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SYSTEMES AUTOGRAVITANTS A DENSITE
DE PHASE CONSTANTE DANS

UN DOMAINE FINI

PAR

P. BOUVIER

Abstract

For any given initial conditions, a self-gravitating system undergoes at first a short phase
of violent relaxation due to collective effects, followed over a much longer span of time by relaxation
due to binary collisions between stars of the system What can be said about a possible state of
equilibrium after the violent relaxation stage1 This problem is discussed here for 2- and 3-dimen-
sional systems on lines similar to those followed by Hohl & Feix (1967) for the 1-dimensional case

using the so-called waterbag model. The system cannot reach a state of equilibrium by violent
relaxation alone; numerical computations performed by several authors, which we shall later
complete for the 3-dimensional problem, show that the system does its best to approach equilibrium

Resume

A partir de conditions initiales quelconques, un systeme autogravitant traverse d'abord une
courte phase de relaxation violente due ä des effets collectifs, bientöt suivie, sur une longue dürfe, de
la relaxation par collisions binaires entre 6toiles du systeme. Qu'en est-il d'un eventuel etat d'equilibre
atteint apres relaxation violente 1 Ce Probleme est discute ici pour des systemes ä 2 et 3 dimensions
de maniere similaire ä celle de Hohl et Feix (1967), sur la base du « modele de l'outre » (waterbag
model). Le systeme ne peut, par relaxation violente seulement, atteindre un etat d'equilibre; des

explorations numeriques effectufes par divers auteurs, que nous completerons plus tard pour le cas
3-dimensionnel, montrent que le systeme tente de s'approcher au mieux de l'equilibre.

INTRODUCTION

Le probleme traite ici concerne la phase du melange dynamique, appelee aussi

relaxation violente, qui caracterise revolution initiale d'un Systeme stellaire. La
duree t1 de cette phase evolutive est de l'ordre de la periode moyenne d'oscillation
d'une etoile du Systeme, tandis que ce sera au bout d'un temps t2 tres superieur ä t1

que tendra ä s'etablir l'equipartition d'energie par relaxation due ä 1'effet des chocs

binaires entre etoiles du systeme. Si n est le nombre total des etoiles du Systeme,

on a en effet
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til'Ci ~ 10 2 «/log/! (/!>1).

Nous voulons examiner ici l'etat dans lequel se trouvera le Systeme apres lc

temps ij de relaxation violente au cours de laquelle les etoiles etaient en interaction
avec les fluctuations du potentiel </> (x, t) du Systeme. Si c'est un etat d'equilibre, il
ne sera que provisoire parce que lentement perturbe par reffet des chocs sur une
duree r2; on aura un quasi-equilibre ou [3] equilibre non stationnaire.

Lecar [4], puis Hohl et Feix [3] ont aborde le probleme en le reduisant ä une seule
dimension spatiale; les « etoiles » sont alors des plans paralleles charges de matiere,
s'attirant entre eux et pouvant librement se traverser en produisant alors des

fluctuations de potentiel. Un tel Systeme donnerait une representation approximative des

mouvements stellaires perpendiculaires au plan galactique dans le voisinage solaire.
La methode utilisee consiste ä integrer numeriquement les equations de mou-

vement des «etoiles» ä partir de diverses conditions initiales au temps t 0; on

pourra ensuite examiner ä toute epoque />0 la distribution des positions et des

vitesses, ce qui revient ä contourner la resolution directe de l'equation non lineaire
de Liouville.

La methode de calcul de Lecar est la plus precise, mais celle de Hohl et Feix
peut s'appliquer ä un nombre plus eleve de plans. Le developpement de ces
experiences numeriques montre une tendance du Systeme ä s'approcher d'un etat d'equilibre,

sans que Ton puisse toutefois affirmer que cet etat soit vraiment atteint.
Si d'ailleurs un tel etat existait, la fonction de distribution ne devrait plus

dependre des variables de phase x, v que comme fonction de 1'integrale premiere
d'energie

m etant la masse par unite de surface portee par chacun des plans.
La distribution F(U) se deduit en principe de la distribution initiale f (x, v;0)

en resolvant l'equation aux derivees partielles de Liouville-(-Vlasov)

(1) f{x,v; t,) F(U)

[7=4 mv2 + m<j) (x,t,)oü

(2)
dtdt 8x 8x 8v

8f 8f 8(j> 8f
v 0

combinee ä celle de Poisson

(3)
v2<t> r

r 47lG /dv
8x

11 y a un cas oü l'on peut se dispenser de cette resolution, insurmontable en
general, celui oü l'on a initialement
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(4) f(x,v; 0) A (const. >0) en
0 en dehors de 0

Q0 etant un domaine fini de l'espace (x, v). A l'epoque t — tl, on aura toujours
F(U) A mais dans un domaine de meme extension en phase que 20 (theoreme
de Liouville).

Ce modele particulier de distribution initiale, qu'on peut appeler « modele de

l'outre » (waterbag model), permet de n'invoquer que la conservation d'extension
en phase pour le calcul du modele d'equilibre non stationnaire a. t Cependant,
l'energie totale E(t tj) se revele toujours inferieure ä l'energie E (t — 0) de plus [3],
E (t,) est un minimum d'energie de sorte que, partant avec une energie totale
E (0) quelconque, le Systeme qui evolue sous l'efTet du melange des orbites,
n'arrivera jamais ä un etat d'equilibre ä t t1. Le calcul numerique montre que
l'approche ä l'equilibre est d'autant mieux realise que la difference d'energie
E (ij) — E (0) est plus faible, et si cette difference est elevee, on assiste generalement
ä une fragmentation du Systeme [3].

Les « etoiles» sont maintenant des tringles rectilignes et paralleles, s'attirant
entre elles avec une force inversement proportionnelle ä la distance.

R. W. Hockney [2] a procede ä des experiences numeriques sur un tel Systeme
de 2000 tringles; pour que le Systeme puisse representer un modele de galaxie reduite
ä un disque, il importe d'introduire une rotation d'ensemble permettant ä la force

d'attraction d'etre contrebalancee par la force centrifuge. Hockney a toutefois aussi

etudie le cas de rotation nulle; le Systeme subit une implosion radiale avant de se

separer en deux categories d'etoiles dont la plus nombreuse se condense en un

noyau en quasi-equilibre, tandis qu'une minorite d'etoiles d'energie elevee va former
un halo autour du noyau.

En reperant les « etoiles » par des coordonnees polaires de position R, 0 aux-
quelles correspondent respectivement les composantes de vitesse 77, 0 nous avons

done, pour le modele de l'outre:

est le domaine ä 4 dimensions defini par ses projections sur l'espace des positions
et celui des vitesses, ä savoir les cercles R — R0 et w m>0 oü R0 est le rayon initial
du Systeme et u'0 le module maximum de vitesse en tout point.

La normalisation de / au nombre total N de tringles nous conduit ä

SYSTEME BIDIMENSIONNEL

(5)
/(/?, 0,n, 0;O) A

— 0 en dehors de

N
A

(ti R0 w0)2
'
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D'autre part, en multipliant les deux membres de l'equation de mouvement de

l'une des tringles
d2 R

~d? - R
dO2

dt - 2 C
M (R)

R

par RdM (R) et en integrant de 0 ä M (masse totale par unite de longueur), on obtient

d2
—r| R2dM(R) -dt

(n2 + 02)dM (R) - GM2

Comme les energies cinetiques radiale (TR) et transversale (T0) sont egales quand
il y a isotropic des vitesses nous aurons, dans l'etat d'equilibre, la forme suivante

pour le theoreme du viriel

(6) 2Tr { GM2

Posons de fagon generale

a
4 Tr IT
GM2 GM2

toutes les energies etant prises par unite de longueur.
Dans le cas du modele de l'outre considere ici, nous trouvons ä t 0, l'energie

cinetique

(7) T0 2n2 Am
Ro

RdR w3 dw \ Mw02

L'energie potentielle par unite de longueur est donnee par

W) i ddM(R)

oü, pour un cylindre homogene, nous avons une densite

M
P -

7

et un potentiel egal ä

TIR02

R2

^0
<!>{R) GM—2 si (/>(0) 0

An

par consequent,

(8) W0 i GM2
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et l'energie initiale totale s'eleve, par addition de (7) et (8) ä:

(9) E0 i{Mw02 +GM2) i (2a0 + 1) GM2

Dans Phypothese d'un etat d'equilibre atteint par relaxation violente en un

temps Tj, nous pourrons ecrire

oil U et J sont les integrales respectives d'energie et de moment angulaire

U \m(n2 + Q2) + m^iR^ß)

J mR0

m etant la masse par unite de longueur portee par chacune des tringles. Passons, en

un point donne R, 9 des variables 77, 0 aux variables U, J:

les limites de J seront ± oü J^ est le moment angulaire maximum ä U donne,
et dont le carre vaut

U varie de mcj) ä une valeur maximum me. Notons que, comme pour le probleme
ä une dimension, le Systeme est ferme en ce sens que le potentiel croit indefiniment
avec R (comme log R) et qu'il n'y a pas d'evasion possible.

La densite de masse a pour valeur

(10) /(R, 0, fl, 0; tj) F(U,J)

iin <10
m2 RÜ

dUdJ

J2 2m R2 (U — m(j>)

p (R) A dU

et l'equation de Poisson s'ecrit

(11)

oü M Nm, masse totale par unite de longueur.
Introduisons les grandeurs sans dimension x, ij/ definies par

kR x s — <j> ß w02 iß
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oü ß est une constante et

(kR0)2 4G A7/iv02.

(11) se reduit alors ä l'equation de Bessel d'ordre zero

d f d^
(12)

d'oii

'TAxT,} + *'°
ip J0(x)

ä un facteur constant pres, inclus dans ß.

Les conditions aux limites sont les suivantes:

au centre: x 0,

d(j)

dR

e (ß(0) + ßw02

+ kßwo2Jl(0) s 0

au bord:

(13)

.Y .v, kRt 2.405, premier zero de J0 (x)

e (j> (Äj) log (2(7A/) (raccord de potentiel)

2GM/Rl ßwo2 kJi (x,) (raccord du champ)

Calculons les energies par unite de longueur au temps t1 ; la symetrie circulaire
s'est conservee et nous avons:

(J2-j2)~in2dJ
-j,
«2 n i/2

ou

* R 1 *m£ n

(14) 2 TR 2nA R dR dU
• o m<f> «

4I0ß2 <x0M w02 8 I0ß2

/0 (J0 (x))2 xdx 0.779

On verifie facilement que 2Te 2TR, done 7\ 2TR
D'autre part

Wl 71 (hp R dR —
o 4 G

If*1 d d(f)\
(/>—[ R-±]dR

dR \ dR)
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1 /d(j)\ 1

(f>(Rl)R1
4G \dRj i 4Gl\ / A v

rRi /w^\2
"'sä,1 ""

d'oü, avec 4> (0) 0, done (j) (/?j) ß w02

(15) Wt - [x^Axi) +',]^o2CM2

.Vj etant, rappelons-le, le premier zero de J0 (x) et

*1
,2(Jt (x)) xdx

L'on a d'ailleurs /, I0 en vertu de la propriete

d
xJ0 —(xJi)

dx
des fonetions de Bessel.

Changeons de variable en posant x — yy, oü y est une constante arbitraire;
I0 n'est pas modifie et (15) devient

(15') Wx - [yy.JAyyx) + I0]ß2x02GM2
avec yy\ 2.405.

La condition de raccord de champ (13) s'ecrit maintenant

(13') 2GM ßw02yylJi(yyi)

par elimination de y, nous avons par consequent

Wl -(y2«o2+WGM2

et l'energie totale a pour valeur

(16) El 7\ + W1 (7 I0ß2a02-ßx0)GM2

En exigeant que soit verifie le theoreme du viriel dans 1'etat d'equilibre ä t r,,
nous devons avoir

2 T,

GM2

d'oü

„ - 1

1
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de sorte que la difference d'energie totale, en unites GM soit d'apres (9) et (16),

(17)

est bien negative quel que soit a0, ayant une valeur minimum en valeur absolue pour
a0 0 (implosion radiale). De plus, l'energie £,, qui s'ecrit maintenant

E, (- '
: - \ G M2

\16 4 JloJ

ne depend pas de a„, c'est-ä-dire des conditions initiales; il s'agit d'un minimum
d'energie, selon toute vraisemblance.

SYSTEME TRIDIMENSIONAL

L'etat initial du modele de l'outre sera defini ici par une distribution uniforme
des points de phase dans un domaine S>0 k six dimensions se projetant dans l'espace
des positions sur la sphere de rayon R0 et dans celui des vitesses sur la sphere de

rayon iv0. La symetrie spherique du Systeme reduit les variables importantes ä la
seule distance au centre r et aux deux composantes respectivement radiale u et
transversale v, de sorte que u2 + v2 w2.

f(r, 11, v\ 0) - A (const. >0) en
0 en dehors de 0 '

La normalisation ä N, nombre total d'etoiles, toutes de meme masse m, nous amene ä

3 \2 N
A -471/ R0i w0

Designons par M la masse totale Nm du Systeme; le calcul des energies initiales
donnera:

(19) T0 \6n2Ami
r* o

r2
o

rw» 3
vv dw — M *

10

3 M2
(20) W0 - - C ——

^ ^0
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d'oü le rapport
2 T0 R0 w02

- W0 GM

et l'energie initiale totale

(21) E0 T0 + W0 - | Mw02

on a Eo<0 tant fiue ao < 2. Si a0 > 2, le Systeme peut etre initialement instable et

se fragmenter par la suite.

L'evolution de /, regie par l'equation de Liouville dans l'espace de phases ä

6 dimensions pendant la duree r, de relaxation violente, conservera la symetrie
spherique et si un etat d'equilibre est atteint, on pourra poser

sont les integrales premieres d'energie et de moment angulaire respectivement. La
densite de masse a pour expression

oü u'e (r) est une vitesse maximum.
Notons qu'ici, contrairement aux cas ä 1 et ä 2 dimensions, le Systeme est

ouvert, car cj) (r, x,) — </> (0, Tt) tend vers une valeur finie quand r-* oo et une etoile
de vitesse ^vi'e peut aller ä l'infini (evasion), son energie totale devenant nulle. En

un point donne, r, 0 du Systeme, passons des variables u, v aux variables U, J\ nous
trouvons sans peine

(22) /(r,«,i>; t.) F(U,J),
de meme qu'en (1) et en (10), oü

U ^ m (u2 +v2) + et J mrv

J -y/ wfi2 -1)2

cludv
m2 ru

dUdJ

et les limites du domaine 3)x issu de et de meme mesure, seront

r R,

J — J* — \!2m (U — m(j>) >

moment angulaire maximum ä r, U fixes

U V* me,
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energie maximum, telle que

F (U,J) 0 des que U^U*.

II en resulte, pour la densite de masse

p (r) 4nA ~
r

l'equation de Poisson

1 me

dU
m <t>

3 M
(J2. -J2)-* JdJ -—3 3(s-</>)i

o v 2 "V

1 d d(j>\ _ M
(23) "47 1 T 6V/2GF3r dr\ dr / R0 iv0"

devient, en terme des grandeurs sans dimension £, tj/ definies par

kr £ e — <p ß vv02 ijj

et avec

(kR0)2 6 (2/7)* a0~1.

1 d
(24) -= — [ — + \!>* 07

^ dt; \ d£J

qui est l'equation d'Emden pour un polytrope d'indice 3/2.
Conditions aux limites:

au centre, £ 0 i/i (0) 1 d'oü e <f> (0)-r/fivo2,

ce qui montre que Iß mesure le carre du rapport de la vitesse de chute libre du bord
au centre du modele final ä la vitesse maximum ir0 du modele initial.

En outre,

"*) ,0lie Jo

Au bord,

£ kRx 3.6537

M
i// (<Jj) 0 d'oü e cj) (Ri) — G -

raccord de potentiel

R i
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(25)

raccord de champ

avec - 0.2033

L'equation d'Emden (24) admettant une constante d'homologie, soit y, nous pouvons
multiplier i{/ par y et £ par ce qui revient, en maintenant et M fixes, ä multiplier

la densite centrale par et l'echelle de longueur k~l par yi.
Nous determinons alors les deux constantes ß, y par la condition (25) du raccord

de champ qui devient

et par la condition du viriel

Avec les valeurs numeriques relatives au polytrope d'indice 3/2, (26) nous donne

(26)

(28) /Vr i.io.

Les energies ä l'equilibre ont pour expression

oü

J £2ipid^ 1.490
J o

Archives des Sciences. Vol. 21, fasc. 2, 1968. 13
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La condition (27) fournit la relation

(29)

De (28) et (29) on tire

puis

y 1.15 (independant de a0)

ßa02 0.91

par suite l'energie totale

(30) Ei=iWl - 0.335 a0-1 Mw02.

et la difference d'energie totale, en unites Mw02, vaudra, selon (21) et (30)

Elle se presente comme un trinöme dudeuxieme degre en a'o^restant negatif
quel que soit a0. Le melange dynamique des orbites conduit done bien toujours ä

une energie finale El plus basse que l'energie initiale E0 et la valeur de £) est vrai-
semblablement un minimum d'energie.

La difference £, —E0 est minimum en valeur absolue pour

L'evolution par voie numerique d'un tel Systeme a ete suivie par M. Henon [1

en utilisant une methode de Campbell qui ramene dans une certaine mesure le
Probleme au cas unidimensionnel: le Systeme est represents par N couches spheriques

concentriques s'attirant entre elles et pouvant se traverser librement. Les conditions
initiales supposaient une distribution maxwellienne des vitesses de meme dispersion
en tout point; elles different done un peu des conditions du « modele de l'outre »

considere ici. Un programme d'exploration numerique est actuellement en preparation

pour etudier revolution du Systeme dans les conditions du present travail.

[1] Henon, M. Ann. d'Ap., 27, 83 (1964) et Colloque internal, d'Astrophysique, Liege, 1966, p. 227.
[2] Hockney, R. W. Symposium on Computer Simulation of Plasma and Many-body problems,

Williamsburg Va., 1967.

[3] Hohl, F. et M. Feix. Ap. J., 147, 1164, 1967.

[4] Lecar, M. Colloque Internat, d'Astrophysique, Liege, 1966, p. 243.

(31) - E0 -0.335 a0"2 + 0.60 a0"' - 0.30.

a0 1.12.

Observatoire de Geneve,

Manuscrit re?u le 12 juin 1968.
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