 3 (2), 47 (1963).
- 29. C. BIGLIOCCA and coll.: EUR 2165 i (1965).
- 30. H. OKASHITA and coll.: Radiochimica Acta 7 (2,3), 85 (1967).
- 31. E. Madi and coll.: Acta Phys. Chim. Debrecina 1, 61 (1964).
- 32. M. HAISSINSKI and M. CATTIN: J. Chim. Phys. 46, 476 (1949).
- 33. F. Adams and coll.: Talanta 10, 1243 (1963).