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Manuscrit regu le 2 septembre 1965.

P. ROSSIER. — Aires en géométrie pascalienne.

1. INTRODUCTION

La géométrie pascalienne repose sur les axiomes d’appartenance, d’ordre et sur
deux axiomes de parallélisme; le premier est celui de I’existence et de 'unicité de la
parall¢le a une droite, issue d’un point donné; le second est la proposition suivante:
soit un hexagone ABCDEF inscrit 2 une paire de droites; si les cOtés opposés AB
et DE, BC et EF sont respectivement parall¢les, il en est de méme de ceux de la troi-
sieme paire CD et FA.

Ces axiomes permettent d’introduire la congruence des figures par translation
et symétrie centrale ainsi qu’un calcul segmentaire qui a les propriétés habituelles
du calcul arithmétique. La géométrie pascalienne a une forme analytique; les calculs
dont elle fait usage représentent des constructions effectuées sur des segments 1.

Avec Hilbert 2 nous dirons que deux polygones sont équidécomposables s’il est
possible de les découper en un nombre fini de triangles congruents deux a deux; ils
sont équicomplémentaires si, par adjonction de polygones équidécomposables, ils
donnent des polygones équidécomposables.

On démontre la transitivité de I’équicomplémentarité.

2. AIRE DES POLYGONES

Deux parallélogrammes ayant un coté commun et dont les cotés opposés a
celui-la ont méme support sont équicomplémentaires; ils sont équidécomposables si
les cOtés précédents ont au moins un point commun.

1 V. P. Rossier, Géométrie affine et géométrie pascalienne. Archives des Sciences, 13, fasc. 3,
p. 355, 1960.

2 Grundlagen der Geometrie, ch. 1V. P. ROSSIER, Les fondements de la géométrie et David Hilbert,
2¢ partie, ch. IV (ouvrage a paraitre).
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Dans le plan, considérons deux directions distinctes x et y. Soit un parallélo-
gramme ABCD. Faisons glisser le coté BC sur son support de telle sorte que le coté
AB' du parallélogramme obtenu soit paralléle a x. Les parallélogrammes ABCD et
AB’' C' D' sont équicomplémentaires.

Faisons glisser C’ D’ sur son support de telle sorte que le c6té A D" du parallé-
logramme AB’ C”" D" ainsi construit soit parallele a la direction y. Les parallélo-
grammes ABCD et AB' C” D" sont équicomplémentaires. Nous dirons que le
parallélogramme ABCD a été réduit par B et D aux axes x et y.

Permutons les roles des cotés AB et AD. Faisons glisser CD en C; D, de fagon
que le coté A D, du parallélogramme 4BC; D, soit paralléle a y, puis faisons glisser
le coté BC, en B,C, pour obtenir le parallélogramme 4B, C, D, de cOtés paralleles
a x et y. Le parallélogramme donné a été réduit par D et B aux axes x et y.

Les parallélogrammes 4B  C” D" et AB, C, D, sont équicomplémentaires 2
ABCD, donc équicomplémentaires entre eux.

Introduisons un syst¢tme de coordonnées paralléles a x et y et d’origine A.
Soient y == mx et v = nx les équations des droites 4B et AD, b et d les abscisses x
de B et D. Le calcul donne

m
AB' = b(l——) , AD" = nd,
n

AB, = b, AD, =dn—m).

Ces expressions montrent 1’égalité des produits AB" . AD"" et AB, . AD,. Le
produit précédent conduit & un segment que nous appellerons I’aire S du parallélo-
gramme ABCD, relative au syst¢eme de coordonnées choisi.

L’expression précédente de I’aire du parallélogramme 4 BC D peut étre mise sous
la forme du déterminant

Xg Vs

Xp Vb

L’aire du parallélogramme dont trois sommets 4, B et D ont les coordonnées
X4 Vs s Yp €st le déterminant

lx, yg4 |
S=|1xz yg
lxp yp

Nous avons obtenu ainsi I’essentiel de la théorie des aires des parallélogrammes;
on passe a celle des triangles par découpage du parallélogramme par une diagonale;
la translation d’un sommet, parallélement au cdté opposé conserve I’aire. La théorie
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des aires des polygones est obtenue par décomposition en triangles. On obtient enfin
le théoréme suivant: Si deux polygones sont équicomplémentaires, ils ont méme aire.

Hilbert a montré que la démonstration de la réciproque exige un axiome de
continuité 1.

3. CONCLUSION

En géométrie élémentaire, I'aire d’un carré de cOté unité est choisie comme
unité; ce carré peut étre déplacé arbitrairement. Ce choix conduit a la rectangularité
du systtme de coordonnées; les aires sont indépendantes lors d’une rotation ou
d’une translation de ce systéme.

En géométrie pascalienne, seule la translation des axes a un sens. Cependant,
la forme analytique de la théorie est la méme qu’en géométrie élémentaire; ainsi,
cette forme est indépendante des axiomes de congruence.

Le second axiome de parallélisme (le théoréme de Pascal selon Hilbert) suffit
donc pour I’élaboration de la théorie des aires des polygones; en cette maticre, il
permet d’éliminer tout axiome de continuité.

L’extension aux volumes des polyeédres et aux hypervolumes des polytopes ne
présente pas de difficultés. On peut la construire au moyen de la théorie des déter-
minants.

Manuscrit regu le 21 octobre 1965.

P. ROSSIER. — Points cylindriques et paraboliques d’une surface.

Un point d’une surface ou le paraboloide osculateur d’axe normal a celle-ci est
un cylindre est indifféremment dit cylindrique ou parabolique.

Nous réservons le nom de points paraboliques aux précédents et distinguons
comme suit les points cylindriques.

Soit A un point d’une surface . Supposons I’existence du plan tangent en A.
En général, au moins dans un voisinage approprié, ce plan n’est tangent a la surface
quen A. S’il existe un arc de courbe de la surface tel que le plan tangent en A4 est
tangent a celle-ci en tous les points de cet arc, nous dirons que les points de cet arc
sont des points cylindriques de la surface. Les points d’une génératrice d’une surface
développable, ceux des paralléles limites des tores sont cylindriques.

Il existe des points cylindriques non paraboliques. En voici un exemple. Soit
la courbe d’équation

y = xz(a+ }f(x)dx),

1 Voir note 2.
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