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ETUDE STATISTIQUE D’UN MODELE THEORIQUE

DESTINE A DETERMINER LA FORME
D’UN GISEMENT A L’AIDE DE SONDAGES

PAR

Pierre YUAGNAT
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INTRODUCTION

Le probléme qui est a I’origine de ce travail est un probléme qui se pose dans
la recherche miniére en particulier: connaissant I’existence d’un gisement, comment
déterminer son importance, ou plus exactement, comment déterminer ses frontiéres ?
La méthode généralement utilisée consiste a effectuer un certain nombre de sondages
a intervalles réguliers, c’est-a-dire a quadriller la région envisagée d’un réseau de
sondages plus ou moins dense, suivant la précision avec laquelle on désire délimiter
le gisement, d’une part, et le colit de ces sondages, d’autre part.

On peut envisager le cas ou, au lieu de faire des sondages a intervalles réguliers,
on ferait des sondages au hasard.

Nous laisserons de coté la question de la comparaison de ces deux méthodes
et le probléme qui consisterait & déterminer, aprés avoir fait certaines hypothéses
notamment sur le cofit d’un sondage, quelle est la méthode la plus avantageuse.
Nous ne nous occuperons que du probléme en soi, probléme qui peut paraitre simple
au premier abord, mais qui, dés qu’on veut le cerner d’un peu plus prés, présente
certaines difficultés.

La premiére notion qu’il s’agit de définir, est la notion de sondages au hasard.
Qu’entend-on par sondages faits au hasard ? En d’autres termes: comment choisir
un point au hasard dans un certain domaine situé dans un plan ?

La maniére de choisir ayant été définie, il s’agit ensuite de savoir quelles seront
les variables aléatoires et les paramétres statistiques que nous envisagerons et qui
nous permettront de juger la situation aprés qu’une série de sondages au hasard
aient été effectués.

En effet, supposons qu’une série de sondages aient été effectués au hasard dans
une certaine région de prospection que nous supposerons rectangulaire et dont nous
supposons qu’elle contient un certain gisement; si la superficie du gisement est
suffisamment grande et si le nombre de sondages effectués n’est pas trop petit, il
est trés probable que certains sondages se trouveront a I'intérieur du gisement et
d’autres a ’extérieur.

En supposant, pour simplifier les idées, que le gisement est d’un seul tenant,
la frontiére du gisement se trouvera entre les sondages situés a I'intérieur du gisement
et ceux situés a ’extérieur; elle sera donc a 'intérieur d’une bande délimitée, d’une
part, par les sondages intérieurs au gisement les plus périphériques et, d’autre part,
par les sondages extérieurs les plus proches du gisement.

Supposons pour I'instant que cette bande est déterminée; il est évident que plus
la superficie de cette bande, et en particulier sa largeur, sera petite, meilleure sera
la détermination de la forme du gisement. Il apparait donc comme logique de prendre
pour mesure de la précision de la détermination la superficie de cette bande; étant
donné que les points sont pris au hasard, la superficie est une variable aléatoire pour



LA FORME D’UN GISEMENT A L’AIDE DE SONDAGES 441

laquelle, a défaut de connaitre sa fonction de répartition, on tichera de calculer la
valeur moyenne et la variance.

Ces difficultés que nous venons de signaler d’une fagon trés sommaire, nous ont
amené A ticher de simplifier autant que possible le probléme. Pour ce faire, nous
nous sommes tout d’abord placé dans le cas trés particulier ou la région contenant
le gisement est un segment de droite. Le choix des sondages au hasard se raméne
alors au choix au hasard de points dans le segment envisagé, et la bande, dans
laquelle se trouve la frontiére du gisement, se réduit a un intervalle; ses extrémités
sont les deux points les plus proches dont I’'un est & I’intérieur du gisement, I’autre
a I’extérieur.

sondages intérieurs
» sondages extérieurs

Dans un premier chapitre nous avons établi les formules donnant la valeur
moyenne et la variance de la longueur de cet intervalle en considérant successivement
le cas ou les points pris au hasard prennent des valeurs discrétes et des valeurs
continues. Puis nous avons montré que les formules obtenues dans le cas continu
peuvent étre obtenues si nous faisons un passage a la limite dans les formules du cas
discret.

Dans un second chapitre nous avons abordé le probléme dans le plan. La géné-
ralisation de ce qui a été fait sur la droite conduit a des calculs extrémement compli-
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qués. Il'nous a paru préférable de trouver un procédé permettant d’utiliser les résultats
obtenus sur la droite, procédé qui présente le double avantage de permettre I'emploi
de formules relativement simples et de supprimer certaines ambiguités dont nous
avons parlé ci-dessus.

A titre de vérification des formules nous avons donné un exemple et les résultats
des tests effectués sur cet exemple.

Pour terminer, nous avons esquissé un procédé plus direct d’envisager le pro-
bléme dans le plan qui présente plus, nous semble-t-il, un intérét théorique que
pratique et conduit a des formules extrémement peu maniables.



CHAPITRE PREMIER

PROBLEME DANS L’ESPACE E,

1.1 Remarques préliminaires

Pour aller du plus simple au plus compliqué, nous avons tout d’abord envisagé
le probléme dans I’espace E,. On peut I’énoncer de la fagon suivante:

Soit AB un segment et C un point donné situé entre 4 et B. Choisissons

n points au hasard; appelons D le point le plus proche a gauche, E le point le plus
proche a droite de C et désignons par x la distance DC et par y la distance CE

(fig. 1).

»
A

Fig. 1

On peut envisager le probléme de deux maniéres:

1. x et y sont des variables continues.

2. x et y sont des variables discrétes; elles ne prennent qu’un nombre fini de valeurs
correspondant aux divisions du segment AB en un certain nombre de parties par
un nombre fini de points.

La seconde maniére correspond mieux a la réalité puisque toute mesure est
faite a I’aide de certaines unités, la plus petite étant de grandeur finie; mais il est
évident que, lorsque I'unité minima est trés petite par rapport au segment AB
envisagé, le fait de considérer x et y comme des variables continues constitue une
bonne approximation. Afin de pouvoir apprécier le degré d’approximation, nous
avons établi les formules dans les deux cas et nous avons montré que I’on pouvait
passer des formules du cas discret aux formules du cas continu en faisant un passage
a la limite sur les formules elles-mémes.

Faisons pour terminer une remarque d’ordre méthodologique: dans le modéle
que nous avons adopté pour I’établissement des formules dans le cas discret, nous
avons toujours envisagé qu’un point choisi au hasard pouvait tomber plus d’une fois
sur la méme division; il est évident que du point de vue pratique un tel modéle n’est
pas exempt de critique.
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1.2 Cas discontinu

Supposons que lintervalle AB soit divisé en (m—1) parties par (m—2) points
équidistants. Pour la commodité du raisonnement, nous supposons que le point C,
qui partage AB en deux, se trouve A une distance infiniment petite & gauche d’un
des points de division; en d’autres termes, si nous désignons par ¢, t,, ..., t,,_, les
abscisses des (m—2) points de division et par #,,_, I’abscisse de B, nous supposons
que les abscisses possibles de C sont ¢t;, — 0,t, — O, ..., ¢,,_;, — O (fig. 2).

b h Fu P

A
=
b¢
3
]
X
|

Fig. 2

I1 en résulte que la valeur minima de x est 1, tandis que la valeur minima de y
est 0. D’autre part, la valeur maxima de x, méme s’il ne tombe aucun point & gauche
de C, est égale au nombre de divisions, extrémités comprises, a gauche de C; la
valeur maxima de y, méme s’il ne tombe aucun point a droite de la limite, est égale
au nombre de divisions, extrémités non comprises, a droite de C.

1.2.1 Calcul de la probabilité

Désignons par P (X, Y) la probabilité pour que x = X ety = Y, et soit K la
distance de C a 'extrémité gauche A4; la distance de cette limite a I’extrémité droite B
sera alors (m—K—1). Examinons successivement les différents cas qui peuvent se
présenter:

a) X < KetY < (m—K-1)
L’événement E = {x =Xety= Y} peut étre envisagé comme un événement
composé de deux événements E, et E,:

E, = {aucun point ne tombe dans l'intervalle DE }
E, = {au moins un point tombe A une distance X 4 gauche et Y a droite}
P(E)= P(E,) - P(E, sachant que E, est réalisé). On voit facilement que:

m—X—Y+1)"

m

P(El) =(

Pour trouver P (E, sachant que E,; est réalisé), raisonnons de la fagon suivante:
désignons par:

E' = {il tombe au moins un point 3 une distance X & gauche ou a une dis-
tance Y A droite }
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E’" = {il tombe au moins un point 4 une distance X a gauche}

E"" = {il tombe au moins un point & une distance ¥ a droite } .

On peut alors écrire:

P(E') = P(E") + P(E""") — P(E,) (1.2.0)

puisque

E, = {il tombe au moins un point a une distance X a gauche et une distance Y
a droite }

D’autre part on voit facilement que:

P(E") =1__( m—-X-Y )"

m—X—-Y+1
-X-Y Y
P(EIII) — 1 —_ m
m—X—-—Y+1
m—-X-Y-—-1\}"
P(E) =1- .
m—X-Y+1

En remplagant dans (1.2.0)

m—-X-Y—1\" m—X-Y \" m—-X-Y \"
1 — =1 - +1— — P(E,)
m—-X-Y+1 m—-X—-Y+1 m-X-Y+1
d’oul
P(E) =12 m—X-Y "+ m-X-Y-1\
¥ #i—X=Y+1 m—-X—-Y+1/°
Ainsi

m—X-Y+1\" m—-X-Y \" m—-X-Y-—-1\"
PX,Y) = 1-2 +
m m—X—-Y+1 m—-X-Y+1

P(X,Y) =$|:(m—X—Y+1)" —2(m-X-Y) +(m—X—Y—1)"].

b) X=Ket Y<m—K—-loux<KetY=m—-K-1

La probabilité P (E,) reste la méme, soit:

m—-X-Y+1\"
m

P(E,) =(
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ou plus exactement

m—K-Y +1\"
( ) lorsque X = K
m

K—-X+2YV"
_—— lorsque ¥ = m—K—1.
| m

Quant 3 E,, on peut le définir de la fagon suivante:

P(E1) =

E, = {il tombe au moins un point & une distance Y & droite }
lorsque X = K

E, = {il tombe au moins un point & une distance X a gauche }
lorsque ¥ = m—K—1.

On trouve facilement que

m—K-Y \" .
1—( ) si X = K

m—K-Y +1
P(E,) =
’ K—X+1\" ,
1 - — st Y=m—-K-1.
l K—X+2

Par conséquent

-K-Y+1\"[ -K-Y Y}
(m wal 1-( e _\] si X =K
PE) n J L m—K—-Y+1i)
K—-X+2Y\ i K-X+1Y}
i R it si Y =m—-K-1
m A K—X+2
[ 1 T =
— | (m—-K-Y+1)) —=(m—-—K-Y)" si X =K
m
P(E) = { i C
—"[(K—-X+2)"-(K—X+1)" si Y =m—-K-1.
m

) X=Ket Y=m—K—1

Il faut que tous les points tombent aux extrémités du segment. On trouve facile-

ment que:
P(E) = (i)
m
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En résumé, on aura donc :

[ 1
——"[(m—X—Y+1)"—2(m—X—Y)"+(m—X—Y—1)":|
m
si X< KetY<m-—-—K-—1
s
— (m—K—Y+1)"—(m—K—Y)":| siX=KetY<m—K-—-1
m
P(X,Y) = 1:
— (K—X+2)"—(K—X+1)":| siX < KetY=m-K-1
m
2\ .
(——) siX=KetY=m—-—K-1
m
(1.2.1)

1.2.2 Veérification que la somme des probabilités vaut 1

Montrons que la somme des P (X, Y) étendue a toutes les valeurs possibles
de X et de Y vaut 1; en tenant compte des relations (1.2.1), nous pouvons écrire:

m—k—-1 K 1 mk-2K-1
X PX.Y)=— > X [(m—X—Y+1)"—2(m—X—Y)"+
Y=0 X=1 m’ y-o x=1
(m—X—Y—l)"jl
1 ™ k=2
+— X I:(m—K—Y+1)"—(m—K—Y)":|
m° y=o
1 K-1
+— Z [(K—X+2)" —(K—X+1)"]

-+

N

2 n

?n') | (1.2.2)
Pour éviter d’écrire chaque fois tous les termes constituant le second membre de
la relation (1.2.2) nous allons les envisager séparément.

Considérons d’abord la premiére double somme et posons:
m—-k—2 K—-1

A= ¥ X |:(m—X—Y+1)"—2(m—-X—Y)"+(m—X—Y—1)":|
Y=0 X=
m—k=2 ¢ K—1 K-1
= ¥ { 2 m=-X-Y-1)'-2 )Y (m=-X-Y)+
Y=o (x= X=1

i (m—X—Y—l)"}. (1.2.3)

X=1
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En faisant le changement de variable X = X’ + 1 dans la premiére somme en X
et X = X’'—1 dans la troisiéme, on peut égrire:

x4 X—2
Y (m—X-Y+1)y = ¥ (m-X'-Y)
X=1 X'=0

et
K—1 X
Y (m—X-Y-1y= ) (m-X'-Y).
X=1 X'=2

En remplagant dans (1.2.3) on obtient:

m—K-2 ( K-2 K— X
A=Y {): (m—X-Yy-25% (m-X-Y) + Z(m—X—Y)"]
X=1 X=2

y=0 | x=o0
=m_§_2{(m—Y)n—(m—Y_I)"—(m—Y—-K-f-l)"-}-(m—Y—K)"}
Y=0
m—K-2 m—K-—2 m—K—2
A= 3 (m-Yy- Y (m-Y-1y- ¥ (m-Y-K+I)+
Y=0 Y=0 Y=o
m—K-—2
L, oYK

Comme nous I’avons fait pour X, nous pouvons faire des changements de
variables pour Y; dans la deuxiéme et la quatriéme somme posons Y = Y'—1;
alors on obtient:

m—K—2 m—K—1
Y m—-Y-1" = 3 (m-=-YY
Y=0 Y’'=1
et
m—K-—2 m—K—1
Y (m—=Y—-Ky= Y (m-Y —-K+1)
Y=0 Y'=1
et en remplagant dans (1.2.4):
m—K-2 m—K—1 m—K-—2
A= )Y @m=Yy- Y m-=-Y)y- Y m-Y—-K+I1)+
Y=0 Y=1 Y=0
m—K—1
Y (m—-Y-K+1y
Y=1

=m"—-(m-m+K+1)"—-(m—-K+1)"+(m-m+K+1-K+1)
et aprés réduction des termes semblables on a finalement:

A=m"—(K+1Y —(m—K+1) +2". (1.2.5)
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Posons ensuite:

B =m_z_ |:(m—K—Y+1)" —(m—K—Y)"]
Y=0

m—K—2 m—K—2
= ) (m—K-Y+1))— Y (m—-K-Y).
Y=0 Y=0

En faisant la substitution ¥ = Y’'—1 dans la seconde somme, on peut écrire:

m—K-2 m—K—1
B = Z (im—Y—-K+1)" — Z (m—Y—-K+1)"
Y=0 Y=1
=(m-K+1)—-(m—m+K+1-K+1)
B=(m-K+1)" - 2", (1.2.6)
Posons enfin:
K—1
C = Z [(K——X—E—Z)“ —(K—X+1)"]
X=1
K—1 K—1
= Z (K—-X+2) — (K=-X+1).
X=1 X=1

En faisant la substitution X = X’'+1 dans la premiére somme, on peut écrire:

K-2 K—1
C=Y (K=X+1y— ¥ (K=X+1)
X=0 X=1

= (K417 = (K=K+1+1)
C = (K+1y — 2. (1.2.7)

En remplagant dans I’expression initiale (1.2.2) les valeurs trouvées pour 4, B
et C en (1.2.5), (1.2.6) et (1.2.7) respectivement, on obtient:

m—K+1 K 1
Y Y P(X,Y) =—n|:m” —(K+1)) = (m—K+1)" +2":|
Y=0 X=1 m
+i"_(m—K+1)"—2":l
m L
+inr(K+1)'l —2"]
m™|

()
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mn
m"
1.

1.2.3 Calcul de la valeur moyenne de x+y = z

Calculons maintenant la valeur moyenne de x+y = z que nous désignerons
par E(2).

Rappelons que si X, X,, ..., X, sont les valeurs que peut prendre une variable
aléatoire x, la valeur moyenne de x est donnée par:

E(x) = ) pX;
i=1

p; étant la probabilité que x soit égale a X;. Par conséquent il s’agit de déterminer
les valeurs que peut prendre la variable aléatoire x+y = z et les probabilités corres-
pondantes.

Supposons pour fixer les idées que:

K<m—-K-1.

Pour Z < K il y a Z manié¢res d’obtenir une somme X Y égale a Z:

X Y

M1 Z-1
2 Z -2

|z 0

Par conséquent la valeur moyenne de z, E (z), sera constituée d’un premier terme
qui sera le suivant:

K—1 2
Yy — [(m—z+1)" —2(m-2) + (m—Z—l)"] : (1.2.8)
z=1m

Pour les valeurs de Z telles que
KZLZ<m-K-1

on peut résumer les différentes maniéres d’obtenir une somme égale a K, K4-1, ...,
m—K~—1 par les tableaux suivants:
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X Y X Y X Y
1 K-17] [ 1 K 7 ~ 1 m-K-2T]
2 K-2 2 K-1 2 m-K-3

K-1 1 K—-1 2 K-1 m-2K
K o | | K 1 K m-2K-1_|

En se reportant aux formules (1.2.1), on voit que dans chacun de ces tableaux
les (K—1) premiéres maniéres d’obtenir Z ont une probabilité égale a

1
— [(m —Z+1)"=-2(m-2)' + (m—Z— 1)”:, .
m
Par contre les derniéres combinaisons ont une probabilité donnée par:
1
— I:(m —-Z+1) — (m—Z)"] ;
m

Par conséquent la valeur moyenne E (z) comprendra encore les deux termes suivants:

n

m—K—1
! Y, (K—l)Z[(m-Z+1)”—2(m—Z)" +(m—Z—1)":|

m 7K
m—K—1
o s Z I:Z(m—Z+1)" — (m—Z)":l. (1.2.9)

Pour les valeurs de Z telles que
m—K<Z<m-=2

on peut résumer les différentes maniéres d’obtenir une somme égalea m—K, m—K—1,

..., m—2 par les tableaux suivants:

X Y X Y X Y
1 m—-K-11] 2 m—K—l_. T K—-—1 m—-K -1

2 m-—-—K-=-2 3 m-—K —2 K m— K =2

. . | K m~2K+1J .....

K m— 2K B

En considérant ces tableaux et en tenant compte des formules (1.2.1), on voit
que le nombre de fois ou la probabilité est donnée par

—171 |:(m—Z+1)" —2(m-=-2) + (m—Z—])":l

m
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est égal a (m—2-2);

et celui ou la probabilité est donnée par

—l;l:(m—Z+1)" - (m—Z)"]
m

est égal a 2.

Il en résulte que E (z) contiendra encore les deux termes suivants:

m—2 .
—1; (m—Z—2)Z[(m—z+1)"—2(m_z)n+(m_z_1),.]
M z—m-k
+ _l_n mi 2Z[(m—Z+1)" —(m—Z)":I. (1.2.10)
m z—m-x

Enfin E (z) comprendra encore le dernier terme

2 n
(_) o (1.2.11)
m

En additionnant les expressions (1.2.8), (1.2.9), (1.2.10) et (1.2.11), on obtiendra
la valeur moyenne E (z):

K—1
E(z) = mi y zz[(m—z+1)" —2(m—-2Z) +(m—Z—1)"]

Zml
1 m—K—1

+—(K-1) Y Z [(iﬂ—Z-i—l)" —2m-=-2)" + (m—Z—l)"]
m Z=K
1 m—K—1

$= ¥ Z|:(m—Z+1)"—(m—Z)":I
m z_x

m—2

¥ i y (m—Z—2)Z[(m—Z+1)" —2(m=2Z) + (m—Z—l)":|

m: z_m-x

2 'S Z+1y zy n(2Y
+777"Z=§_x [(m_ e e )]Hm_ )(E)' (1.2.12)

Considérons séparément les différentes sommes constituant le second membre;
posons:
k—1

A=Y zzl:(m—z+1)" —2(m-2) +(m—Z—1)"].

Z=1



LA FORME D’UN GISEMENT A L’AIDE DE SONDAGES 453

Aprés quelques calculs simples on obtient:
K—1

A=m—K(m—K+1) +(K-=1))(m—=Ky +2 Y (m-2Zy. (1.2.13)

Z=1

Posons ensuite:

m

—K—1 ¢
B= ) Z[m—Z+1)"—-2(m—Z)"+(m—Z—1)":|.
=K

Quelques manipulations permettent d’obtenir le résultat:

B=Km—K+1)"—(K—1)(m—-K)" —(m—K)(K+1)" + (m—K—1) K".
(1.2.14)

Laissons un instant de coté la troisiéme somme et considérons la quatriéme somme
de (1.2.12); en posant

m—2

C= 3 Z(m—Z—2)[(m—Z+1)"—2(M~Z)"+(m—Z—1)"}

Z=m—K
et en effectuant quelques calculs élémentaires on arrive 3 une forme plus simple:
C=m-K)(K-2)(K+1)"-(m—K-1)(K-1D)K"+(m-1)2"

m—2

-2 L =D

Considérons maintenant les deux sommes qui restent, c’est-a-dire la troisiéme
et la cinquiéme; pour ces deux sommes les termes étant semblables, on peut écrire:

m—K—1 m—2
Z Z l:(m —Z+1) — (m—Z)"] + 2 Z V4 l:(m—Z+1)" - (m—Z)"]
Ze=K Z=m—K
m—2 m—2
= 3 ZI:(m-—Z+1)" —(m—Z)":l + ) Zl:(m—Z+1)" — (m—Z)":I ;
Z=K Z=m—-K
Posons alors:
m-—2 '
D=} Z[(m-—Z+1)" —-(m—Z)”:]
Z=K
qui se réduit a:
m—2
D=Km-K+1)"-(m-1)2" + Z (m-=-2Z) (1.2.16)
Z=K

et

m—2

E= Y Z[(m—z+1)"—(m—2)":|

Z=m—K
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qui peut aussi €tre mis sous la forme:
m—2
E=m-K)(K+1)'—(m-1D2"+ > (m-Z)y. (1.2.17)

Z=m—K

En utilisant les notations ci-dessus, on voit facilement que
1
E(z) = -—,-'[A +(K-1)B+C+D+E + (m—~1)2":| .
m

Remplagons A4, B, C, D et E par les expressions obtenues en (1.2.13), (1.2.14), (1.2.15),
(1.2.16) et (1.2.17) respectivement:

E(z) = —n%,:m" —K*m—K+1)"+(K=1)*(m—-K)"+ K(K—1)(m—K+1)"
—(K=1D)*m—-K)" —(K=1)(m-K)(K+1)"+(K-1)(m-—K-1) K"

(M=K (K=2)(K+1) —=(m—K—1)(K=1) K" + (m—1)2"
+ Km—-K+1)"—(m-1)2"+(m—-K)(K+1)" —(m—-1)2"

Z=1 Z=1

K—1 m—K—1
+(m=1D2"+ Y m-2r+ Y (m—Z)":I.

Aprés quelques mises en évidence et réduction de termes semblables, on obtient
finalement ’expression relativement simple suivante:

K—1 m—K—1
E(2) = ;11—3[171" + > (m=Z"+ (m—-Z)"] . (1.2.18)
Z=1 z=1

Nous avons établi la formule (1.2.18) en supposant que K < m—K—1. Nous ne
donnerons pas tous les calculs pour le cas ou

K>m—K-—1

mais nous nous contenterons de donner la formule de base analogue a la formule
(1.2.12).
Supposons donc que K > m—K—1 (fig. 3):

A B

K » m-K-1 —

-

Fig. 3

Pour Z =m—K—1 les différentes possibilités peuvent se résumer par les tableaux
suivants:
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XY XY XY X Y X Y
[1 0:] 11 1 2 B 1 m—K-3|[ 1 m—K-—2
20 21 2 m—K-—4 2 m—K-3
30
 m—K~—2 0 ] . .
| m—K-1 0 _
Z=1 Z=2 Z=3 Z=m—K-2 Z=m—-K-1

On voit que le nombre de combinaisons dans chaque tableau est égal a Z. Par
conséquent E (z) est composé d’'un premier terme:

1 m—K—1

— > Z.Z[(m—Z-}-l)" —2(m-=-2) +(m—Z—1)"];

m- z_

pour m—K = Z =< K—1 les différentes possibilités sont données par les tableaux
ci-dessous:

X g X X Y
1 m—K-1]|1[ 2 m—K—1 2K—m m—K-—1]
2 m—K-=-2 3 m—K-=2 2K—m+1 m—K-=2
' m—K 0 | |m—-K+1 0 | N K—-1 0 )
Z = m-—K Z =m—-—K+1 Z = K-1

Dans chaque tableau il y a (m—K) combinaisons donnant le Z correspondant. Mais
la probabilité des premiéres combinaisons de chaque tableau est donnée par:

1
— [(m —Z+1)" —(m —Z)"]
m
tandis que celles des (m—K—1) autres est donnée par:
1
— |:(m —Z+1)' =2(m-2Z)' + (m—-Z— 1)"i| :
m

Par conséquent on aura deux autres termes qui sont:

_w_1 k-t
(m—K-1) K D Y z [(m—Z—}-l)" = (m =T % (m—Z)"]
m Z=m—K
1 K-—1
s — ¥ Z[(m—Z+1)" —(m—Z)":|.
m: z_m-x

ARCHIVES DES SCIENCES. Vol. 20, fasc. 3, 1967. 30
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Pour K = Z = m—2 les différentes possibilités sont illustrées par les tableaux
suivants:

X Y b's Y X Y
[[2K-m+1m—K-1 2K—m+2m—K—1 K-1m—-K-1
K 0 K 1] K m—K-2 |
Z=K Z=K+1 Z=m=2

Chaque tableau contient (m— Z) combinaisons; pour la premiére et la derniére de
chaque tableau la probabilité est donnée par:

in[(m—zm'* - (m—2>"];
m
pour les (m— Z—2) autres par
’%;[(m—Z—H)" - 2(m=2Z)" + (m—Z—l)":I.

Par conséquent nous aurons les deux nouveaux termes:

1 m—2

— Y (m—Z—2)Z|:(m—Z+1)’l —2(m=-2)" + (m—Z—l)"]

Z=K

m—=2

+—n;'; Y |:(m—Z+1)'l "(m—'z)ﬂ]-

Z=K

Pour Z = m—1 nous avons:

2 n
(m-1) (—) "
m

La valeur de E (z) sera donc donnée par I’expression:

E(z) = Fm_z_ Z? [(m-—Z+1)" - 2(m=2) + (m—Z—-l)":l
z=1
m—K—-1 X!
i Z Z|:(m—Z+1)" —2(m-=-2) +(m—Z—1)":'
m Z=m—K
+ iﬂ i Z|:(m——Z+1)rl - (m—Z)"]
m Z=m—K
m—2
+$ Z(m—Z—2)[(m—Z+1)"—2(m—Z)"+(m—Z——1)”]
Z=K
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m—2
+ —2—" Y Z[(m—Z+1)" - (m—Z)":I
m° z_x

1
+ —(m=1)2". (1.2.19)
m

En effectuant des calculs en tous points analogues a ceux que nous avons effectués
aprés avoir établi la formule (1.2.12), on parvient a I’expression suivante de E (Z):

i K—1 m—K—1
E (Z) = % l:m" + Z (m —Z)rl + Z (m —Z)n] .
Z=1 Z=1

Comme on peut le constater, on trouve la méme expression que lorsqu’on suppose
que K <m—K—1.
Passons maintenant au calcul de la variance de z.

1.2.4 Calcul de la variance de z

Désignons par V (x) la variance de x. Par définition
V(x) = E[x — E(x)]*.
Un résultat classique donne une expression un peu différente de ¥ (x):
V(x) = E(x?) — E*(x).

Nous utiliserons cette derniére relation pour calculer la variance de z.
Comme nous ’avons fait pour le calcul de la valeur moyenne, nous allons
traiter séparément les deux cas ou K est inférieur et supérieur 8 m—K—1.
Supposons que K < m—K—1. Pour avoir E (z2), il suffit de nous reporter a la
relation (1.2.12) et de remplacer dans cette relation Z par Z2. En procédant ainsi

on obtient:
i

E(z?) = mi{ y z3 [(m—Z-i-l)" —2(m—=2) + (m-—Z-—l)"]

m—K—1

+(K-1) ¥ 2z° I:(m—Z+1)" —2(m-Z) +(m—z—1)2]
Z=1

m

—K—1
+ ¥ ZZ[(m—Z+1)"—(m—Z)”]
Z=K

m—2
+ ¥ (m—Z—2)Z"[(m—Z+1)"—2(m—Z)"+(m—Z—1)"]
Z=m—K

m—2
+2 Y Z? [(m—Z+1)"—(m—Z)"]

+(m—122"}. (1.2.20)
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Comme nous I'avons fait dans le cas de E (z), nous allons envisager séparément les
différentes sommes du second membre:

K—1
A=Y 27 |:(m—Z+1)" —2(m=2) + (m—Z—l)"].

z=1
Aprés quelques transformations, cette premiére expression se réduit a:
A=m"[2(K-1)? —(K-2)+6(K- D] (m—-K+1)" (1.2.21)
K-1

+6 Y Z(m=2Z) +(K—1>(m—K)".

Z=1

Posons ensuite:
m—K—1
B= Y Z? |:(m-Z+ ' —-2m-=-2) +(m—-2Z— 1)":| :
Z=K

En effectuant certaines transformations, ce terme devient:
B =Km—-K+1)" + |:(K+1)2 — 2K+ — 2](m—K)"
- |:2(m—-K—1)2 —(m—K-2)? + 2](K+1)"

m—K—1

_ _ 2 n S "
+(m—K—172K" +2 ZEK (m—2)". (1.2.22)

Laissons un instant de coté la troisitme somme et considérons la quatriéme:
m—2 I_
C = Z (m=Z-2)Z2 (m-Z+ 1) -~ 2(in -2 +(m—2Z— 1)"] .
Z=m—K |_
Elle peut étre mise sous la forme suivante:
C=m-—K*(K-2)(K+1) +[(m—K+1)*(K-3) —2(m—K)*(K-2)
+4m — 6K + 4] K" + [(m—3)* + 4m — 8] 2"
m—2

Py 22=§WK(m—3Z—2)(m—Z)”- (1.2.23)

Quant a la troisiéme et a la cinquiéme somme, elles portent sur des termes semblables.
On peut donc écrire:

m—K—1 m—2
Y Zz? [(m—Z+ 1)" — (m-—-Z)":| +2 Y Z [(m—Z+ D" —(m —Z)"] =
Z=K Z=m—K
m—2 m—2

Y Z* |:(m—Z+1)" — (m—Z)"] + Y Z [(m—Z+1)" — (m—-Z)":l.

Z=K Z=m—K
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En posant:

m—K—1
D= 3 Z*|(m-Z+1) —(m-2Z)

et

m—2
E= Y Z*|(m-Z+1) —(m-2Z)

Z=m—K L -

et en effectuant quelques transformations, on obtient finalement les deux expressions
suivantes:

m-—2

D=K(m-K+1) — [(m—z)2 +2m — 3] ”+ Y QZ+1)(m-2Z)

Z=K
-2

E =(m—K)2(K+1)”—[(m—2)2+2m—3]2"+ ”‘Z RZ+1)(m-2Z).

Z=m—K

En résumé, a I'aide des notations employées ci-dessus, E (z2) peut s’écrire:
1
E(z%) =—~,,[A +(K-1)B+C+D+E +(m—1)22”:|.
m

En remplagant 4, B, C, D, E par leurs valeurs données par (1.2.21), (1.2.22), (1.2.23),
(1.2.24) et (.1.2.25) respectivement, on obtient:

E(z?) = mi{ m* — [2(1(-1)3 —(K=2)* + 6(1(—1)] (m—K+1y

K—1
+(K=1P*(m—-K)y"+6 Y Z(m-2)
Fel

+ K*(K—-1)(m—K+1) + [(K+1)? — 2K* - 2](K-1)(m—K)"'
—[2(m—K—-1)> = (m—K-2)* + 2](K=1)(K+1)

m—K—1
+(K—1)(m-K—12K"+2(K-1) ¥ (m-2Z)
Z=K

+(m—K)?*(K=2)(K +1)'+ [(m=K+1)*(K-3) = 2(m = K)*(K—2)
+4m — 6K + 4] K" + [(m—3)® + 4m — 8] 2" +

m—2
+2 Y (m-3Z-2)(m-2Z) + K*(m—K+1)"
Z=m—K
-2

= [('"—2)2 +2m — 3:| 2" + mZ (2Z+1)(m -2y’

Z=K
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+(m—KP? (K+1)" — [(m—2)* + 2m — 3]2"

Z=m—K

m-—2
+ ¥ (QZ+1)(m-2y +(m-—1)2"}.

Aprés un certain nombre d’opérations algébriques, dont nous ne donnons pas le
détail, on parvient 4 la forme simple suivante:

K—1 Z\" m—K—1 Z\"
V(z)=1+6ZZ(1—7n—> + 3 (2K+22~1)(1—;)

Z=1 Z=K

m—2 Z\"
+2 ¥ (m—Z—l)(l—E) — E*(2).

Z=m—K

(1.2.26)

Passons maintenant au cas ot K =m—K—1. En se reportant a la formule
(1.2.19), on pourra écrire:

m—K—1
E (2% =-${ Y zZ° [(m—Z+1)” ~2(m—Z)"+(m—-Z—-l)":|
Bt
+(m—K-1) Y Zzl:(m-—Z-E-l)"—2(m—Z)"+(m—Z—1)"]
Z=m—K
|
+ Yy Z? [(m-—Z—i—l)"—-(m~—Z)"]
Z=m—-K
m—2
+ Y Z*(m—-2Z-2) [(_m—Z+1)" - 2(m-27Z) +(m—Z—1)"—|
Z=K 1
m-—2
+ 2 Z Z? |:(m—Z+l)" —(m-Z)"] +(m-—1)22"}.
Z-K

A partir de 13, les calculs étant analogues a ceux que nous avons effectués dans
le cas o K < m—K—1, nous nous dispenserons d’en donner les détails. Donnons
seulement la valeur finale de V (z2):

m—K—1 Z n K—1 Z n
V(i) =1+6 Y 2(1—;) + ¥ (2m—2K+ZZ—1)(1——)

Zea | Z=m—K m

m—2 n
+2Y (m-2-1) (1—%) —E*(2). (1.2.27)

Z=K

En comparant (1.2.26) et (1.2.27), on voit que suivant que K est inférieur ou
supérieur & (m—K—1), la formule donnant ¥V (z) est différente, ce qui n’était pas
le cas pour la valeur moyenne E (z).
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Dans ce deuxiéme paragraphe, nous avons étudié le cas discret; nous avons
établi les formules donnant les moments d’ordre 1 et 2, ou plus exactement le moment
d’ordre 1 et le moment centré d’ordre 2 de la distribution de z. 1l serait évidemment
intéressant, si ’on voulait avoir une connaissance plus compléte de cette distribution,
de calculer les moments d’ordre supérieur. Toutefois, pour I’'usage que nous voulons
en faire, il nous a paru suffisant de nous limiter a ces calculs.

Les formules, du fait surtout que I’on a affaire & des sommes, sont d’une appli-
cation assez malaisée. Il nous a paru intéressant de voir ce qu’on obtenait en suppo-
sant que les variables envisagées étaient continues. Cette étude fait I’objet du para-
graphe qui suit.

1.3 Cas continu

Passons maintenant a I’étude du cas continu: nous pouvons poser le probléme
de la fagon suivante: soit AB un segment de longueur unité et un point C situé a
une distance 1 (0<A<1) de 'extrémité gauche de ce segment; on choisit n points
au hasard dans AB. Soit D et E respectivement les points les plus proches a gauche
et a droite de C. Posons

DC=X e CE=Y.
1.3.1 Calcul de la fonction de répartition et de la densité de probabilité
Soit F(x, y) la fonction de répartition de X et Y, c’est-a-dire

F(x,y) = Prob(X <x, Y <y)

< x

X
<

A D c E 8
Fig. 4

Considérons les divers événements:

E, = { Il tombe au moins un point dans -If}

E, = {1l tombe au moins un point dans CE }

E; = {_Il tombe au moins un point dans DC ou dans ﬁ}

E, = {1l tombe au moins un point dans DC et dans CE} .
Il est évident, d’aprés le théoréme des probabilités totales, que:

P(E;) = P(E,) + P(E,) — P(E). (1.3.1)
On voit facilement que les probabilités de E,, E, et E; sont données par:

P(E) =1-(010-x)
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P(Ey) = 1 = (1—))
P(E3) =1 —-(1—-x—y)y
par conséquent, en remplagant dans (1.3.1)
l1-1—-x-y)"=1—-(1-x)"4+1-(1-y)" — P(E).
D’on
PE)=[1-(1-x)T+[1-U=p]-[1-U-x—p)N]
P(E)=1-(1-x)-0A-y)"+Q-x-y).
P (E) est égale a F(x, y) lorsque x < ety < 1-—A
Examinons les autres cas possibles:
. x=4Aety=1-4;
il est évident que dans ce cas F(x,y) = 1.
2. x=Aety<l1-14;
ce cas peut €tre envisagé comme composé de deux événements E’ et E”':
E' = {1l ne tombe aucun point dans AC}
E"” = {1l tombe au moins un point dans CE} .
En vertu du théoréme des probabilités composées, la probabilité P de ce cas est:

P = P(E'). P(E"” sachant que E’ est réalisé) .

Or il est évident que:
P(E") = (1=2)"

et P(E" sachant que E’ est réalisé)
1 —2—=y\
_1- (4)
1 -2

_(d=a-yy
(=27

P=(1-)"-(0-4A-y) .

par conséquent:

P=U—WP

3. x<Adety=1-4;
par un raisonnement analogue, on trouve que

P=1—(-x".



LA FORME D’UN GISEMENT A L’AIDE DE SONDAGES 463

La fonction F (x, y) est ainsi entiérement définie. On peut résumer ces différents

cas en écrivant:

1 six=Adety=1-1
Fle,y) = 1=-A"=0=A-y) six=A4ety<l—-4
A" —(A=x)" six<ldety=1-1
| 1 = (1=x) =(l=y +(1=x—p) six<ldlety<l-—24.
(1.3.2)

Pour calculer la valeur moyenne de x-+y, il faut calculer la densité de proba-
bilité 1 (x, ). On a

fx,y) =0 lorsque x =Aety=1-41
OF (x,
f(x,y)=w—((;—y-2 lorsque x =Aety < 1-4
y
OF (x,
f(x,y)=%1) lorsque x < Aety=1—-4
X
0% F (x,
f(x,y) =— (x, ) lorsque x < Aety < 1—-4
0x dy
par conséquent:
OF (x,
GF (%:3) _ n(l—2—yy!
ay
OF (x,
IFEY) =yt (1.3.3)
0x
0% F (x,
___(_x_i) — (n_l)(l _x_y)n—z .
0x Oy

1.3.2  Vérification

Comme nous I’avons fait dans le cas discret, montrons que la somme des pro-
babilités vaut 1; cela revient & montrer que I'intégrale de la densité de probabilité
étendue a lintervalle AB vaut 1:

f (x,y)dxdy = 1.
AB

En tenant compte des formules (1.3.3), on peut écrire:

%K =
| fx,»dxdy =n(n-1)f [(Il—-x—yy 2dxdy +n| (1—A—y)y 'dy
AB 0 0

0

x
+nf(A—-x)"tdx.
0
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Or
1-2 % (BN A
| n—1
[ Jamxmrassy - [ {{ 5527 o
n—1
0 0 0 0
1-2
1
= j {— (I=A=-y"" + (l—y)""l} dy
n—1
0
1—A
_ 1 fU=d-yr -y
n+1 n n
0
=2 A
[ 1
(1=x—y)""?dxdy = {—(1—/1)" - A"+ 1}
J n(n—1)
0 0
fash O,
i —(1=i-y) 1-A"
€V I ()
J n n
0
1— A
— (A=x)" A"
J(A—x)"-ldx i Gt
n n
0 0
D’ou
[ fEpddv= —(1--"+1+0-V+2"=1.
AB

1.3.3 Calcul de la valeur moyenne de x+y = z

Calculons maintenant 1’espérance mathématique de x + y par définition

E(z) =( (x+»dF(x,y) =[] (x+»f(x,y)dxdy.

AB

En considérant les formules (1.3.3), on obtient d’une fagon plus explicite:

1-A2 1—2
E(z) = n(n—l)_[ j(x+y)(1—x—y)"‘2dxdy +nj (/1+y)(1—l—y)"'1dy
0 0 0

A
+nf(x+1-)(A—-x)""ldx.
0

Envisageons séparément ces diverses intégrales:

1=X 2

nin—=1[ [Gx+y)(1—x—y) *dxdy

0o 0
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1-A A A

=n(n-1)f {[x(1—=x—-y)""2dx +y[(l—x—y)y~2dx}dy
o 0 0

A A
_y(l=x—p)!

n—1
0 0

fas

1-2
_ 1 —x(A—x—p"t  (d-x—p)
=nin- )_[ { n—1 B n(n—1)
0

1—A
~ —A(l=2=-pt A-A-y dA-yy
‘"("_l)f{ —— T a—1 nm-0

0

f ] s n—1 : (- n—1
_¥( W ya=yT
n—1 n—1

1-2 1—A =2

—ndf (=i—-yyldy—[ (A-A-yyrdy+| @1-yrdy
0 0

0

1—2A 1—=A

—nf| y(l=A-yytdy+nf| y(d-yytdy.
0 0

D’ou
1—A 1—A 1—A

E(z) = —nd] (1-2-yytdy—[ (1-2-pydy+[ (1-yydy
0 0

0

1—2A 11—

—nf y(l=A-yytdy +nf y(Q-yy'dy
0 (1]

1—A 1—A

+ndf (1—=i-yy"ldy+n| y(—2i—yytdy
0 0

X 1—2
+nfx(A-x)""tdx +n(1-2)f (A-x)"ldx.
0 0

Un calcul élémentaire de ces intégrales fournit le résultat final suivant:

2 (1_1)n+1 )."+1 (1 . 4)
n+1 n+1 n+1’ h

E(z) =

1.3.4 Calcul de la variance de x+y = z

Comme nous I’avons déja signalé au paragraphe 1.2.4, la variance ¥V (z) peut
étre calculée en utilisant la relation:

V(z) = E(z%) — E*(z). (1.3.5)
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En utilisant les formules (1.3.3), on peut écrire:

1—A A
E(z) =n(n=1[ [x+y)*(1—x—y)""dxdy
0 0

-2 A
+nf (A+p)*(A=2=y)""tdy +nf(x+1-2)*(A—-x)"""dx.
0 0

Aprés réduction de I'intégrale double, on obtient:

12 1-2
2

E(22)=—n22J (1—),—y)""dy—2lj 1-A—yydy - —
n+1

0 0
1—2

J (1-A-y)"*tdy

0
1—A

et
2 .
-+ —J‘ (1=y*ttdy — 2)*1/1‘[v y(1—Ai—yy tdy
n+1
0

1= 1—2x 1=

=2 y(Ad=A-=yydy+2[ y(A-yydy —n| y*(QA—-A-y)y 'dy
0 0 0

1—2 1—2

+§ YA=yldy +nf (A+y)*(A—-1-y) tdy
0 0

A
+nf(x+1-2)*(A—x)""dx.
0

Aprés le calcul des intégrales simples on arrive au résultat final:

E(z%) 6 2A(1 =)t 2(1 =2 A"t
z%) = - —
(n+1)(n+2) n+1 n+1
4)."+2 4(1_;{)n+2

T (n+D(m+2 @+D@m+2) (1.3.6)

Et alors, en remplagant dans (1.3.5), E (z%) et E (z) par les valeurs fournies par (1.3.)
et (1.3.6) on obtient:

6 24(1 =2+t 2(1—A) Antt 4im+2

T m+D(n+2)  n+1 n+1  (+D(n+2)

4(1— 22 2t (—aptP
(n+1D(n+2) n+1 n+1 n+1 )

V(2)

(1.3.7)
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Ainsi, comme dans le cas direct, nous avons obtenu les formules donnant la
valeur moyenne FE (z) et la variance V (z). Les calculs effectués pour les établir ont
été beaucoup moins compliqués et la forme finale, comme on peut aisément le voir,
est beaucoup plus maniable du fait que les sommes ont disparu.

Nous tenons, pour terminer, & remarquer que la méthode que nous avons envi-
sagée pour établir ces formules aussi bien dans le cas discret que dans le cas continu,
n’est pas la seule. Le professeur Kaelin nous a notamment indiqué une méthode qui,
par le calcul séparé des espérances de X et Y et un raisonnement indirect, fournit
une solution exigeant moins de calcul et, partant, plus élégante du probléme.

1.4 Passage du cas discontinu au cas continu par passage a la limite
sur les formules finales du cas discontinu

1.4.1 Calcul pour E (z)

Dans le cas discontinu nous avions obtenu (formule 1.2.18):

K—1 m—K—1
E (z) = %{m” + Y (m=-Zy + Y (m—-Z)"}

Z=1 Z=1

et dans le cas continu (formule 1.3.4):

E () 2 }."+1 (1_1)n+1
A = = —_— —_—
? n+1 n+l n+l
— 1 i J- )'rH-l —(l—l)n+1 ]
n+1

Montrons que:

zZ
lim E, (-) = E,(2).
m

m= @

Nous pouvons écrire:

z 1 1 K- m—K—1
E; (—) —E (2) = e {m" + Y (m=2+ ) (m —'Z)"}

m Z=1 1

1 K—1 1 Z\" m—K—1 ! Z\"
= — + 2_(1——)+ Y —(1*i).
= Z=1

I

m m
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Déterminons:
K—1 1 Z n
A =lim ) —(1 —-—)
oy m m
o
=
Posons
Z
— x’
m
lorsque
1
Z =1 X = —
m
K-1
Z=K-1 x =
m
d’on
K1

Par définition de I'intégrale définie pous pouvons écrire:
3
A=[(1-x)ydx.
0

De méme on aura

Par conséquent

5|><>|'|:.I=I.
L gs
= 3
[
8 8

1—X

A
= [(1-x)"dx + [ (1—x)"dx
0 0
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Py 1—A

(l_x)n-i-l (l_x)n-l-l

- n+1 n+1
0 0

(1_1)n+1 1 ln+l N 1
- n+ 1 n+1 n+1 n+1
_ 5 (I_Ar+1 Aﬂﬂ
T n+1 n+ 1 n+ 1
= EZ(Z).

1.4.2 Calcul pour V (2)

Dans le cas discret nous avions deux formules suivant que K était inférieur ou
supérieur a m—K—1:

Pour K < m—K—1, nous avions obtenu (voir formule 1.2.26):

, K—1 Z\" m—K-—1 Z\"
V1(2)=1+GZZ(1—;) + ) (2K+22—1)(1—;)

Z=1 Z=1

m=—2

+2 > (m—-Z-1) (1—;)1'l — E2(2)

Z=m—K

et pour K > m—K—1 (voir formule 1.2.27):

m—K—1 Z\" K—1 Z\"
Vi)=1+6 Y Z(l—;) + ¥ (2m—2K+22—1)(1——)

Z=1 Z=m—K m
m—2 Z\"
+2 Y (m-Z-1) (1— —) — E*(2).
Z=K m
Dans le cas continu nous avions (voir formule 1.3.7):
v, (2) 6 2A(1 =" 21 =3 At "o
7) = - - -
2 (n+1)(n+2) n+1 n+ 1 (n+1)(n+2)
4 1 —'A. n+2
_ A ) — E*(2).
(n+1)(n+2)

Montrons tout d’abord que

lim vV, (1%) = V,(2).

o0
a0

3= =3

A



470 ETUDE STATISTIQUE D’'UN MODELE THEORIQUE DESTINE A DETERMINER

. o f 2 N
lim V, (—) =lim — V,(2)
m

m

Km0 A
. K-—1 Z\" m—K—1 Z\"
=lim<1l + 6 Z(1——) + Y (QK+2zZ-1(1—-—
B Z=1 m Z=K m
K=w
i
m—2 Z\" 1
+ 2 -Z-1D)(1-—) —E*(2)} —
27 () e
1 K-tz Z\" 1 ™ XK 2Z 1 zZ\" 1
=1im{-—2 +6 ) H(l——) ) (_—H o e __)(1__) .
m s m m/ m ST\ m m m m/ m
K
o
ml z 1 Z\" 11
+2 3 (1—-_-—-—)(1 ——) -——~—2E"(z)} (1.4.1)
Zem—K m m m/ m m
Considérons séparément les diverses sommes du second membre. Posons
d’abord:
E-1 Z Zv i
A =1im6 — A ==l ~—
: _72. m(_ m) m
K—on
K

. Z ’
En faisant la substitution — = x, on obtient, lorsque
m

1
Z =1 X = —

m

K -1
Z =K -1 X = .

m
Par conséquent:
K~

m 1
A = 6lim ) x(l—x)"';;l-

m=awm 1
X

K=w m
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by
= 6[x(1—x)"dx.
0

En intégrant par parties on obtient:
4 = 64(1—A)*1 6(1—A)t? . 6
n+1 n+D)(n+2) M+DO+2)°

Posons ensuite
. m=Ky g Z 1 Z\" 1
B=Ilm ) (2— +2— — —])[1—-—]) -—.
Z=K m m m \ m’ m

o
8 8

3jx x 3
I
>

: . .. 2z .
En faisant la substitution: — = x, on peut écrire:
m

1—2x 1
B =lim ) (2,1+2x—- _)(1_)5)"._
x=2A m m

o8}
=00

I

xR X3

A

I

1=

=2 (A+x)(1—x)"dx

et aprés une intégration par parties:

B 2 o+l N 47 (1 =2+ . A 4 2(1=2)*2
 on+1 n+1 n+D)(n+2 @+Dn+2)’
Posons enfin
m—2 Z 1 Z n 1
C =lim2 )} (1—* - ——)(1—_> .
Z=m—K m m m m
Ko
E -
en faisant la substitution x = —, on obtient
m

ARCHIVES DES SCIENCES. Vol. 20, fasc. 3, 1967.
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(1.4.2)

(1.4.3)

31
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1

=2[ (1-x)"*'dx

1-7
2An+2
+ .
n+ 2 (1.4.4)

Remplagons les valeurs de 4, B, C données par (1.4.2), (1.4.3) et (1.4.4) dans la
formule (1.4.1), on obtient:

. 75 61—t 6(-AE 6
im = — -
b n+ 1 n+D)(n+2)  (m+1)(n+2)
21n+1 N 4A(I_A)n+l 2l"+2
n+1 n+1 (n+1)(n+2)

21_An+2 2/1n+2
=2 4 —limEz(i)

n+1)(n+2) n+2 m
2.(1=A)*! 4(1=2)"*2 4 6 241
- n+ 1 (n+1D)(n+2 M+1)®m+2) n+l
2An+2 2A"+2 i z
- + —limE? | —
(n+1D)(n+2) n+ 2 m
et en modifiant I’ordre des termes
. : 6 2A(1 =)+ 4(1=A+2 2+l
limV,(z) = - SR —
(n+1)(n+2) n+1 (n+1)(n+2) n+1
2ln+2 2&n+2 ' ,(z
= — + —limE*“(—|.
(n+1)(n+2) n+2 m
Pour retrouver la formule (1.3.7) du cas continu, il faut prouver que:
21n+1 2Aﬂ+2 5 2/1"4-2 2&n+1(1_;{) 4A"+2
n+1  (n+1)(m+2) n+2 n+ 1 (n+1)(n+2)
c’est-a-dire que:
ln+1 in+2 /1”+2 (1 _;{) );.’H'l 2;{n+2
+ — - — =
n+1 @W+D(n+2) n+2 n+1 n+1)(n+2)

Or en mettant les différents termes au méme dénominateur et en réduisant les termes
semblables on obtient successivement:

n+2-A-@m+Di-m+2)(1-2) _
(n+1)(n+2) B

/ln+1 .
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n+2—i—n/1—).—n+ni—2+2)._0
(n+1)(n+2) B

ln+1_

ce qui montre que

lim V (%) = ¥, (2).

a0
e o]

EAR I

=2A
La démonstration que

im V, 2 = V,(2)
m

([t

8 8

ERR AR
[

est toute a fait analogue.

C’est pourquoi nous n’en donnons que les étapes principales:

. fZ | .
lim V, (—) = — limV,(z)
m

m
Ko ot
- R
1 K—1 Z n
=—~1im{1+6 y 2(1—-—)
m; _ Z=m-K m
K=w
L

+ i (2m-2K—2Z—1)(1-—- E)”

Z=m=K m

+ 2 Kil (m—z—l)(l—g)n —Ez(z)}.

Z=m—K

On a donc en définitive:

o (z) 64"t (1-12) GAEE 6
ImV,{—|= — = +

m n+1 (n+D)(n+2) G+1)(n+2)
= 2(1 =)+ N 4(1=7) i+t 2(1—=A)"*2

==

) n+1 n+1 _(n+1)(n+2)

3



474 ETUDE STATISTIQUE D'UN MODELE THEORIQUE DESTINE A DETERMINER

2ln+2 2(1_A)n+2 ) 1
+ + —lim — E?*(2)
(n+1)(n+2) n+ 2 m?
_ 6 2(1—A) A"*! 42 2(1 =)+t
C (n+1)(n+2) n+1 (n+1)(n+2) n+ 1
2(1=A)"+? 2(1 =12 1
_2u=4 =4 —lim —; E*(z).
(n+1D(n+2) n+ 2 m
Il reste & montrer que:
22(1=A)"*! 4(1=4)"*?2 3 2(1 ="t 2(1—=A)"*2 +2(1~,l)"+2
n+ 1 (n+1)(n+2) n+ 1 (n+1)(n+2) n+ 2

c’est-a-dire que:

l(l_l)n-%-l (1_l)n+2 N (1_)')n+l (1_)_)n+2
n+1 (m+1)(n+2) n+1 n+2

= 0.

Or on voit facilement que le premier membre peut s’écrire:

(1_1)u+1
(n+1)(n+z)[_("+2” —(A=D+n+2 —(n+1)(t—;.>] =
(1—,1)'”’1
B (n+1)(n+2)(—nl_2l_] +A+n+2—n+ni—1+4) =0.

ce qui achéve la démonstration.

Nous constatons ainsi que lorsqu’on passe a la limite, les deux formules du cas
discret donnent le résultat que nous avions obtenu dans le cas continu.

Les résultats obtenus dans les deux derniers paragraphes nous aménent a faire
la remarque suivante en guise de conclusion:

Dans ia mesure du possible, c’est-a-dire dés que I'imprécision introduite ne sera
pas trop grande, on aura avantage a utiliser les formules du cas continu.

CHAPITRE 2

PROBLEME DANS L’ESPACE E,

2.1 Remarques préliminaires

Dés que I’on passe au plan, le probléme se complique fortement. En effet, alors
que sur la droite il ne peut y avoir qu'un point a droite ou a gauche du point donné,
il y a dans le plan par rapport & un point donné une infinité non dénombrable de
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directions. Les difficultés apparaissent d’emblée lorsqu’on veut définir la valeur
moyenne de I’aire de la « surface » ne contenant aucun point pris au hasard. Une
méthode consisterait & ticher de généraliser ce que ’on a fait sur la droite; c’est-
a-dire & considérer un rectangle ABCD et un point P donné, situé a I'intérieur; on
envisagerait alors une partition de AB en un certain nombre m de segments égaux,
une partition de AD en un certain nombre n de segments égaux. En convenant qu’un
point « au hasard » serait obtenu en choisissant une abscisse (sur AB) et une ordonnée
(sur AD) au hasard, on pourrait aussi définir le plus grand rectangle « centré » en P
et ne contenant aucun point au hasard comme le rectangle ABCD passant par les
points les plus proches de P relativement aux deux directions AB et AD.

En procédant de cette fagon qui parait pourtant assez simple, on arrive trés
rapidement a des calculs inextricables lorsqu’on veut calculer la valeur moyenne de
I’aire du rectangle « centré » sur P.

Nous avons donc essayé de simplifier ce probléme en ’envisageant d’une fagon
différente et sous un angle un peu plus pratique.

2.2 Etude d’une solution

Supposons que le contour limitant la portion du plan a laquelle nous nous inté-
ressons, soit une courbe convexe fermée. Soit ABCD un rectangle contenant cette

D C
P[P
V(_F"dP \'—Sw
“Jp" .
- e

S mg——

A Fig. s

courbe fermée. Envisageons une partition du segment AB en n intervalles égaux et
tragons les paralléles & AD passant par les différents points de division du segment
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AB. Ces paralléles coupent le contour S. Soient p’ et p”’ deux paralléles voisines et
P’ et P les points d’intersection voisins de ces paralléles avec le contour S. Tragons
le segment paralléle & 4B situé a mi-distance de P’ et P"". En procédant de cette
fagon pour toute paire d’intersections de paralléles voisines avec S, nous formons
un polygone qui est une approximation du contour d’autant meilleure que le nombre n
de divisions du cdté AB est plus grand.

Remarquons toutefois que 'approximation devient mauvaise pour les portions
du contour S dont les tangentes tendent & devenir paralléles au c6té AD du rectangle.

Pour remédier a cet inconvénient, on peut dans ces zones défavorables procéder
de la méme fagon que nous venons de faire, mais a ’aide de droites horizontales
(fig. 5).

Le remplacement du contour par un polygone permet d’appliquer les formules
que nous avons établies dans le plan. En effet, envisageons une bande et le segment BD
de droite qui constitue I’'approximation du contour dans la dite bande (fig. 6).

A

\

Fig. 6

Choisissons n points au hasard dans cette bande. L’un, que nous appellerons P,
sera le plus proche du segment en dessus et I’autre, que nous appellerons P, le plus
proche en dessous. Considérons les projections orthogonales Py, P, et B de P,, P,
et du segment BD respectivement sur le segment AC. Nous sommes ainsi ramenés
au cas linéaire, B jouant le rdle de point frontiére. Nous savons calculer I'espérance
mathématique de P, P, et sa variance.

Nous prendrons alors comme espérance mathématique de I’aire du plus grand
rectangle ne contenant aucun point au hasard I’espérance de P; P, multipliée par la
largeur de la bande BD, et comme variance la variance de P; P, multipliée par la
largeur de la bande BD.
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2.3 Veérification pratique des formules théoriques

Afin de vérifier si les formules établies a partir d’'un raisonnement théorique
donnaient des résultats valables, nous avons effectué un certain nombre d’expériences
pratiques. Nous avons procédé de la fagon suivante: nous avons divisé un carré de
100 unités de coté en 10 bandes de 10 unités de large; dans chacune de ces 10 bandes
nous avons choisi 20 points au hasard en prenant les coordonnées de ces points dans
une table de nombres au hasard. Ce travail a été répété pour dix carrés analogues
qui sont joints en annexe et numérotés de I 3 X (voir p. 481 et ss). Nous avons utilisé
ce « matériel » pour les vérifications suivantes:

Vérification de [’applicabilité des formules donnant les valeurs de E (z) et V (z)

Dans ce but nous avons dessiné sur un papier transparent un contour fermé
quelconque (voir p. 486). Aprés avoir posé ce papier sur les carrés susmentionnés, nous
avons noté, pour chaque bande coupant le contour, les ordonnées des points les plus
proches de la frontiére du contour, intérieurement et extérieurement. Nous n’avons
considéré que les bandes traversées deux fois par le contour.

Les distances P; P, pour chaque bande ont été calculées par soustraction. Pour
la partie supérieure du contour, les distances ont été désignées par Ey (z) et pour
la partie inférieure par Eg (z). Nous avons condensé sous forme de deux tableaux
les résultats obtenus pour les dix carrés ainsi que les totaux et les moyennes des
dix valeurs de Eg (z) et des dix valeurs de Ey (z) pour chacune des bandes.

Eg (2)

Carré

Bande 1 1I III v v VI VII VII IX X Totaux Moyennes

20-30 10 13 2 11 11 9 8 3 12 2 81 8,1
30-40 17 g8 14 3 5 11 16 15 16 13 118 11,8
40-50 4 9 3 8 4 5 10 4 28 17 96 9,6
50-60 5 11 8 28 33 15 23 15 3 5 146 14,6
60-70 28 14 8§ 10 17 19 6 4 121 12,1
70-80 1 0 11 9 23 12 4 22 17 11 110 110

o0
3
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Ey (2)
Carré
Bande I 11 111 IV Vv VI VII VIII IX X Totaux Moyennes

20-30 1 6 1 13 16 8 3 19 7 13 87 8,7
30-40 5 12 16 4 14 15 3 8 4 13 94 9.4
40-50 16 15 11 13 4 0 8 11 5 5 88 8,8
50-60 13 12 3 7 12 3 20 10 5 11 96 9,6
60-70 8 9 8 14 11 9 11 11 11 19 111 11,1
70-80 7 2 6 8 9 12 17 14 11 12 98 9,8

La valeur théorique de E (z) que nous avons établie antérieurement est (voir
formule 1.2.18):

K—1 m—K—1
E(z) = %{m" + Y (m=2)"+ 3 (m—Z)"}.

Z=1 Z=1

Si I'on se contente d’une précision de 1/10 de 'unité utilisée, on constate que
la valeur de E (z) est la méme pour les différentes valeurs de K qui interviennent
dans cet exemple; elle vaut 9,5.

L’application du test de ¢ pour tester la différence entre cette moyenne théorique
et les moyennes calculées a donné les résultats suivants:

Ep (2) Eq (2)

Bande Moyennes t Moyennes t dl
20-30 8,1 1,047 8.7 0,401 9
30-40 11,8 1,479 9,4 0,062 9
40-50 9,6 0,041 8,8 0,422 9
50-60 14,6 1,558 9,6 0,060 9
60-70 12,1 1,109 11,1 1,527 9
70-80 11,0 0,593 9,8 0,220 9

Comme on le voit, toutes les valeurs de ¢ sont inférieures 4 7, &3’ = 2,262 et
justifient ainsi I’application de la formule donnant E (z).

On peut faire un calcul analogue pour ¥ (z). Nous donnons ci-dessous sous
forme de deux tableaux les valeurs de s et les valeurs correspondantes de V (z)
calculées pour des valeurs moyennes E (z) voisines de la frontiére du contour envi-
sagé. Dans I'avant-derniére colonne nous avons les valeurs de 2 = (N—1)s%/V (z)
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Partie supérieure de S

Bande 5% V(2) 2 dl
20-30 30,79 39,02 9,178 9
30-40 41,12 38,90 9,514 9
40-50 27,51 38,24 6,475 9
50-60 27,60 38,09 6,521 9
60-70 28,18 38,09 6,658 9
70-80 18,62 38,71 4,329 9

Partie inférieure de S

Bande 52 V(2) x2 dl
20-30 17,88 38,45 4,185 9
30-40 24,18 38,53 5,648 9
40-50 59,38 38,79 13,772 9
50-60 107,26 28,56 25,035 9
60-70 54,99 38,87 12,732 49
70-80 64,00 38,97 14,781 9

Dans ce cas également toutes les valeurs de y? (sauf une) sont inférieures a la
valeur 0,05 = 16,919, ce qui nous permet de penser que I’application des formules
établies pour V (z) est justifice.

L’établissement des formules d’une part, la vérification que ces formules sont
applicables, d’autre part, pourraient inciter & penser que le probléme est entiérement
résolu. Malheureusement ce n’est pas le cas. Nous avons tenu a préciser dans le
paragraphe suivant, aussi succinctement que possible, les difficultés qui se présentent
encore sans pour autant les résoudre d’une fagon explicite.

2.4 Considérations sur [’application des formules précédentes

En fait, la situation qui se présente lorsqu’on veut déterminer les limites d’un
gisement a I’aide de sondages au hasard, n’est pas tout a fait celle que nous avons
envisagée théoriquement. En effet, dans ce qui précéde, nous avons toujours supposé
que la frontiére était connue; alors que dans le cas pratique la frontiére est inconnue.
Le probléme est alors de savoir, comment et dans quelle mesure on peut utiliser dans
la pratique les formules établies précédemment.

Donnons un procédé et tichons de déterminer dans quelle mesure ce procédé
est valable. Envisageons un carré ABCD représentant la région a sonder. Comme
dans le cas théorique, divisons le carré en n bandes. Supposons que nous désirions
effectuer au total N sondages. Nous ferons alors N/n sondages dans chacune des
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n bandes. Si nous supposons que la forme du gisement est convexe, la frontiére de
ce gisement coupera en général une bande en quatre points. Nous aurons ainsi une
partie des sondages a I'intérieur du gisement et une partie a |’extérieur.

D C

P xyyy)

R C(x,.ys)

A Fig. 7 .

Désignons par P, (x,, y,) et P (x,, y,) les deux points les plus proches extérieur
et intérieur respectivement dans la partie supérieure. Ne connaissant pas la frontiére,
nous la déterminerons en prenant la moyenne arithmétique des crdonnées y, ct y,.

Remarquons qu’en procédant de la sorte, nous avons une double approxima-
tion, d’une part a cause du fait que nous remplagons la frontiére par un segment
de droite, d’autre part en faisant passer ce segment par le milieu de P , P,.

Il est évident que la premiére approximation sera d’autant meilleure que la
largeur de la bande sera plus petite, c’est-a-dire que le nombre n de bandes sera plus
grand, et la seconde approximation que le nombre de points par bande sera plus
grand.

Comme la position de la frontiére par rapport au carré joue un role qui devient
rapidement négligeable lorsque cette frontiére n’est pas trop prés des bords du carré,
la précision dépend essentiellement du nombre de sondages total et par bande.
Supposons que le nombre total N d’éléments de sondage est donné (pratiquement
c’est souvent le cas du fait que ’on désire en général consacrer une somme déterminée &
I’enquéte); par conséquent les précisions des deux approximations que nous avons
mentionnées ci-dessus sont liées: I'une augmente au détriment de ’autre. En effet, plusle
nombre de bandes est élevé, moins grand sera le nombre d’éléments de sondage par
bande.
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Comment déterminer a priori la meilleure valeur de n et par conséquent le
nombre de points par bande ? Cela dépend essentiellement de la forme du gisement
qui est inconnue. Il est vraisemblable que la meilleure méthode est d’opérer pas a pas
de la fagon suivante: choisir tout d’abord un nombre de bandes qui ne soit pas trop
élevé, puis, au vu des résultats obtenus, dans ces bandes, effectuer un nouveau
partage de certaines bandes.

En conclusion, il nous semble que I’élaboration d’une théorie applicable dans
toutes les situations est extrémement compliquée et aboutirait a des formules d’un
usage difficile. Il est préférable, a notre avis, d’étudier chaque situation en particulier
et de tacher d’utiliser, en la complétant si cela est nécessaire, une théorie relativement
simple analogue a celle que nous venons d’esquisser.

ANNEXE

Nous donnons ici les dix carrés dont nous avons parlé a la page 477 ainsi que
les mesures faites sur ces dix carrés.

Pour établir ces tableaux, nous avons employé un certain nombre de symboles,
dont la signification est la suivante:

I, = point le plus bas intérieur au contour

Iy = point le plus haut intérieur au contour

Eg = point le plus haut extérieur au contour et en dessous de Iy
Ey; = point le plus bas extérieur au contour et en dessus de Iy

Eg (z) = distance entre Iz et Eg = Iy — Ep

Eq (z) = distance entre Iy et Eg = Ey — Iy.

Carré 1
Bande In Ep En In Es() En() E ;EB =4 2“"
10-20 47 34 55 50 13 5 40,5 52,5
20-30 4] 31 61 60 10 1 36,0 60,5
30-40 52 35 73 68 17 5 43,5 70,5
40-50 33 29 90 74 4 16 31,0 82,0
50-60 30 25 87 74 5 13 27.5 80,5
60-70 53 25 82 74 28 8 39,0 78,0
70-80 38 37 77 70 1 i 37,5 73,5
80-90 47 28 64 58 19 6 375 61,0
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Bande

10-20
20-30
30-40
40-50
50-60
60-70
70-80
80-90

Bande

10-20
20-30
30-40
40-50
50-60
60-70
70-80
80-90

Bande

10-20
20-30
30-40
40-50
50-60
60-70
70-80
80-90

Ip

40
40
39
36
33
36
40
51

Ip

36
38
33
33
32

2
IS

47

I

40
46
38
35
28
38
45
32

Eg

35
21
31
27
22
22
40
35

35
34
24
30
25
24

Q
O

38

Ep

30
35
35
27

28
36
47

Eq

54
)
73
82
79
83
67
32

Eny

57
61
79
76
76
82

~
1

2

En

46
65
63
88
78
89
78
67

Carré 11

In

42
51
61
67
67
74
65
51

Carré 111

Iy

60
63
65
73
74

~
L

63

Carré 1V

In

40
52
59
75
71
75
70
53

Eg (2)

5
13
8
9
11
14
0
16

Eg (2)

-

O = 00 00 W A N

Eg (2)

10
11
3
8
28
10
9
5

En (2)

12
6
12
15
12
9
2
1

Ex (2)

it
O C\ 0 W — O\ =

Eny (2)

6
13
4
13
7
14
8
14

Ig+Ep  Eg+1In
2 2
375 48,0
33,5 54,0
35,0 67,0
3L.5 74,5
27,5 73,0
29,0 78,5
40,0 66,0
43,0 51,5
Ip+Ep  Ep+In
2 2
35,0 60,5
31,0 71,0
31,9 70,5
29,0 74,5
28,0 78,0
33,5 75,0
42,5 67,5
Ip+Ep  En-+IH
2 2
35,0 43,0
40,5 57,5
36,5 61,0
31,0 81,5
14,0 74,5
33,0 82,0
40,5 74,0
49,5 60,0



Bande

10-20
20-30
30-40
40-50
50-60
€0-70
70-80
80-90

Bande

10-20
20-30
30-40
40-50
50-60
60-70
70-80
80-90

Bande

10-20
20-30
30-40
40-50
50-60
60-70
70-80
80-90

LA FORME D’UN GISEMENT A L’AIDE DE SONDAGES

Ip

40
30
28
40
42

Ip

41
41
46
39
31
38
47
52

Ip

43
42
42
36
45
34
37

Ep

27
34
35
30
16
19
35
48

Ep

36
34
26
26
22
28
33

Ey

88
76
77
85
78
63

Ey

31
65
83
74
78
81
83
58

Ey

49
54
69
76
81
77
91

Carré V

Ig

12
62
73
73
67
54

Carré VI

In

44
57
68
74
75
72
71
52

Carrée VII

Iy

44
51
66
68
61
66
74

Eg (2)

11

4
33
17
23

Ep(2)

14

9
11
9
15
19
12

4

EB (2)

7
8
16
10
23
6
4

En (2)

16
14
4
12
11
9

En (2)

[e—

St
AN O WO Lk 0O

En (2)

o0 W W Wa

20

17

Ip+Ep  En+In
2 2
34,5 80,0
27,5 69,0
26,0 75,0
23,5 79,0
33,5 68,0
32,5 58,5
Is+Ep  En-+In
2 2
34,0 48,5
38,5 61,0
50,5 75,5
34,5 74,0
23,5 76,5
28,5 76,5
41,0 77,0
50,0 55,0
Ip+Eg  Eg+1In
2 2
39,5 46,5
38,0 32,5
34,0 68,0
31,0 72,0
33.5 71,0
31,0 71,5
35,0 82,5
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Carré VIII

Bande Is Ep En It Es(2) Eu(@ L ;E” Ex ;H"
10-20 —_ — — —

20-30 38 35 70 51 3 19 36,5 60,5
30-40 41 26 66 58 15 8 33,5 62,0
40-50 30 26 81 70 4 11 28,0 75,5
50-60 33 18 82 72 15 10 25.5 77,0
60-70 32 28 75 64 4 11 30,0 69,5
70-80 54 32 83 69 22 14 43,0 76,0
80-90 — I — =

Carre IX
Bande Is Ep En I Es En( ® ”;EB e : i
10-20 43 38 65 48 5 17 40,5 56,5
20-30 38 26 65 58 12 7 32,0 61,5
30-40 42 26 71 67 16 4 34,0 69,0
40-50 36 8 76 71 28 5 22,0 13.5
50-60 29 26 77 T2 3 5 27,5 74,5
60-70 29 21 77 66 8 11 25,0 71,5
T0-20 47 30 k2 71 17 11 33,5 6,5
80-90 45 38 57 47 7 10 41,5 52.5
Carré X

Bande Is Es Ex i Es( En» P ;EB i ;1”
10-20 44 35 52 44 9 8 39,5 48,0
20-30 36 34 71 58 2 13 35,0 64,5
30-40 35 22 79 66 13 13 28,5 72,5
40-50 32 15 76 71 17 5 235 135
50-60 28 23 78 67 5 11 255 72,5
60-70 33 26 81 62 7 19 29,5 71,5

70-80 43 32 718 66 11 12 3715 720
80-90 @ — - —
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Carré 10.
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