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SYSTEMES AUTOGRAVITANTS A DENSITE
DE PHASE CONSTANTE DANS
UN DOMAINE FINI

PAR

P. BOUVIER

ABSTRACT

For any given initial conditions, a self-gravitating system undergoes at first a short phase
of violent relaxation due to collective effects, followed over a much longer span of time by relaxation
due to binary collisions between stars of the system. What can be said about a possible state of
equilibrium after the violent relaxation stage ? This probiem is discussed here for 2- and 3-dimen-
sional systems on lines similar to those followed by Hohl & Feix (1967) for the 1-dimensional case
using the so-called waterbag model. The system cannot reach a state of equilibrium by violent
relaxation alone; numerical computations performed by several authors, which we shall later
complete for the 3-dimensional problem, show that the system does its best to approach equilibrium

RESUME

A partir de conditions initiales quelconques, un systéme autogravitant traverse d’abord une
courte phase de relaxation violente due a des effets collectifs, bientot suivie, sur une longue durée, de
la relaxation par collisions binaires entre étoiles du systéme. Qu’en est-il d’un éventuel état d’équilibre
atteint aprés relaxation violente ? Ce probléme est discuté ici pour des systémes a 2 et 3 dimensions
de maniere similaire a celle de Hohl et Feix (1967), sur la base du « modéle de I’outre » (waterbag
model). Le systéme ne peut, par relaxation violente seulement, atteindre un état d’équilibre; des
explorations numériques effectuées par divers auteurs, que nous compléterons plus tard pour le cas
3-dimensionnel, montrent que le systéme tente de s’approcher au mieux de I'équilibre.

INTRODUCTION

Le probléme traité ici concerne la phase du mélange dynamique, appelée aussi
relaxation violente, qui caractérise 1’évolution initiale d’un systéme stellaire. La
durée t, de cette phase évolutive est de ’ordre de la période moyenne d’oscillation
d’une étoile du systéme, tandis que ce sera au bout d’un temps 7, trés supérieur a 7,
que tendra a s’établir I’équipartition d’énergie par relaxation due a I'effet des chocs
binaires entre étoiles du systéme. Si n est le nombre total des étoiles du systéme,
on a en effet
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75/, ~ 10" nflogn (n>1).

Nous voulons examiner ici I’état dans lequel se trouvera le systéme aprés lc
temps 1, de relaxation violente au cours de laquelle les étoiles étaient en interaction
avec les fluctuations du potentiel ¢ (x, ) du systéme. Si c’est un état d’équilibre, il
ne sera que provisoire parce que lentement perturbé par l'effet des chocs sur une
durée t,; on aura un quasi-équilibre ou [3] équilibre non stationnaire.

Lecar [4], puis Hohl et Feix [3] ont abordé le probléme en le réduisant 4 une seule
dimension spatiale; les « étoiles » sont alors des plans paralléles chargés de matiére,
s’attirant entre eux et pouvant librement se traverser en produisant alors des fluc-
tuations de potentiel. Un tel systéme donnerait une représentation approximative des
mouvements stellaires perpendiculaires au plan galactique dans le voisinage solaire.

La méthode utilisée consiste a intégrer numériquement les équations de mou-
vement des « étoiles » & partir de diverses conditions initiales au temps ¢t = 0; on
pourra ensuite examiner a toute époque #>0 la distribution des positions et des
vitesses, ce qui revient a contourner la résolution directe de I’équation non linéaire
de Liouville.

La méthode de calcul de Lecar est la plus précise, mais celle de Hohl et Feix
peut s’appliquer a un nombre plus élevé de plans. Le développement de ces expé-
riences numériques montre une tendance du systéme a s’approcher d’un état d’équi-
libre, sans que I’on puisse toutefois affirmer que cet état soit vraiment atteint.

Si d’ailleurs un tel état existait, la fonction de distribution ne devrait plus
dépendre des variables de phase x, v que comme fonction de I'intégrale premiére
d’énergie

(1) f(x,v51y) = F(U)
ou U =1mv* + meo(x,1,)
m étant la masse par unité de surface portée par chacun des plans.

La distribution F(U) se déduit en principe de la distribution initiale / (x, v; 0)
en résolvant 1’équation aux dérivées partielles de Liouville-(-Vlasov)

%) 0 0 ¢
2) T WY _wd_,
ot 0x 0x 0v

combinée a celle de Poisson

(3) ;7 = 4nijdv.

Il y a un cas ou I'on peut se dispenser de cette résolution, insurmontable en
général, celui ol I'on a initialement
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f(x,v;0) = A (const. >0) en

4
(%) 0 en dehors de 0

%, étant un domaine fini de 'espace (x, v). A I'’époque t = 7., on aura toujours
F(U) = A mais dans un domaine 2, de méme extension en phase que %, (théoréme
de Liouville).

Ce modeéle particulier de distribution initiale, qu'on peut appeler « modéle de
I'outre » (waterbag model), permet de n’invoquer que la conservation d’extension
en phase pour le calcul du modéle d’équilibre non stationnaire a ¢t = t,. Cependant,
I’énergie totale E (¢ = t,) se révéle toujours inférieure a 1’énergie E (¢ = 0) de plus [3],
£ (7y) est un minimum d’énergie de sorte que, partant avec une énergie totale
E (0) quelconque, le systéme qui évolue sous l'effet du mélange des orbites,
n’arrivera jamais a un état d’équilibre a r = t,. Le calcul numérique montre que
I'approche a 1'équilibre est d’autant mieux réalisé que la différence d’énergie
E (t,) — E(0) est plus faible, et si cette différence est élevée, on assiste généralement
a une fragmentation du systéme [3].

SYSTEME BIDIMENSIONNEL

Les « étoiles » sont maintenant des tringles rectilignes et paralléles, s’attirant
entre elles avec une force inversement proportionnelle a la distance.

R. W. Hockney [2] a procédé a des expériences numériques sur un tel systéme
de 2000 tringles; pour que le systéme puisse représenter un modéle de galaxie réduite
a un disque, il importe d’introduire une rotation d’ensemble permettant & la force
d’attraction d’étre contrebalancée par la force centrifuge. Hockney a toutefois aussi
étudié le cas de rotation nulle; le systéme subit une implosion radiale avant de se
séparer en deux catégories d’étoiles dont la plus nombreuse se condense en un
noyau en quasi-équilibre, tandis qu’une minorité d’étoiles d’énergie élevée va former
un halo autour du noyau.

En repérant les « étoiles » par des coordonnées polaires de position R, 0 aux-
quelles correspondent respectivement les composantes de vitesse I, @ nous avons
donc, pour le modéle de I’outre:

f(R,O,U,@,O):A en
= 0 en dehors de

(3)

Dy

%, est le domaine a 4 dimensions défini par ses projections sur ’espace des positions
et celui des vitesses, a savoir les cercles R = R, et w = w, ol R, est le rayon initial
du systéme et w, le module maximum de vitesse en tout point.

La normalisation de f au nombre total N de tringles nous conduit a

N

- (m Ry wo)?
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D’autre part, en multipliant les deux membres de I’équation de mouvement de
I'une des tringles

d* R 5 do? M (R)
;s — R {— )= 26—
dt dt

par RdM (R) et en intégrant de 0 & M (masse totale par unité de longueur), on obtient
dz 2 2 2 2
i R°dM(R) — | (UII"+O©°)dM(R) = — GM"~.
G

Comme les énergies cinétiques radiale (7;) et transversale (7,) sont égales quand
il y a isotropie des vitesses nous aurons, dans I’état d’équilibre, la forme suivante
pour le théoréme du viriel

(6) 2Ty = 1 GM?*.
Posons de fagon générale
4 Ty 2T
o = —
GM? GM?

toutes les énergies étant prises par unité de longueur.
Dans le cas du modéle de I’outre considéré ici, nous trouvons a ¢t = 0, I’énergie
cinétique

Ro w
(7 Ty = 2n? AmJ Rde widw = 1 Mwy?.

0 0

L’énergie potentielle par unité de longueur est donnée par
Wo = £f¢th(R)

ou, pour un cylindre homogéne, nous avons une densité

M

nR,?

P

et un potentiel égal a

RZ
0
par conséquent,

(8) W, =} GM?
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et I’énergie initiale totale s’éléve, par addition de (7) et (8) a:
(9) E;, = }(Mwoz-i-GMz) = $(2ao+l)GM2.

Dans I’hypothése d’un état d’équilibre atteint par relaxation violente en un
temps 7,, nous pourrons écrire

(]0) f(RQO)H)Qstl) =F(U3J)
ou U et J sont les intégrales respectives d’énergie et de moment angulaire

U=1im(1*+ 0% + m¢ (R, 1))
J = mR@®

m étant la masse par unité de longueur portée par chacune des tringles. Passons, en
un point donné R, 0 des variables I1, @ aux variables U, J:

dlil de = dUdJ

m? RI1

les limites de J seront + J, ou J, est le moment angulaire maximum a U donné,
et dont le carré vaut

J.2 = Zm R*(U —mo)
U varie de m¢ a une valeur maximum me. Notons que, comme pour le probléme
a une dimension, le systéme est fermé en ce sens que le potentiel croit indéfiniment

avec R (comme log R) et qu’il n’y a pas d’évasion possible.
La densité de masse a pour valeur

me +J,
p(R) = Af de Us=JH " dJ = Amn(e—¢)
m¢ -J,
et I’équation de Poisson s’écrit

1 d [ dg GM
" L)

Ry w

ou M = Nm, masse totale par unité de longueur.
Introduisons les grandeurs sans dimension x, { définies par

kR =x, &e—¢ =pwy
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ou f est une constante et

(,\'Ro)z = 4GA4/‘V02 -

(11) se réduit alors a I’équation de Bessel d’ordre zéro

(12) xi(xl—{%>+t}/=0

d’ol Y o= Jo(x)
a un facteur constant pres, inclus dans f.
Les conditions aux limites sont les suivantes:

au centre: x = 0,

e = ¢(0) + fwo’

{
(-;j;_)o = 4+ kBwy2J,(0) =0

au bord: x = x; = kR, = 2.405, premier zéro de J; (x)
¢ = ¢ (R;) = log (2GM) (raccord de potentiel)

d
(13) 2GM|R, = (%}i) = Bwo? kJ,(x,) (raccord du champ)
¢

Calculons les énergies par unité de longueur au temps t,; la symetrie circulaire
s’est conservée et nous avons:

R) me +J,
(14) 2Tx = ZHAJ RdRJ dUJ J2-JdH ot dJ
0 me¢ -J,
= 41,8% g M wy? = 8 I, p* a,® GM?
ou

x]
I = J (Jo (x))* xdx = 0.779 .
0

On vérifie facilement que 27, = 2T%, donc 7T} = 2T,.
D’autre part

Ri 1 (R d [ dd
W, = RAR = — 2 (R \ar
‘ ”L p 4(}[0 ¢dR( dR)‘
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—1 R)R 9 1 R]Rd¢21R
_Ed)( 1) 1(&5)1 _Efo (ﬁ)‘

d’ou, avec ¢ (0) = 0, donc ¢ (R,) = B w,*
(15) Wy = =[x J1(x) + 1] 5 2g® GM?

x, €tant, rappelons-le, le premier zéro de J, (x) et

X1
Iy = J (J, (x))* xdx .

0

L’on a d’ailleurs /; = I, en vertu de la propriété

d
xJo = ——(xJy)
dx

des fonctions de Bessel.
Changeons de variable en posant x = yy, ol y est une constante arbitraire;
[, n’est pas modifié et (15) devient

(15") W, = — [y Jy (oyy) + Io] B 2o GM?
avec yy; = 2.405.

La condition de raccord de champ (13) s’écrit maintenant
(13" 2GM = Bwo®yyiJi (yy1)
par ¢limination de y, nous avons par conséquent
W, = — (I, B? ay® + Pay) GM?
et I’énergie totale a pour valeur
(16) E, =T, + W, = (71, ? ag> —Bay) GM? .

En exigeant que soit vérifié le théoréme du viriel dans I’état d’équilibre a t = 14,
nous devons avoir
2T,

oz = !

oy

d’ou
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de sorte que la différence d’énergie totale, en unités GM?, soit d’aprés (9) et (16),

7 1

est bien négative quel que soit «,, ayant une valeur minimum en valeur absolue pour
o, = 0 (implosion radiale). De plus, I'énergie E;, qui s’écrit maintenant

E ’ ! GM?
Loo\1e 4 /I,
ne dépend pas de «,, c’est-a-dire des conditions initiales; il s’agit d’un minimum
d’énergie, selon toute vraisemblance.

SYSTEME TRIDIMENSIONNEL

L’état initial du modéle de I'outre sera défini ici par une distribution uniforme
des points de phase dans un domaine %, a six dimensions se projetant dans I'espace
des positions sur la sphére de rayon R, et dans celui des vitesses sur la sphére de
rayon w,. La symétrie sphérique du systéme réduit les variables importantes a la
seule distance au centre r et aux deux composantes respectivement radiale u et trans-
versale v, de sorte que u?v? = w?

(18) Srhuv;0) =4  (const. >0)en
=0 en dehors de

0 .

La normalisation & N, nombre total d’étoiles, toutes de méme masse m, nous améne a

A—32 N
~ \4n R wy?

Désignons par M la masse totale Nm du systéme; le calcul des énergies initiales
donnera:

m (Ro Wo 3
(19) T = ]6n2A2-f rzdrf whdw =EMW02

0 0

(20) Wy=—-G——
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d’ou le rapport

2T, Ry wg’
aO — =
- W, GM
et ’énergie initiale totale
1 2
(21) E0=T0+W0=‘—‘% ——% MWO
%o

on a E,<0 tant que o, < 2. Si a, > 2, le systéme peut €tre initialement instable et
se fragmenter par la suite.

L’évolution de f, régie par I'équation de Liouville dans I’espace de phases a
6 dimensions pendant la durée 7, de relaxation violente, conservera la symétrie
sphérique et si un état d’équilibre est atteint, on pourra poser

(22) f(ryu,v;t) = F(U,J),
de méme qu’en (1) et en (10), ou

U=1im@>+v®) +mp(r,ty) e J = mro

sont les intégrales premicres d’énergie et de moment angulaire respectivement. La
densité de masse a pour expression

W, +\/w,,2~u‘3
vdvj f(r,u,v;t,)du

plr,ty) = 2nmj
0 ___\/wﬂz_,,z

ol w, (r) est une vitesse maximum.

Notons qu’ici, contrairement aux cas a 1 et a 2 dimensions, le systéme est
ouvert, car ¢ (r, t;)—¢ (0, 7,) tend vers une valeur finie quand r— oo et une étoile
de vitesse =w, peut aller a I'infini (évasion), son énergie totale devenant nulle. En
un point donné, r, 0 du systéme, passons des variables u, v aux variables U, J; nous
trouvons sans peine

dudv = dUdJ

m? ru

et les limites du domaine 2, issu de &, et de méme mesure, seront

J=Jy = "\/Zm(U—in(f)):
moment angulaire maximum a r, U fixes

U=U, = me,
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énergie maximum, telle que

FU,J) =20 dés que U=U

¥ *

Il en résulte, pour la densité de masse

me J, 3 M
- 2 sk _ %
p(r) = 4nA - duf V=9I = — o (e =)
0

4 / 3
rdmtb 0 n"\/zRO ¥

I’équation de Poisson

(23) R (e B T ¢)}
——rr— = ——— (e —¢)*
rtdr A R, wy?

dr 0
devient, en terme des grandeurs sans dimension &, s définies par

kr = ¢, €—¢ = Pwly

et avec
(kRo) = 6 (2B oo~
Ud (Ld\ |,
(24) ?Ig(f ZIE)”’ 0

qui est I’équation d’Emden pour un polytrope d’indice 3/2.
Conditions aux limites:

aucentre, £ =0, Yy (0) =1 dou &= ¢ (0)}pw,?,

ce qui montre que 28 mesure le carré du rapport de la vitesse de chute libre du bord
au centre du modeéle final a la vitesse maximum w, du modéle initial.

En outre,
d
Wy
(di)o

6 = él = le = 3.6537 see

Au bord,

M
V(&) =0 dot e=¢(R)=-G

1
raccord de potentiel
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M jde\ 3 , it/i
o (@) ma()

raccord de champ
dy
avec | — | = —0.2033...
d¢ /,

L’équation d’Emden (24) admettant une constante d’homologie, soit y, nous pouvons
multiplier  par y et & par y—* ce qui revient, en maintenant R, et M fixes, 2 multi-
plier la densité centrale par y-% et I’échelle de longueur k! par y*.

Nous déterminons alors les deux constantes f3, y par la condition (25) du raccord
de champ qui devient

(26) Gﬂ:_ﬁwzkyﬂ
) R’ > \de )y
et par la condition du viriel

2T,
(27) a] = = 1.

— W,

Avec les valeurs numériques relatives au polytrope d’indice 3/2, (26) nous donne
(28) Bay2y? = 1.10.

Les énergies a I'équilibre ont pour expression

R) me
T, = 16n2\/§Am‘%J‘ rzdrf (U—-m¢p) dU
0 me

_18/2

5

M &l 2 3
d o
R03 W03 J‘o rdr(e=¢)

3% . .
- ST P M

ou

4
J =Jl E2ytdé = 1.490

0

6  M* 32
—_ Wl =—G_ _—
7 R, T&

ARCHIVES DES SCIENCES. Vol. 21, fasc. 2, 1968. 13

B4 o y7s Mwg? .
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La condition (27) fournit la relation

30./2
29 % 3'\7/4 = A
(29) B* oo’y 78,7

De (28) et (29) on tire
%= 1,15 (indépendant de )
puis Pao* = 0.91

par suite I’énergie totale

(30) E, =31W, = —0.3350," ! Mwy%

et la différence d’énergie totale, en unités Mw,2, vaudra, selon (21) et (30)
(31) E, —E, = —0.3350,"% + 0.60 a5~ — 0.30.

Elle se présente comme un trindme du deuxiéme degré en a—,’, restant négatif
quel que soit «,. Le mélange dynamique des orbites conduit donc bien toujours a
une énergie finale E, plus basse que I’énergie initiale £, et la valeur de E, est vrai-
semblablement un minimum d’énergie.

La différence E, —E, est minimum en valeur absolue pour

ao . 1.12 .

L’évolution par voie numérique d’un tel systéme a été suivie par M. Hénon [I
en utilisant une méthode de Campbell qui raméne dans une certaine mesure le pro-
bleme au cas unidimensionnel: le systéme est représenté par N couches sphériques
concentriques s’attirant entre elles et pouvant se traverser librement. Les conditions
initiales supposaient une distribution maxwellienne des vitesses de méme dispersion
en tout point; elles différent donc un peu des conditions du « modeéle de I'outre »
considéré ici. Un programme d’exploration numérique est actuellement en prépa-
ration pour étudier I’évolution du systétme dans les conditions du présent travail.

Observatoire de Genéve,
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