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REFLET DE L’EVOLUTION SUR LA DISTRIBUTION
DES LUMINOSITES DANS LES AMAS OUVERTS

PAR

Louis MARTINET *

RESUME

Basé sur I’étude de la variation évolutive de la fonction des luminosités d’amas ouverts
Yq (My, 1), le présent travail consiste en un examen critique de I’allure initiale d’une telle fonction.
Dans le chapitre I, nous rappelons quelques résultats essentiels sur le taux d’évaporation stellaire
dans les amas et nous étendons les calculs de Spitzer et Hirm [34] au cas d’amas non isolés. Dans
le chapitre II, la méthode de calcul de I’évolution de la fonction des luminosités sous I’effet de 1’éva-
poration est indiquée. On tient compte dans le chapitre IV de I'influence de I’évolution intrastellaire
au cours de la vie de I’amas. Sur la base d’hypothéses relatives a la fonction initiale des luminosités
suggérées par les développements effectués au cours du chapitre III, le calcul de I’évolution de
Ya (M, ) est appliqué 4 un amas d’age pas trop élevé (chapitre V). Dans le chapitre VI, le cas des
amas vieux est examiné. Les résultats obtenus sur quelques cas particuliers d’amas bien connus du
voisinage du soleil conduisent a rejeter I'universalité dans le temps de la partie « faible » de la
fonction initiale des luminosités.

ABSTRACT

This work is based -on the study of the evolutive variation of the luminosity function in open
clusters, ¢, (M,; t), and consists in a critical survey of such a function’s initial appearance. In
chapter I, we indicate some of the main results about the rate of stellar evaporation in clusters and
we extend Spitzer and Hiarm’s computation to the case of nonisolated clusters. In chapter II, we
show how to compute the evolution of the luminosity function caused by evaporation. InchapterIV,
we take in to account the influence of stellar internal evolution during the cluster’s life. Then we
compute the evolution of according to various choices (chap. III) of the initial luminosity function
and we apply the results to a cluster of intermediate age (chap. V). In chapter VI we consider the
case of old clusters. Finally the results obtained in some peculiar cases of well known clusters of
various ages in the neighborhood of the sun lead us to deny the universal character during time
of the faint part of the initial luminosity function.

I. LE TAUX D’EVAPORATION STELLAIRE DANS LES AMAS

1. GENERALITES

La structure d’un amas stellaire est régie principalement par le potentiel de
gravitation di a ’ensemble de ses membres. Toutefois, I'effet stochastique des ren-
contres entre étoiles d’un amas peut conférer a certaines d’entre elles une énergie

* Thése soutenue en février 1965 a la Faculté des Sciences de I'Université de Genéve ; directeur
de thése: professeur P. Bouvier.
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suffisante pour provoquer leur évasion hors de I’amas. Par suite de cette évaporation
d’étoiles, la masse et 1’énergie totale de ’amas décroitront lentement et modifieront
ainsi la structure du systéme. Le probleme de I’évasion des étoiles a été étudié par
plusieurs auteurs car il est naturellement étroitement lié a I’évolution du systéme,
évolution jusqu’a sa structure actuelle, puis jusqu’a sa compléte dissolution. Le calcul
de I’évaporation basé simplement sur le temps de relaxation repose sur le peuplement
progressif des ailes d’une distribution maxwellienne des énergies: en divisant le nombre
des points représentatifs compris dans cette partie de la courbe correspondant a des
énergies élevées E > E, (ou E, est I’énergie d’évasion) par le temps nécessaire a une
relaxation compléte, on obtient une perte approximative égale a un pour cent du
nombre total d’étoiles durant cette période (Ambartsumian [1], Spitzer [32]). Chan-
drasekhar [6] a utilisé un temps moyen de relaxation T pour toutes les étoiles du
systéme et a obtenu sensiblement le méme résultat. Ce schéma est naturellement par
trop simpliste: en fait une étoile de vitesse relativement é€levée, voisine de la vitesse
d’évasion, aura un temps de relaxation plus grand qu’une étoile de vitesse moyenne
(le temps de relaxation varie comme le cube de la vitesse).

C’est plus spécialement le taux d’évasion en fonction de la masse des étoiles
évadées qui présente un intérét pour le probleme que 1’on se propose de traiter ici car
il permet d’interpréter notamment la distribution des luminosités dans les amas
ouverts. Le résultat de Chandrasekhar [6] relatif au taux d’évaporation d’étoiles de
masses différentes qui indique un maximum pour les étoiles de masse égale a deux
cinquiémes de la masse moyenne est une conséquence de simplifications excessives:
Le calcul suppose en effet que les étoiles doivent d’abord acquérir une distribution
maxwellienne avant de pouvoir s’évader et I’équipartition de I’énergie implique des
vitesses d’autant plus élevées que les étoiles sont moins massives. En réalité les étoiles
s’évadent pratiquement dés qu’elles ont atteint la vitesse d’évasion.

En abandonnant les hypothéses par trop restrictives énoncées ci-dessus mais en
considérant toujours I’amas formé de deux populations stellaires (dont I'une est numé-
riquement prépondérante), il a été possible d’obtenir des estimations améliorées du
taux d’évasion. Comme on le sait, dans des systémes stellaires dont le temps de rela-
xation n’est pas trop grand, les « chocs » a distance sont les plus importants. Une
rencontre « rapprochée », produisant d’importantes modifications des orbites, est
plutot rare. La perte d’étoiles peut ainsi étre considérée comme un processus de diffu-
sion dans I'espace de phase a 6 dimensions. Il est alors nécessaire d’obtenir la forme
de la fonction de distribution /' (¥, 7, f) en v, = vitesse d’évasion, car la perte d’étoiles
&
de Boltzmann en faisant figurer au second membre la variation de la fonction de
distribution f due aux rencontres et donnée par I’équation de Fokker-Planck.
L’équation de Boltzmann pour la fonction de distribution f; des étoiles de masse m;
s’écrit

est proportionnelle 2‘1( ) . Ainsi posé le probléme exige la résolution de I’équation
Ve
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of  0fi = 0fi (0f.->
higih _pe. G _ (%4 (1.1)
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ou ¢ est le potentiel de gravitation. Le deuxiéme membre traduit la variation de f;
sous l'effet des rencontres subies par les étoiles de masse m;. L’équation (1.1) est trés
difficile a résoudre. Une des complications essentielles vient de ce que le deuxiéme
membre est non linéaire en f;. On a souvent recours a des hypotheéses simplificatrices
dont la plupart sont arbitraires et cela explique les désaccords importants dans les
résultats obtenus jusqu’ici. Les approximations auxquelles on a le plus fréquemment
recours sont de trois sortes: (1) Les étoiles de champ (population majoritaire) sont
en équilibre maxwellien; (2) On suppose parfois une forme particuliére du potentiel ;
(3) On choisit a priori une forme particuliere pour la fonction de distribution. La
premiére approximation peut se justifier par le fait que, prés du centre, la valeur du
temps de relaxation est faible et c’est 1a que se produisent la majorité des rencontres.
Le type d’approximation (2) a été utilisé par Spitzer et Hirm [34] et P. Bouvier [3]
qui ont supposé un potentiel constant a 'intérieur de I’amas. Dans [34] la population
majoritaire, comportant les étoiles de masse pratiquement égale a la masse moyenne
stellaire de ’amas m, est en équilibre maxwellien et ne s’évapore pas. Cette derniére
hypothése est abandonnée dans [3] ou la fonction de distribution pour les étoiles de la
population majoritaire n’est pas donnée a priori. Dans les deux cas, on trouve que le
taux d’évaporation des étoiles de masse quelconque m est une fonction monotone

m w5 :
décroissante du rapport —+ Naturellement I’hypothése relative a la forme du potentiel
m

est encore tres restrictive et ne permet pas de donner un reflet rigoureux de la maniére
dont s’effectue’évaporation: dans un amas réel, lorsque I’énergie d’une étoile se rappro-
che de I'énergie d’évasion, I’étoile passe de plus en plus de temps dans les régions
¢loignées du centre et trés peu denses de ’amas. Par suite les perturbations deviennent
de plus en plus faibles et I’énergie de 1’étoile varie de plus en plus lentement. Cet effet
anti-évasion, souligné par Hénon [10], est donc négligé dans le modéle a creux
rectangulaire de potentiel. En toute rigueur on devrait d’ailleurs formuler le probléme
en ne séparant pas la structure de I’évolution: Ces deux aspects sont liés et déterminés
'un par I'autre. Hénon [11] et Michie [24] ont traité simultanément les équations de
structure et d’évolution propres a des modeéles plus perfectionnés que ceux dont on
a parl¢ jusqu’ici. L’allure monotone décroissante de la courbe représentant le taux

g . m : _— % 4
d’évasion en fonction du rapport —, mise en évidence pour la premiére fois par
m

Spitzer et Harm, est confirmée dans ces deux études; seules les valeurs numériques
présentent des différences parfois trés sensibles, ce qui illustre bien le manque de rigueur
de la théorie des amas en son état actuel (voir par exemple P. Bouvier [3], figure 1).

Nous tenterons plus loin d’étendre le calcul du taux d’évaporation dans le modéle
simplifi¢ du creux rectangulaire de potentiel au cas d’un amas non isolé, c’est-a-dire
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soumis a I’action extérieure du champ galactique. Or, comme I’a indiqué P. Bouvier
[3], ce n’est que dans le schéma d’hypothéses de Spitzer et Harm que cette extension
est possible si I’'on doit conserver une solution basée sur la séparation des variables.
Aussi est-il utile de rappeler ici les étapes essentielles de ce dernier travail.

2. LA SOLUTION DE SPITZER ET HARM

On considére un amas isolé. Le potentiel de gravitation est donné par

& = @, = constante pour r <~ R = rayon de I’amas 1.2)

b =0 pour r > R
A une distance r < R du centre, les seules variations de vitesse subies par une étoile
résultent des rencontres avec d’autres ¢toiles. La fonction de distribution f ne dépend
plus ici ni de r ni de la direction du vecteur vitesse. L’équation de Fokker-Plank
a été établie par Cohen, Spitzer, Routly [7] dans le cas d’interaction entre particules
chargées. Spitzer et Schwarzchild [35] I'ont adaptée au cas de l'interaction de nature
purement gravitationnelle. Compte tenu de la symétrie sphérique du systéme et de
Pisotropie des vitesses, on peut écrire

of 1 8 [(b—x¢'\ (of 2xm
0 x* 5;[( X ) (6x+ Jﬁf)] (1.3)

ou m est la masse des étoiles moyennes de I’amas constituant la population majoritaire,
étoiles avec lesquelles interagissent les étoiles de masse m dont la fonction de distri-
bution fest inconnue. La présence de la fonction d’erreur ¢ s’explique par le fait que
la population majoritaire est en équilibre maxwellien. La variable x est liée a la vitesse

v par I’expression
3 +
X = jv =(—_) v (L.4)
29?2
ou \/17 est la vitesse quadratique moyenne. Enfin 0 est le rapport du temps au temps
de référence défini par
1

T, =
R 2nG? m? nj? Ina

(1.5)

avec m = masse moyenne stellaire de I’amas, » = nombre total d’étoiles de ’amas

[

n
et > On cherche pour f une solution de la forme

f(x,0) = e *-g(x) (1.6)
(1.3) devient alors
d [¢ —x¢' dg

1 m
%2 dx[ X dx+ * r_n'g] 4 (1.7)
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ou aussi

o ¢')g" + [(2" o z-gx)qb' + (iﬁ - %)cb]g’ + x* (4:m¢' + i)g =
X X m m X m

Les conditions initiales sont g (0) = 1 et g’ (0) = 0. Il faut déterminer 2 de telle sorte
que g(x,) =0 ou x, = jv, = \/E avec v, = vitesse d’évasion. A est directement
lié a la perte relative d’étoiles de masse m. En effet de (1.6) on tire immédiatement

1 of )
f o0 "
ou encore
1 dn, A
_ - _ = (1.8)
n, dt Ty

ou I’on a écrit n,, pour le nombre d’étoiles de masse m. Ainsi pour m = m, on trouve
une perte relative d’étoiles égale a 1,19, durant un temps Ty. Les étoiles de masse
pratiquement nulle ont un taux d’évasion environ 18 fois plus grand que celui des
étoiles moyennes.

3. LE PROBLEME DU RAYON DE STABILITE

En réalité¢ un amas ouvert n’est pas isolé. L’action du champ galactique sur’amas
nous conduit & tenir compte d’un potentiel extérieur variable avec la distance au
centre afin de pouvoir définir la distance moyenne dite rayon de stabilité r, de I’amas
ou ’action extérieure I’emporte sur le champ produit par I’'amas. Un calcul élémentaire

(Von Hoerner [14]) conduit a
M \?*
r, = )R
(o)

avec M, = masse de I’amas, M, = masse de la Galaxie et R = distance de 'amas
au centre galactique. On peut montrer que pour un amas ouvert décrivant une
orbite circulaire autour du centre galactique, I'effet dela force centrifuge est peu impor-
tant et I’expression trouvée pour r, différe peu de la précédente. On a en effet (P.

Bouvier [4])
%
F, = (317;\/{;) R (1.9

qui est aussi un résultat particulier (¢ = 0) de la formule un peu plus générale donnée
par King [18]

re = R,[M,/M,(3+¢)]*

pour des systémes stellaires décrivant des orbites non circulaires, R,=a(l—e)
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étant la distance périgalactique. La figure 1 montre comment on peut procéder a
I’ajustement d’un rayon de stabilité fini au modéle a creux rectangulaire de potentiel.

e R— f I ye

amas
Ue U:

IO R = 3’ largeur du creux de potentiel

U, .= Potentiel extérieur de amas

Ug = Potentiel galactique

I correspond au creux rectangulaire
dans le cas d'un amas isolé

Fig. 1.
R = 1 largeur du creux de potentiel
Usmas = Potentiel extérieur de I'amas
Ug = Potentiel galactique

I correspond au creux rectangulaire dans le cas d’un amas isolé

Pour sauvegarder ce modele tout en tenant compte du champ extérieur de ’amas, on
adopte la courbe I1I de la figure. L’effet du champ galactique diminue le creux sans
affecter sa forme rectangulaire. Sa profondeur est réduite dans le rapport

M,
r (1.10)

3

02 —2G

S| @
SquN

Ve

ou v, est la vitesse minimum a communiquer a une €toile placée au centre pour qu’elle
s’éloigne a une distance et v, est la vitesse d’évasion pour I’amas isolé dont I’'cxpres-
2GM,

'_.

%
sion usuelle est v, = ( ) avec ¥ = rayon moyen de I’amas. (L’expression de

v, dans (1.10) est obtenue en invoquant le principe de conservation d’énergie entre le
centre et r,, respectivement entre le centre et I'infini).

4. EXTENSION DE LA SOLUTION DE SPITZER ET HARM AU CAS D'UN AMAS NON ISOLE

Dans le cas ou I’amas est soumis a I’action extérieure du champ galactique,
I’équation (1.7) est toujours valable mais la vitesse limite sera v, au lieu de v . Les

: m r ) R
valeurs propres 4 qui dépendent de deux paramétres, p = — et £ = —, doivent étre
m r

S
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déterminées de telle sorte que g (x;) = 0 au lieu de g (x,) = 0, x, étant a rapporter
a la vitesse v, (x;=jv,). Invoquant le théoréme du viriel et (1.10) on a

vﬁ:vi(l—i)=6(1—i>/j2
rs rs

x, = jo, = /6(1=9)

Les calculs ont été effectués a I’aide de la calculatrice Ferranti Mercury du CERN a
Geneve pour différentes valeurs de p et . Les résultats obtenus pour A sont indiqués
dans la table 1 et illustrés par la figure 2 (¢ = O correspond au cas de I’amas isol¢).

et

TABLE 1
N 0 0.1 0.2 0.3
0. 0.2049 0.2609 0.3400 0.4544
0.2 0.1305 0.1751 0.2391 0.3357
0.4 0.0787 0.1120 0.1621 0.2414
0.6 0.0442 0.0681 0.1056 0.1686
0.8 0.0232 0.0393 0.0660 0.1141
1.0 0.0114 0.0215 0.0395 0.0749
1.2 0.0051 0.0111 0.0227 0.0476
1.4 0.0022 0.0054 0.0124 0.0293

Le principal enseignement & tirer des courbes de la figure 2 ressort de la comparaison
M,

(15 &)

des rapports pour des valeurs distinctes de £. On constate que pour p < 1

et & > €&
Ap, &) o A(p, &)
;"(laé) A.(l,é’)

En particulier

2.(0,0) 1.(0,02)
=179 et ———— = 86
2.(1,0) 1.(1,02)

Ces valeurs montrent que comparativement au cas de ’amasisolé (¢ = 0), dans un amas

- . . r - . - - r r
soumis a une action extérieure traduite ici par la valeur 0.2 du rapport —, I’évapo-
rs

ration des étoiles les plus légéres (de masse pratiquement nulle) par rapport a celle
des étoiles de masse moyenne est moins importante.
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Examinons la variation temporelle de £. On peut faire remarquer que dans un
amas composé de deux populations, le carré de la vitesse quadratique moyenne vaut

2
Z M, {v* is

<'U2 = ._1__
Mi=1

ol M; et (v*), sont respectivement la masse et le carré de la vitesse quadratique moy-
enne concernant la population 7 seulement, M étant la masse totale de ’amas. Si 'une
des populations est majoritaire, comme c’est le cas ici, M, € M, pour autant que le

L4

as 1

Fig. 2.

. m . -
Variation des valeurs propres A en fonction de p = = pour diverses valeurs de & = r/rg.
m

m
rapport T"' ne soit pas trop grand et alors
m

{(w?y = (v?); = constante par hypothése (la population majoritaire est en

- . : M
équilibre maxwellien et ne s’évapore pas). Donc pratiquement, comme {v?) + —,
=
on a

M
— = cte (1.11)

r

11 résulte de cette derniére relation et de la définition du rayon de stabilité donnée
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en (1.9) que
&+ M} (1.12)

Ainsi, ¢ décroit dans le temps comme la puissance %4 de la masse (R = distance au
centre galactique est supposée constante pour un amas donné). Considérant 1’évolu-
tion d’'un amas a masse moyenne /m constante, on observerait alors, dans le temps,
une importance accrue de I’évaporation des étoiles treés 1égeres par rapport aux étoiles
dites moyennes. En réalité m varie sous 'effet de I’évaporation et de I’évolution intra-
stellaire. L’importance relative de ces deux effets dépend probablement du temps. La

Au; &) ou Auy; &)
A58 A(ua; )
conséquent difficile a déterminer. On reviendra sur ce probléme au cours du
chapitre VI.
Il est utile pour la suite d’obtenir des formes analytiques pour les courbes
A (u; &). L’expérience a montré que des polyndmes constituaient des approximations

raisonnables. Ainsi on a

variation temporelle réelle du rapport

avec [, ¥ M, est par

N

A, &) = Y a(Ou (1.13)

i=0

Dans les applications, les valeurs de & seront comprises en général entre 0,2 et 0,3.
Pour ces deux valeurs, les expressions numériques de 4 sont

2 = 0.3400 — 0.5702 1 + 0.3436 u> — 0.0739 1 pour & == 0.2
. = 0.4544 — 0.6605 p -+ 0.3460 u* — 0.0651 &3 pour & = 0.3

alors que pour

& ==0.25, A = 0.3948 — 0.6368 ;- 0.4572 u® — 0.2879 p* + 0.1789 pu* — 0.0515 p°

II. VARIATION EVOLUTIVE DE LA FONCTION DES LUMINOSITES
D’UN AMAS OUVERT

1. DESCRIPTION DU PROBLEME

La connaissance de la fonction des luminosités d’un systeme, ¢ (M,), qui, a
travers la relation
dN = ¢ (M,)dM, (2.1)

nous indique le nombre d’étoiles du systéme ayant une magnitude comprise entre
M, et M, + dM, par unité de volume, est importante en ce qu’elle peut étre le reflet
de certaines caractéristiques ayant trait d’une part a la cosmogonie du systtme
(en quoi ¢ (M,) nous renseigne sur les conditions initiales de la formation stellaire
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dans le systeme) et d’autre part a I’évolution du systéme (ce qui devrait permetter
d’estimer le taux de variation du nombre d’étoiles, pour une magnitude donnée, au
cours du temps). Des informations sur I'origine et I’dge d’un amas peuvent donc étre
éventuellement tirées d’une étude de la distribution des luminosités dans cet amas.

Plusieurs essais ont été entrepris pour tenter d’expliquer la forme de la courbe
¢ (M) observée dans des amas, selon un point de vue strictement dynamique (Takase
[37], Van den Bergh [39], P. Bouvier et L. Martinet [5]). Le calcul consiste, aprés
avoir adopté une fonction initiale des masses (reliée a la fonction initiale des lumino-
sités par une relation masse-luminosité des étoiles) a évaluer la variation subie au cours
du temps par n (m), nombre d’étoiles de masse m, sous 'effet de 1’évaporation
stellaire, pour laquelle on a recours aux résultats de Chandrasekhar dans [37] et [39]
et a ceux de Spitzer et Hirm dans [5]. On obtient des familles de courbes n; (m) (ou
n; (M,)) décrivant la répartition des masses stellaires a diverses étapes i de I'évolution
de ’amas, ce qui permet de tenter des estimations d’dge des amas ouverts en compa-
rant 'une des courbes n; (m) avec les résultats d’observations. Toutes ces tentatives
s’appuient sur un certain nombre d’hypothéses dont nous indiquons ici les princi-
pales:

(1) Le mode¢le d’amas est tres simplifié.

(2) L’amas est considéré comme isolé.

(3) La fonction initiale des luminosités est considérée comme analogue a la fonction
des luminosités telle que Van Rhyjn I’a établie pour le voisinage du soleil.

(4) L’évolution intrastellaire est négligée.

L’objet essentiel du présent travail consiste en un examen critique de I’hypothese (3).
Aussi, au contraire des trois travaux susmentionnés nous considérerons ici ’age des
amas choisis comme connu et déduirons I'allure probable de la fonction initiale des
luminosités. L’hypothése (2) pourra étre éliminée en invoquant les développements
effectués au chapitre I § 3 et 4. Un calcul simplifié pourra permettre de se libérer
également de I’hypothése (4) (voir chapitre 1V).

2. VARIATION DE LA FONCTION DES MASSES SOUS L’EFFET DE L’EVAPORATION

Considérons avec Spitzer et Hirm un modele d’amas homogene contenant deux
populations d’étoiles: Comme déja dit, la population majoritaire 1 est supposée
invariable, en équilibre maxwellien, caractérisé par le parametre j lié a la vitesse
quadratique moyenne selon la relation

A coté de cette population 1 d’étoiles de masse 1, nous envisageons un petit nombre
d’étoiles pouvant avoir des masses quelconques; tout groupe de ces étoiles ayant
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pratiquement la méme masse m pourra jouer le réle de population 2, minoritaire
vis-a-vis de la population 1. Le taux d’évaporation pour les étoiles de masse m
s’exprime alors par

n(mD _ mY, 4 Bouvier et Martinet [5 2.2
n(m,t)_ﬁ(ﬁ) T (0) (Bouvier et Martinet [5]) (2.2)

ou Ty (0) est la valeur du temps de référence a 'instant initial + = 0. Supposons
alors un choix correct de la fonction initiale des luminosités de ’amas , (M, 0).
I1 lui correspond une fonction initiale des masses ¢ () que I’on obtient facilement
a I’aide d’une relation masse-luminosité des étoiles. Le nombre initial d’étoiles de
masse m, n (m, 0), est lié a ¢, () par

n(m,0) = no - @o(m) (2.3)

ou n, est un nombre total donné d’étoiles de I’amas a I’époque initiale # = 0. La masse
totale initiale de I’amas

My, = [mn(m,0)dm = ny - m, (2.9

est aussitot déterminée. (Pratiquement on remplace I'intégrale par la somme discrete

Y. mn(my;0) (2.5)
k
ou la sommation est a effectuer sur toutes les masses listées dans la table 5). Choisis-
'_.
sant convenablement 7, = rayon initial de I’amas, on peut calculer &, = ( ;
I's)o

a l'aide de (1.9). A (u; &,) peut alors étre évalué pour tout u a I’aide de (1.13). On

renoncera par la suite a envisager une variation continue de £, ce qui augmenterait

considérablement la complexité du calcul, avec un profit d’ailleurs discutable.
Récrivant (2.2) sous la forme

n(m,i) 3 A

w(m | Tx (2

ou T est le temps de référence a I’'époque ¢ cette fois, et intégrant cette équation sur
un intervalle de temps A¢ assez court pour que T n’ait pas varié de fagon appréciable

n(m,t+A4t) = n(m,t)-exp{—l(?_;éo)-ﬂ}' (2.7a)
m Tr

Procédons a partir de ¢ = 1, par étapes successives de durée Af; = t;,, — 1, (i =

0,1,2,..)
n(m, tg) = n(myt) expd — A(—m— & ) =2 L. (@)
m (t;) Tr (1)
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Pratiquement T s’écrit (Spitzer-Hdarm [33])

n(t) -7 (1) *’ 1 _
m (1;) ) logyon(t) — 0.3

Les n (m, t;,,) sont calculables de proche en proche a partir de n (m, t,) = n (m, 0).

T, = 8.3 x 10° x ( (2.8)

m
Etant donné la variation de m (¢) et par conséquent de ,1(: , (’,‘0) pour un m donné,
m

il convient de réduire en cours de calcul le pas d’intégration afin d’éviter que le nombre
d’étoiles évadées ne croisse au point de faire varier sensiblement 7 dans l'intervalle

At;. Pour cette raison on posera
i-1

At
’L A 2.9)
a6, = B-Tr(0) - |1 — ——

T
ou S et y sont des constantes (< 1) et T'est ’dge de 'amas. La masse totale et le nombre
total d’étoiles au temps #;,, sont calculables a I’aide des n (m, ¢, ;)

n(tis,) = Z”(mki fiv1)

k
et

M(t;yq) = Zk’nkn(mk; livy) -

Alors invoquant (1.11), la valeur du rayon a I’époque #,,, sera

M) 2 (2.10)
M (1)) - '

f(tH-]) =
On assiste ainsi 4 une décroissance progressive de la masse totale, du nombre total
d’étoiles et du rayon de I'amas sous le seul effet de I’évaporation. Ce phénomeéne qui,
durant une grande partie de la vie de ’amas, ne concerne que des étoiles plutdt
légeres, est pratiquement négligeable pour des étoiles dont la masse dépasse 1,6 fois
la masse moyenne. Par contre I’évolution intrastellaire, qui n’affecte pratiquement pas
les étoiles légeres, influence considérablement 1’évolution de la partie brillante de la
fonction des luminosités. Nous revenons plus loin sur ce probléme.

III. FONCTION DES LUMINOSITES INITIALE

1. UNIVERSALITE DANS LE TEMPS ET DANS L’ESPACE DE LA PARTIE « BRILLANTE »

La méthode de calcul exposée au cours du chapitre précédent suppose entre
autres la connaissance de , (M,; 0), fonction des luminosités initiale. Les tentatives
de détermination théorique du spectre de masse résultant de la fragmentation au
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niveau du nuage proto-amas représentent souvent des cas trop idéaux pour pouvoir
constituer actuellement un ensemble de données slires (Kushwaha et Kothari [20],
Jaschek et Jaschek [16], Kruszewski [19], Takebe, Unno et Hatanaka [38]). Quant
aux observations, souvent trés fragmentaires, elles ne nous renseignent que sur les
conditions actuelles. Il est vrai que ’on peut admettre que le spectre de masse observé
est équivalent au spectre de masse initial si ’on considére des amas jeunes. Il est alors
possible de construire une fonction yr, (M, ; 0). Cependant il est difficile actuellement
d’obtenir des mesures convenables au-dela de M, = 5. Aussi les amas jeunes nous
fournissent au plus la partie brillante de ¥, (M,; 0). Comme I’évolution intrastellaire
efface les conditions intitiales dans les amas moins jeunes, nous sommes conduits
a admettre I'universalité dans le temps de , (M, ; 0) dans sa partie brillante (M, < 5).
Reste a examiner I'universalité spatiale de y, (M, ; 0). Starikova [36], en comparant la
fonction des luminosités d’une vingtaine d’amas ouverts, d’éloignement quelconque,
a I’aide des critéres de Kolmogoroff et de Pearson, a conclu, pour les amas jeunes, que
dans la plupart des cas les écarts trouvés sont de nature purement aléatoire. Nous
admettons ainsi également I'universalité spatiale de la partie brillante de , (M,; 0)
et nous construirons une fonction initiale moyenne a I’aide d’un échantillon d’amas
jeunes parmi les mieux connus.

2. CONSTRUCTION D’UNE FONCTION INITIALE ¥, (M,; 0) (PARTIE « BRILLANTE »)

Van den Bergh [40] a construit une fonction moyenne ¥/, en utilisant des données
relatives a 9 amas ouverts et associations. Son choix s’est porté sur des systémes d’age
divers, dont le spectre de masse présentait des similitudes. Pour obtenir une fonction
Y, (M,; 0) on est tenté de modifier la fonction ¥, en éliminant Praesepe et les Hyades
dont la fonction des masses (ou des luminosités) a di étre modifiée par les effets de
I’évolution intrastellaire (voir 1V, § 4). La liste d’amas utilisés ici est donnée dans la
table 2. Tous ces amas ont un age au plus égal a 10® ans. Afin que ’ensemble de nos
résultats futurs soient cohérents, nous employons une relation masse-luminosité
différente de celle de Van den Bergh (voir table S). Aussi les valeurs numériques
données par ce dernier, relatives aux amas que nous avons conservés doivent étre

m

modifiées. (voir le tableau 3 dans [40]). Si a toute valeur u = log (————) de Van den
o

m ’
Bergh correspond ici une valeur y' = (Log —) , le nombre d’¢toiles dans un inter-
valle (uy, 1) "o

Nip = | N(dp (3.1)

Hy

se trouvera maintenant dans l'intervalle (i}, ), A I'aide de la fonction des masses
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TABLE 2
i D la f i
(T, | Felmem L 5 | By, | DoniEarheads

H et y Persei 0.04 2360 B2 0.56 V. d. Bergh [40]
Pléiades 0.8 126 B7 0.04 »

o Per 0.4 170 B3 0.08 »

M 50 0.2 910 B3 0.26 »

NGC 436 0.1 »

NGC 457 0.1 2880 B2 0.47 »

NGC 2264 0.03 750 09 0.10 Walker [42]
(Les données des 2¢, 3¢ 4¢ et 5¢ colonnes sont empruntées a K. H. Schmidt [29])

intégrée par exemple, on peut repasser a d’autres intervalles de masse correspondants
par notre relation masse-luminosité a des intervalles (M, — +; M, + ). On tire alors
pour une magnitude M, donnée

m
dlog—

Ve (M,;0) = N(m)- 7;}"—9 (3.2)

v

Les valeurs comparées de ., et , (M, 0) sont données dans la table 3. La figure 3
donne l'allure de la courbe log iy, (M,; 0).

Fig. 3.
Partie brillante de ¥, (M,; 0). En ordonnées: log ¥, (M,; 0) + 10
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TABLE 3
My log ¥l + 10 (V. d. Bergh) | log ¥q + 10
—4 5.48 5.48
—3 5.78 5.70
—2 6.00 5.90
—1 6.23 6.08
0 6.56 6.45
1 6.89 6.87
2 7.14 6.98
3 7.26 7.04
4 7.32 7.26
5 7.34 7.34
|
|

3. CRITIQUE DE LA PARTIE « FAIBLE » DE LA FONCTION INITIALE

Comme on !’a d¢ja mentionné, les renseignements conccrnant la partie faible
(M, > 5)dela fonction initiale des luminosités des amas jeunes sont quasi-inexistants.
Il faut attribuer cette lacune principalement au fait que les étoiles peu brillantes de ces
amas sont inatteignables par les moyens actuels d’observation. L’influence de la durée
des temps de contraction de ces étoiles, importante aux yeux de certains. doit €tre
minime si 'on se référe aux calculs récents de Hayashi [9].

Il est commun d’admettre que les étoiles faibles se distribuent selon la masse d’une
maniére analogue dans les amas et dans le champ général, en d’autres termes, que la
partie faible de y, (M; 0) est donnée par la fonction des luminosités du voisinage du
soleil établie par Van Rhyjn (notée @, par la suite). Ceci est une hypotheése com-
mode plutdt que le reflet d’une réalité physique puisque @,y est déduite de statis-
tiques portant sur des étoiles de tout age

0 <1 < T (Galaxie)

ou 7 (Galaxie) est I’dge de la Galaxie, et doit donc étre envisagée comme une somme
de distributions  (M,; t;) a diverses époques t; de création; or ces distributions ne
sont pas nécessairement identiques, si I’on retient notamment les arguments de
M. Schmidt [30] relatifs au taux de formation stellaire dans le voisinage du soleil.

Nous pouvons essayer de nous faire une idée de ’allure de la fonction initiale des
luminosités en invoquant les calculs décrits au cours du chapitre précédent, que ’on
effectuera en remontant dans le temps a partir de la fonction des luminosités observée
d’un amas bien connu pour parvenir a , (M,; 0). Ainsi en lieu et place de ’équation
(2.7a) nous aurons, comme conséquence du repeuplement progressif de I’amas a
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I’aide des étoiles évadées,

n(m,t—A4t) = n(m,1) - exp {A (E'éT) At} (3.3)

m’ ") Ty
avec ¢ = valeur actuelle de &.

Le calcul est a effectuer depuis I’époque actuelle T (dge de ’amas), a partir du
nombre observé n (m, T) d’étoiles de masse m. Procédant par petites étapes At, on
parvient de proche en proche a estimer # (m, 0), c’est-a-dire le nombre d’étoiles de
masse m a 'époque r = 0, il y a 7 années et par suite , (M,; 0).

4. RECHERCHE DE Y, (M,; 0) POUR LES PLEIADES

On peut estimer que la fonction des luminosités des Pléiades est bien connue
jusqu’a M, = 10. L’absence d’une séquence d’étoiles encore en contraction stipulée
par Herbig [13] est apparemment confirmée par Reddish [25]. L’age des Pléiades
(dont tous les membres sont supposés contemporains) est inférieur a 10® ans d’aprés
I’ensemble des estimations; nous pouvons donc négliger, en premiére approximation,

Y A
Pvry
/
80 | /
/
#

60 | Vs

40 | o T

20

" + ’ HV
4 8 10
Fig. 4.

En trait plein ¢, (M,; T) déduite par la méthode des moindres carrés des nombres d’étoiles observés
indiqués par I’histogramme (courbe en escalier). En trait ---, ¢, (M,; 0) calculée de proche en
proche par (3.3) et en trait -.-.-, fonction intiale @y gy pour M, > 5, normalisée pour étre en bon

accord avec ¢, (M,; T) si M, << 5 (I’évolution intrastellaire est négligée).

les effets de I’évolution intrastellaire. Le calcul indiqué au § 3 a déja été effectué sur cet
amas (L. Martinet et P. Bouvier [23]). Les résultats sont illustrés par la figure 4.
Pour ¢, on avait choisi la valeur 0,2 déduite des observables M, = 350 mg et
Fops = 2 pc. L’écart entre la courbe obtenue y, (M,; 0) et @, est significatif. Ainsi
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I’amas des Pléiades pourrait avoir présenté initialement une déficience en étoiles
faibles par rapport a ce que révele ’observation au voisinage du soleil.

5. DEFICIENCE INITIALE EN ETOILES FAIBLES DANS LES AMAS

FAITS D’OBSERVATIONS

Le résultat trés partiel que ’on vient d’obtenir est intéressant en ce qu’il est en
accord avec certaines présomptions suggérées par I’observation de la partie faible
de la fonction des luminosités d’amas ouverts (les amas pour lesquels ces observations
ont été réalisées sont extrémement rares et la magnitude limite atteinte n’excéde pra-
tiquement jamais M, = 8 — dans les cas les plus favorables.) M. S. Roberts [26]
étudiant un petit nombre d’amas dont 1’Age est de I'ordre de 10® ans observe une
décroissance de la fonction des luminosités a partir d’'une certaine magnitude comprise
généralement entre M, — 2 et M, = 5. On ne peut intégralement attribuer cette défi-
cience en étoiles faibles a I’évaporation car le rapport de I’age au temps de relaxation
de ces amas n’est pas tres élevé. D’autre part ces amas sont assez vieux pour que les
étoiles dont la magnitude se situe dans 'intervalle de déficience aient eu le temps
d’achever leur contraction gravitationnelle. On peut se demander si ces constatations
s’étendent éventuellement & des amas plus vieux. Van den Bergh [41] a construit
une fonction des luminosités moyenne a partir d’amas d’age intermédiaire ou avancé.
Une comparaison avec @, g, révele dans cet amas « moyen » une déficience marquée
en étoiles faibles. Cette derniére ne saurait €étre mise sur le compte des observations
car le mode de sélection de Van den Bergh tend a favoriser les amas révélant plus
d’étoiles faibles (amas proches et riches). Etant donné la pauvreté du matériel utilisé,
on se gardera de conclure définitivement, mais nous trouvons ici une indications utile
dans les développements futurs. Il faut d’ailleurs remarquer que Van den Bergh,
s’appuyant sur les résultats numériques de Von Hoerner [15] nie toute influence de
I’évaporation sur le résultat de sa comparaison. Mais un amas réel n’est pas isolé,
comme le suppose Von Hoerner dans ses calculs. Or Hénon [11] a montré que I’éva-
poration ne prend vraiment un sens que lorsque I’amas est placé dans des conditions
physiques réelles, c’est-a-dire dictées par la présence du champ galactique. Ainsi
pour des amas déja vieux (du type de ceux choisis par Van den Bergh), I’évaporation
doit avoir une influence déterminante sur I’allure observée de la partie faible de la
fonction des luminosités. Nous verrons par la suite s’il y a lieu de tenir compte d’autres
influences: la fonction initiale des luminosités peut dépendre de I’état de I’évolution
de la Galaxie et varier dans le temps. Les données d’observations accumulées par
Gray [8] indiqueraient que la fraction des étoiles brillantes formées dans un amas
croit avec I’age de la Galaxie ou que, proportionnellement le taux de formation des
étoiles faibles décroit au cours du temps, ce qui, soit dit en passant, est en désaccord
avec les conclusions de M. Schmidt [30] pour les étoiles de champ.

ARCHIVES DES SCIENCES. Vol. 18, fasc. 3, 1965. 36 -
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6. TEST SUR DES AMAS D’AGE INTERMEDIAIRE

Ce qui précéde montre bien que si nous avons des raisons de penser que les résul-
tats relatifs a ’amas des Pléiades ne sont pas dépourvus de signification, en revanche,
nous ne saurions admettre sans plus ample examen une déficience initiale en étoiles
faibles pour des amas plus vieux sur lesquels des effets de nature diverse ont le temps
de se manifester. Malheureusement, pour ces amas, le calcul complet de ’évolution
d’une fonction des luminosités est assez complexe, car indépendamment du probléme
de I’évaporation, qui conduit a une augmentation de la masse moyenne m, on est
conduit a tenir compte, par suite de I’évolution intrastellaire, d’une diminution de m
et d’une redistribution (inconnue) parmi les masses faibles des résidus (naines blan-

¥
ches) des étoiles ayant quitté la séquence principale. En outre £ = — subira des
r.S'

variations non négligeables dont I’évaluation est délicate. Renvoyant ’examen de ces
questions aux chapitres suivants, on peut ici déja, par une estimation grossiere, com-
parer avec les observations relatives a des amas d’age intermédiaire, une fonction des
luminosités évoluée sous I’effet de I’évaporation et dont la forme initiale y, (M, ; 0)
est inspirée par les résultats obtenus au § 4 du présent chapitre.

Soit donc ¥, (M,; 0) telle qu’elle est donnée dans la table 3 pour M, <5 et
égale a une constante pour M, > 5. Nous négligerons ici I’allure fine de , (M,; 1)
pour ne considérer que sa forme globale. Il est donc utile de définir un parameétre qui
rende bien compte de ce dernier aspect. Soit un intervalle de magnitude (M, , M, );
M, est la magnitude correspondant au maximum de la fonction des luminosités
observée de ’amas que nous voulons considérer et M, , la magnitude des étoiles les
plus faibles. A chaque instant 7, la pente moyenne de la fonction des luminosités de
’'amas sera donnée sur I’intervalie (M, , M, ) par

_ log y(M,)) —log ¢ (M,,)
- T

vy Vo

(3.4)

t

Nous référant aux valeurs propres A (u; &) calculées précédemment et a la définition
du temps d’évaporation
Tx
tev = .
A(ps; €)
nous pouvons obtenir une estimation de D,. Dans I’hypothése ou T reste constant

au cours du temps, t,, est le temps requis pour que le nombre d’étoiles décroisse dans
le rapport 1/e. Pour un £ donné

(W) _ A1)
()~ 20

avec t,, (1) = temps d’évaporation des étoiles de masse relative y =

(3.5)

(3.6)

33
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Pour un amas tel que Praesepe par exemple, on peut considérer que t,, (1) est de
I'ordre de ’age de I’amas (5.10° ans). A partir des observables M, Ny, €t Fope =-
rayon médian, on tire m = 1.25et £ = 0.16. Appliquant notrerelation masse-lumino-

sité aux étoiles de magnitude + Set + 9, on a

M,=5->u=08¢et M, =9—->pu=20,45
Alors

4(0,45) 5 4 a A(0,8)
O Al

Ainsi dans ’hypothése o m et ¢ restent constants durant toute la vie de ’amas, on
constate qu’au bout de 5.10° ans, alors que les étoiles de masse moyenne voient leur
nombre décroitre dans le rapport 0.37 (par définition du temps d’évaporation), le
nombre d’étoiles de masse = 0.8 m décroit dans le rapport 0.21 et celui des étoiles de
masse = 0.45 m dans le rapport 0,028. Ainsi dans le cas d’une fonction des lumino-
sités initiale constante pour M, > 5, on a

D(SIOS ans) = - 0.22 i 0.02

Si, au contraire, la fonction initiale est, pour M, > 5, du type Van Rhyjn, on obtient
D = —0.14 + 0.02.
Les données d’observation »n (M,) sur Praesepe (voir [5] table III) conduisent a

D,.= —0.20.

obs

Pour ’'amas des Hyades un calcul analogue conduit aux résultats suivants: avec
m = 1.25et £ = 0.3, dans I’hypothése Y, (M,; 0) = cte pour M, > 5, D, = — 0.18
tandis qu’avec une fonction initiale @, 5, D, = — 0.09. En utilisant les mesures de
Johnson et Mitchell [17], on trouve pour D, la valeur — 0.19. L’age des Hyades a été
considéré comme voisin de celui de Praesepe. 1l apparait sur ces deux cas particuliers,
qu’une fonction des luminosités initiale Y, (M,; 0) = cte pour M, > 5 conduit
a une fonction évoluée dont la pente D; est en meilleur accord avec les observations
qu'une pente D/®¥ obtenue en partant d’une fonction initiale du type Van Rhyijn.
La portée de cette estimation trés grossiere ne doit pas €tre exagérée mais les résultats
obtenus justifient la mise en route de calculs plus élaborés.

IV. EVOLUTION INTRASTELLAIRE

1. GENERALITES

Nous étudierons au chapitre suivant la variation évolutive de la fonction des lumi-
nosités d’amas ouverts comme conséquence de ’évaporation et des effets de I’évolution
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intrastellaire. Dans ce but nous indiquerons ici la maniére dont on peut tenir compte
dans nos calculs de ces derniers effets.

Les idées actuelles sur I’évolution stellaire indiquent que les étoiles, aprés avoir
sé¢journé sur la séquence principale durant la plus grande partie de leur vie, se dépla-
cent rapidement vers la région des géantes rouges du diagramme HR. La maniére
dont elles évoluent ensuite n’est pas clairement expliquée mais on a des raisons de
penser que I’état final est celui de naine blanche. On estime que le temps de vie a I’état
de géante ne représente environ que 20 %, (ou moins) du temps de séjour au voisinage
de la séquence principale. Nous négligerons cette étape dela vie stellaire et supposerons
qu’une ¢toile ayant quitté la séquence principale perd toutela masse excédent 0.7 m¢
et devient ainsi une naine blanche. La validité de cette hypothése sera discutée plus
loin.

2. TEMPS DE SEJOUR SUR LA SEQUENCE PRINCIPALE

Les effets de I’évolution intrastellaire se font naturellement sentir sur la fonction
des luminosités des amas ouverts qui se dépeuplera peu a peu de ses €toiles brillantes.
Le taux de dépeuplement dépend du temps que les étoiles de différentes luminosités
passent sur la séquence principale. Soit T (M,) ce temps, ou mieux, T (m), sim est la
masse de I'étoile de magnitude M, sur la séquence principale. Selon la définition clas-
sique, T est le temps requis pour que I’étoile atteigne la limite de Schonberg-Chan-
drasekhar (Sandage et Schwarzchild [27], Sandage [28]). Selon Sandage

T = 1.1-10t0 MO (4.1)
Li/Lo
on I, est la luminosité de 1’étoile lorsqu’elle a atteint la limite de Schonberg-Chan-
drasekhar, c’est-a-dire au moment ou elle va commencer a évoluer vers la région des
géantes. Mais la théorie qui conduit a la formule (4.1) n’est vraiment applicable
qu’a des étoiles dont la masse est comprise entre 1.5 et 4 m. Pour obtenir des temps
de séjour convenables pour n’importe quelle étoile de la séquence principale, on doit
recourir aux résultats donnés par les calculs de modeles pour les différentes masses qui
nous intéressent. Henyey, Le Levier et Levée [12] ont étudié I’évolution d’étoiles de
masse comprise entre 1.5 et 30 m), ayant une composition chimique initiale donnée

Z
par X = 0.68, Y = 0.31 et Z = 0.01 et X (CN) = 7 Le contenu initial en hydro-

géne est donc plus faible que celui supposé dans des travaux analogues de Kushwaha
[21], Blickler [2] et Schwarzchild et Hiarm [31]. Une comparaison avec les modéles
de Kushwaha a I’'aide d’un diagramme (M, — log 7,) révele que ces derniers ont
des luminosités et des températures effectives plus faibles. La position de Sirius
(m = 2.3 m) dans ce diagramme montre que les calculs de Henyey (X = 0.68)
sont plus corrects que ceux de Kushwaha (X = 0.90). Les courbes d’age constant dans
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[12] montrent une ressemblance qualitative avec le diagramme classique de Sandage.

On en tire des ages pour les amas bien connus, qui nous serviront de référence par la
suite (table 4).

TABLE 4
Amas Age
Pléiades 6.107 ans
Hyades 5.10% ans
Praesepe 5.10% ans
NGC 752 109 ans

Les calculs de modeles de Henyey nous livrent les valeurs de T, (m) pour m = 20, 11,
6, 3.5, 2 et 1.5 m, qui nous permettent de tracer la courbe donnée par la figure 5

d’ou I’on tire les valeurs de T (m) pour toute masse entrant en ligne de compte dans
nos calculs (table 5).

log T, |

10

log M_
mo

+ + + + + + —+—
02 06 10 14

Fig. 5.
Temps de séjour au voisinage de la séquence principale en fonction de la masse stellaire.

Dans notre évaluation de la variation évolutive de la fonction des luminosités
d’un amas, nous tiendrons compte des remarques et résultats précédents. A la fin de
chaque étape 4t au cours de laquelle un certain nombre d’étoiles s’évaporent, dépeu-
plant ainsi la partie faible de y, (M,; 1), on devra estimer également le dépeuplement
de la partie brillante de ¥, sous 'effet de I’évolution intrastellaire. La méthode de
calcul décrite au cours du chapitre IT nous conduit a procéder dans le temps par sauts
successifs et a remplacer une fonction des masses en principe quasi-continue par une
fonction discontinue: en fait n (m,), obtenu de la maniére que I’on sait & partir de

"y > re s . My + My_y
¢ (m,), désigne le nombre d’étoiles dont la masse est comprise entre ———— et
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My 4 My
2
rellement des temps de séjour distincts. On doit donc s’attendre a ce qu’en réalité le
dépeuplement de la partie brillante de la fonction des luminosités dont il était plus
haut question s’effectue de maniére quasi-continue. Il convient de préserver ce carac-
tére continu dans les calculs futurs afin de ne pas avoir a enregistrer des variations
trop brusques de la masse moyenne pouvant résulter d’un départ soudain, a I’époque
t = T, (m,), de toutes les étoiles auxquelles la masse m, a été assignée. Aussi allons-
nous formuler I’hypothése de calcul suivante: soient deux masses voisines dans la
table 5, m, et m, ., (m,>m, ). Dés le temps t = T, (m,) = temps de séjour sur la
séquence principale d’une étoile de masse m,, on impose a n (m,) une décroissance
linéaire jusqu’en un temps t* = T, (m,, ) ou alors n (m,) = 0. Toutes les étoiles de
masse m, auront alors quitté la séquence principale. Ce sont les étoiles de masse
my 4, qui vont commencer a quitter celle-ci et, a une époque ¢ = T (M ,5), n (M4 ,)
= 0 selon le méme processus. Aux différentes époques ¢t = ZA4¢; du calcul décrit au
chapitre II, on corrigera alors les n (m,) relatifs aux étoiles touchées par I’évolution

intrastellaire en les multipliant par le facteur

. Aux masses distinctes comprises dans cet intervalle correspondent natu-

T,(my4,) — ¢
T (myyy) — Ty(my)

et par 1 si t << T, (m,). Enfin si t > T, (m,,,) on pose n (m,) = 0. Du point de vue
dynamique, on ne peut pas négliger la masse des ¢toiles qui ont quitté la séquence
principale. Si I'on s’en référe aux remarques formulées au § 1 du présent chapitre, ces
étoiles participeront en tant que naines blanches a la masse totale de ’amas qui, par
conséquent, a une époque ¢ quelconque, sera donnée par

si T,(my) <t <T,(my4+;) (4.2)

K r
M() =073 [n(m;;0) —n(m;n]+ Y myn(mgt). (4.3)
j=1 j=k+1
ou k est I'indice correspondant aux étoiles de masse m, pour lesquelles T (m,) est tel

que

T,(my) <t < Ty(myyy)

et r est le nombre total de masses distinctes apparaissant dans la table 5. De méme,
le nombre total d’étoiles au temps ¢ est donné par

r

k
n(@ =Y [n(m;0) —n(mun]+ Y n(mo). (4.9
Jj=1 i=k+1
Ainsi aprés chaque étape de calcul Af, on obtient une nouvelle fonction des masses
(ou des luminosités) comme conséquence de I’évaporation (chap. II), fonction qui est
ensuite corrigée en invoquant les considérations précédentes. On doit remarquer que,
pour des amas d’Age intermédiaire, les étoiles massives et légéres sont séparément
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concernées, les unes par I’évolution intrastellaire, les autres par I’évaporation. On
pourra méme dire que pour de tels amas il existe un intervalle de masses (d’autant
plus petit que ’amas est vieux) ou aucun des deux effets mentionnés n’a eu le temps de
se manifester. Nous reviendrons sur l'utilité de cette remarque au § 4.

3. CORRECTION DU RAYON

Si I’évolution intrastellaire est seule considérée on peut voir qu’elle favorise
I’expansion de I’amas par opposition a I’évaporation qui aboutit, par I'intermédiaire
de la condition — == cte, a sa contraction. Supposons que la masse transformée en

r
gaz a la suite du passage des étoiles a I’état de naine blanche est expulsée de I’amas.

Soit alors dM, la masse perdue par ce dernier en un temps d¢ et dE le changement
o 2
d’énergie totale résultant. Avec T = 1 Mv? et Q = — —— valeurs initiales des
r

énergies cinétique et potentielle de I’amas, 1’énergie totale initiale £ vaut

GM? Mv?
E=--— - -2 (4.5)
2r 2

par le théoréme du viriel. Pour calculer la variation d’énergie dE consécutive a la perte
de masse dM, nous supposons avec Von Hoerner [14] que pendant le temps df durant
lequel se produit cette variation, ni v? ni 7 ne varient (ce n’est qu’ensuite que se réali-
sera un nouvel état d’équilibre). On obtient les nouvelles expressions de T et 2

— dM

_ aM

QI
d’ou
dM
E' =E+dE=E(143— "
M
Admettons que I’équilibre est rapidement rétabli aprés I’expulsion de masse, la validité
du théoréme du viriel étant alors 4 nouveau assurée. Il en résulte que la nouvelle

valeur de I’énergie potenticlle Q" est telle que Q" = 2E”. La masse ne subit plus de
variation durant le rétablissement de I’équilibre, D’autre part on avait Q = 2E et

si E” = E’, on peut écrire
0Q Q" -Q m?
— = ———=96|In—

F
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et
oE E”—E_E’—E_dE_ dM_35M
E E E E B
. 0Q OE
Mais — = — donc
Q
M2
r
qui donne
o(Mr) =0
d’ou
Mr = cte

Cette maniére sommaire de procéder peut se justifier ici par le fait que la fraction de la
masse totale expulsée au cours d’une étape de calcul At est trés faible.

Ainsi les nouvelles valeurs M”, 7" de la masse et du rayon sont liées a M et F,
valeurs antérieures a la variation dM décrite plus haut par

M" 7" = M-F (4.6)

Supposant alors que la variation dM se produit subitement au temps ¢, a la fin d’une
étape At du calcul décrit au chapitre II, on passe, au cours de At, de M (1— At) et
F(t—A4t) a M (¢) et 7(t) par la condition (1.11) dictée par I’évaporation,

M@ M (t —A41)
F()  F(t—A1)
puis aux valeurs corrigées M” (1) et ¥ (¢) par la condition (4.6)
M"(1) 7" (1) = M(t)-F7(1)

de sorte que le rayon « corrigé » r" est donné par

() = 2D 4.7)
r = »F (1) . .
MII (t)
Les équations (4.2) (4.3). (4.4) et (4.7) permettent de commencer une nouvelle étape
du calcul d’évolution.

4., MODIFICATION DES HISTOGRAMMES OBSERVES

L’intérét du calcul de la variation évolutive de la fonction des luminosités réside
dans le fait qu’il permet de confronter une courbe théorique y, (M,; T), ou T est 1’age
de ’amas, avec I’histogramme que 1’on peut déduire des observations et donnant, pour
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toute magnitude M, atteignable, le nombre d’étoiles de magnitude comprise entre
M, — L et M, + 1. Cependant cette confrontation ne peut étre entreprise immédia-
tement: ¥, (M,; T) est déduite des n (m,, T) a ’aide d’une relation masse-luminosité
valable au temps ¢t = 0. Or, avant d’évoluer vers I’état de géante, les étoiles subissent
durant leur séjour au voisinage de la séquence principale un accroissement progressif
(négatif) de magnitude AM, = AM, (¢; M, ). La figure 6 montre la variation dans le

A My *
0 Mv. Mw Mv, Mv.
.-10%ans
05 T 4
<5.10 ans
8
-10ans
-1 1 +.36-107¢1ns
; - 4 ‘ } - My
-2 -1 o 1 2 3
Fig. 6.

Variation temporelle de la magnitude en fonction de la magnitude initiale.

temps de AM,, pour différentes valeurs de la magnitude initiale M, , telle quon la
déduit des calculs de Henyey [12]. Ces variations influenceront naturellement la forme
de I’histogramme observé et pour que notre confrontation ait un sens, nous devons
construire ’histogramme tel que les observations nous le donneraient si les accrois-
sements 4 M, n’existaient pas. La magnitude M, au temps ¢z = 0 d’une étoile qu’on
observe aujourd’hui avec une magnitude M, (T) sera

M, = M, (T) =AM, (T; M, ), (4M,<0)

Le nombre d’¢étoiles observé dans un intervalle (M, , M, ) est

My,
Ni; = | N(M,)dM, .
My,
Autemps t =0, My, = M, —4AM, et M,,, = M,, —4AM,, .

Toutes les €toiles qui sont maintenant dans lintervalle (M, , M,,) €taient originelle-
ment dans lintervalle (M., , M,,,). En général N, (T) # Ni,(0). Il est facile, a
’aide de la fonction des luminosités intégrée (qui nous renseigne sur le nombre
d’étoiles ayant une magnitude inférieure a une magnitude donnée), de calculer I’his-
togramme corrigé utilisable pour la comparaison avec la fonction théorique calculée
Y, (M,; T). Nous verrons, au cours du chapitre suivant, une application du procédé.
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V. APPLICATIONS

1. DONNEES INITIALES

a) Fonction initiale des luminosités

La table 5 indique différentes fonctions initiales a partir desquelles on peut entre-
prendre le calcul: fonction du type Van Rhyjn (@, ), fonction constante a partir
d’une magnitude donnée (y,), fonction dont les valeurs sont obtenues par moyenne
arithmétique de @, et ¥, (). On peut également procéder a différents essais en
tronquant ces distributions du c6té des étoiles faibles par exemple a M, = 10 ou
M, = 14,

TABLEAU 5

My m/mO (I-gg (;r'l)s) Qvrn E (Prazgepe) (Plé?aades)
— 4 27.0 0,04 1 1 1 1
— 3 15.9 0,08 1 1 1 1
— 2 10.0 0,15 2 2 2 2
— 1 6.5 0,31 3 3 3 3
0 4.3 0,69 7 7 7 7
1 2.9 1,7 17 17 17 17
2 2.0 5,1 23 23 23 23
3 1.5 10. 26 26 26 26
4 1.2 25 43 43 43 43
5 1.0 100 52 52 52 52
6 0.84 63 63 63 52
7 0.75 74 68 63 52
8 0.61 83 73 63 52
S 0.50 100 8i 63 52
10 0.40 127 95 63 52
11 0.32 172 117 63 —
12 0.25 216 139 63 -
13 0.19 244 153 63 —
14 0.14 238 150 63 —

Masse
totale: 800 M 700 MO 600 MO 520 MO

La relation masse-luminosité est déduite des travaux de Henyey, Le Levier, Levée [12] pour M,, < 5
et de Limber [22] pour M, > 5. Les T, (m) sont tirés de la figure 5.

b) Pas d’intégration

Le pas d’intégration initial ainsi que les valeurs des constantes 8 et y (cf. (2.9))
qui fixent sa variation dans le temps seront déterminés par tdtonnement afin de satis-
faire les conditions suivantes:
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2)

3)
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Le pas d’intégration doit étre suffisamment petit afin d’éviter que le nombre
d’étoiles qui s’évadent au cours d’une étape ne croisse au point de faire varier
sensiblement 7.

Il ne doit pas décroitre exagérément dans le temps afin que I’on puisse constater
les progres de I’évolution.

Un choix convenable de Af peut nous permettre de justifier ’hypothése formulée
au chapitre 1V § 1 selon laquelle on peut négliger le stade « géante » pour les
¢toiles de notre amas. Les durées présumées de vie a ce stade, T, sont indiquées
dans la table 6. L’expérience a montré que, pour un amas d’age intermédiaire
auquel les données de la table 5 sont applicables, on peut s’arranger a ce que le
pas 4t répondant aux deux premieres conditions énumérées reste toujours plus
grand que les temps T, pour M, < 0 au moins. Pour les étoiles moins brillantes
(M, = 14 2) encore touchées par I’évolution intrastellaire dans les amas du type
considéré, T, = k - At (k>1). Mais les erreurs commises en négligeant également
pour ces étoiles le passage par le stade « géante » ne doivent pas étre considérables
(k < 5)

TABLE 6
M T M T,

Yo (108 gans} ° 10? gans)
—4 0,008 0 0,14
—3 0,016 1 0,35
—2 0,030 2 1,0
—1 0,060 3 2,0

c) Le parameétre ¢

Comme on I'a déja dit, & sera considéré comme fixe au cours du temps. Il est

préférable d’introduire pour ce paramétre une valeur moyenne plutdt que sa valeur
initiale & (0) ou actuelle & (7). Nous prendrons donc

£(0) + £(T)
2

LEF= (5.1)

2. DESCRIPTION DU PROGRAMME DE CALCUL

Partant des valeurs m, et n (m,; 0), le programme calcule » (0), M (0) et m (0).

En ce qui concerne le rayon « moyen », qu’il est convenable d’assimiler au rayon
contenant la demi-masse en projection, sa valeur initiale est choisie telle que
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Mobs o Mnb _ M(O)

F T F(0)

obs

(5.2)

afin de satisfaire (1.11). Dans (5.2) M, est obtenue a partir de la fonction des lumi-
nosités observée Y,,,. M,,, masse des naines blanches a pour expression

0.7 [¥.(M,;0) — ] (en masses solaires)

ou la somme s’étend aux magnitudes non touchées par I’évaporation et oit 0.7 mg
est la masse d’une naine blanche. On peut calculer 7% (0) & I'aide de (2.8). La valeur
moyenne (&) est évaluée a partir des couples (M -+ M,;; Fops) €t (M (0); 7 (0)). Les

m
équations (1.13) permettent alors d’obtenir A (u,; {£)) pour tout y, = £ et par

Mo

(2.7) on a n (m,, 4¢) ou I'on fixe At par un choix convenable de f§ (équatii)r)l (2.9)).
Les n (m,) relatifs aux m, dont T (m,) satisfait a 'inégalité¢ 0 < T (m,) < A4t sont
corrigés a l'aide de (4.2) et M (A1), n (4¢f), r (4t) respectivement a ’'aide de (4.3),
(4.4), (4.7) o t = At. On vérifie que la condition (1.11) est toujours raisonnablement
satisfaite. Le calcul se poursuit par étapes successives de longueur A7 donnée par (2.9),
ou il faut encore se donner y. On a ainsi, a tout instant t = X At;, n (m,; t) (et par
suite W, (M, 1), M (H)n (1), m (1) et F (1).

3. INFLUENCE DU CHOIX DE M (0), 7 (0), (&>

Avant de nous attaquer au probléme principal auquel ’application de la méthode
peut conduire, nous allons chercher a voir quelle est 'influence d’un choix arbitraire
de M (0), 7 (0) et &> sur le déroulement des calculs. Nous avons procédé & quelques
essais reposant sur ies valeurs suivantes

a b c d
<&> 0.2 0.2 0.2 0.3
M (0) 800 MQ 800 MO 400 MO 800 MO
r (0) 3 pc 4 pc 3 pc 4 pc
At, 8.10% ans 1.2.107 ans 6.10% ans 6.10% ans

La comparaison entre les cas (a) et (b) montre le prolongement de la vie de I’amas
dii au choix d’un rayon initial supérieur (fig. 7a). La durée de vie d’'un amas de masse
plus faible, a 7 (0) et (&) égaux, sera raccourcie comme le montre la comparaison des
cas (@) et (c) (fig. 7b). La figure 7¢, ou sont confrontés les cas (b) et (d) illustre la maniére
dont I’évaporation est ralentie quand ¢ diminue. Enfin d’aprés la figure 7d, on voit
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que la décroissance initiale de m due a I'influence momentanément prépondérante de
I’évolution intrastellaire est peu importante et I’on peut dire que durant la plus grande
partie de la vie de I’'amas, m est une fonction croissante du temps. Dans tous ces exem-

ples, on a supposé une fonction initiale du type @,z mais un autre choix (Y ou ¥,)
conduit qualitativement aux mémes conclusions.

i log M s log M
128
& (a)
| 26 26
(a)
24 124 c)
. logt | . logt
8 82 & 86 8 8 8 86 88
b 1ogm b m
!y
@ 10800 (%q)
|26 P |
/
1 0600 (b)
12
| 0400
22
} + + =~ + + + -
82 84 86 logt 75 8 85 logt

Fig. 7 (a, b, ¢, d).

Variation temporelle de la masse totale selon divers choix de M (0), ¥ (0) et <E>
Variation temporelle de la masse moyenne m.

4, APPLICATION AUX AMAS DES PLEIADES ET DE PRAESEPE

Nous allons appliquer la méthode complete du calcul d’évolution au probléme
suivant: étant donné la fonction des luminosités observée d’un amas, que peut-on
proposer comme fonction initiale convenable pour cet amas? Le calcul décrit préce-
demment est entrepris a partir d’une fonction initiale de I'un des types proposés en
(V, 1, @) jusqu’a un instant 1 = X At; = T = age de ’amas considéré et nous com-
parons alors n (m, T) (ou n (M, T)) aux nombres observés donnés par I’histogramme
corrigé selon le principe décrit en (IV, 4). Si I’accord est bon, M (T') = M, + M,
n(T) = ny,, + ny et F(T) = P Un moyen nous est ainsi fourni de déterminer la
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fonction initiale la plus vraisemblable pour ’amas donné. Les différentes estimations
de I’age des amas révelent une grande dispersion mais pour que ’ensemble des calculs
entrepris ici soient cohérents nous devons naturellement nous référer aux ages calculés
par Henyey et al. (table 4).

Il ne parait pas inutile d’effectuer le calcul complet sur les Pléiades car la recherche
de la fonction initiale entreprise pour cet amas au chapitre III évitait certaines diffi-
cultés (L’évolution intrastellaire était négligée, la valeur de £ utilisée n’était pas une
moyenne). Les conclusions pouvant étre différentes pour des amas plus vieux, on a
considéré dans une deuxieme application 'amas de Praesepe. Pour étre complet, il
elt fallu traiter le cas d’'un amas trés vieux. Malheureusement, on se heurte alors a de
sérieuses difficultés qui seront examinées au cours du chapitre suivant.

La table 7 donne pour les deux amas choisis n,,, (M,) ainsi que les valeurs cor-
rigées compte tenu de la remarque faite au chapitre IV, § 4. La correction a été opérée
sur un temps ¢ égal naturellement a I’Age présumé des amas. Dans le cas des Pléiades
on peut admettre que les magnitudes M, = 1 a 3 n’ont été affectées ni par le départ
d’étoiles de la séquence principale ni par I’évaporation. Aussi la normalisation de
v, (M,; 0) est-elle effectuée en tenant compte de cette circonstance, c’est-a-dire de telle
sorte que I’on obtienne la meilleure coincidence possible avec I’histogramme corrigé
dans cet intervalle de magnitudes.

TABLE 7
’ Pléiades l Pléiades | Praesepe ] Praesepe
(observé) ‘ (corrigé) (observé) (corrigé)
—3 1 0 — e
—2 3 1 — —
—1 2 3 - —
0 5 4 3 0
1 16 14 12 5
2 22 27 16 22
3 26 26 20 25
4 35 35 34 36
5 41 41 36 36
6 28 28 34 34
7 30 30 16 16
8 37 37 12 12
9 27 27 3 3
10 16 16 0 0

Le méme raisonnement est appliqué a Praesepe pour lequel on considére que
I'intervalle « non évolué » est (+ 2 < M, < + 3). Lesfigures 8 et 9 montrent I’allure
des courbes y, (M,; T) obtenues avec différents types de fonctions initiales. Dans le
cas des Pléiades @,y ne convient pas et , parait encore trop riche en étoiles faibles.
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Le calcul entrepris au cours du chapitre III se trouve ainsi confirmé, du moins quali-
tativement. En ce qui concerne Praesepe la seule fonction initiale qui conduit a un
accord convenable avec les observations est la fonction . Ce résultat nuance la con-

nimM,
[ 100 "

L 80

1 60

L 40

0 2 i 6 8 T 1 e

Fig. 8 et 9.

Fonction des luminosités observée (Pléiades) (courbe en escalier) comparée aux courbes n (M, T)
obtenues A partir de QP pgpy (---) et de Y, ( )

Fonction des luminosités observée (Praesepe) (courbe en escalier) comparée aux courbes n (M,, T)
obtenues a partir de Pyry (---), ¢ (—.—) et P, ( )

clusion a laquelle on aboutissait au chapitre III & propos de cet amas a la suite d’un
calcul trés grossier. Nous avons rassemblé dans la table 8, les principales valeurs numé-

riques intervenant ici. La figure 10 illustre la « variation » du rapport — et 1’on voit
que la condition (1.11) est raisonnablement satisfaite. ¥
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On peut encore déterminer le temps T au bout duquel le meilleur accord avec les
observations est obtenu selon les différents types de fonctions initiales utilisées. Les
résultats sont indiqués également dans la table 8.

TABLE 8

PLEIADES

PRAESEPE

Age présumé

6.107 ans

5.108 ans

Observables

Mobs = 350 M_; Fobs = 2pc;

Mobs = 230 M,; novs = 190;

Nobs = 290 TFobs = 1,4; Mus = 20 M,

lur:iﬁg‘s:it:gsn ig;:tsialc Pyru ’ Va PvrE v Va

M(0) [M(O)] 623 521 800 700 602

n (0) 637 444 1492 1114 742

r (0) [pc] 3.6 3.0 4.5 3.8 3.5

& 0.25 0.24 0.25 0.24 0.23

(At), [ans] 5,6.108 3,6.108 7,5.108 7,5.108 6,4.10°8

Sup {Mv} 10 10 14 14 14

M(T) [MO] 510 394 476 272 175*

n(T) 572 367 774 287 155*

r (T) [pc) 29 2.2 2.6 1.4 1.0*

B 0.1 0.1 0.05 0.08 0.1

Y 0.05 0.05 0.10 0.05 0.05

T 2,1.10% ans | 9,6.107 ans | 8,3.10% ans | 5,2.10% ans | 3,2.10% ans

M (7) [MQO] 354 343 251 259 262

n(7) 380 316 293 265 274

r () [pc] 2.0 2.0 1.4 1.4 1.5

Sup {M,} = * Ces valeurs
magnitude des étoi- ont été ob-
les ies pius faibies tenues apres
considérées 4.108% ans.

Le choix de r (0) est fixé par la condition (1.11). Il pourrait arriver que la valeur

de Fy,

soit erronée. Si on lui substitue 7', > F,,, par exemple, il en résultera une

augmentation de 7 (0) dans le méme rapport, Le temps ¢ nécessaire pour réduire la

masse initiale dans le rapport

M

(1)

(0)

sera alors plus grand, comme l'indiquent les

figures 7. Mais par ailleurs ’augmentation de 7 conduit 2 modifier également (&)

= 4

F

toujours dans le méme rapport —, ce qui contribue a raccourcir le temps au bout
r
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duquel on obtient M () (fig. 7). Les deux effets ne se compensent pas rigoureusement
mais ’accroissement du temps ¢ reste faible. Un exmple peut étre cité ici & ’appui de

$a® =025

M
log — " . F=

V37 M,= 800; =40
i \/
22 N — ¥
! ¥, ;<32=025

M. =600 ; F=35

21

7 8 9 th

Fig. 10.

M
Variation du rapport — au cours du temps.
-

ce que révelent déja les courbes des figures 7: dans la table 9, on compare les n (M, t)

M(O) 3 . , . Fobs
obtenus, pour M (1) = — a partir d’une fonction @, 5, avec = 1.2,
obs
La discussion précédente laisse présumer que si, dans le cas d’un amas telque

Prasepe, I’on peut obtenir un accord entre une courbe n (M,, t) obtenue a partir de

TABLE 9

My ny (My) ng (My) My ny (My) ng (My)

1 0 0 8 58 57

2 3 0 9 56 55

3 26 26 10 51 52

4 43 43 11 50 52

5 52 52 12 43 46

6 58 58 13 33 37

7 62 61 14 22 26
Les n; (M,) sont obtenus aprés 6,49.10% ans, avec 7, (0) = 4.0 et (£, = 0.20. Les n, (M)
sont obtenus aprés 6,61.10% ans, avec 7, (0) = 4,8 et {£), = 0.25. D’autre part M, (1) =
400 MO et M, (1) =399 MO ;n (1) = 608etn, (1) = 622;r, (1) = 2.0pcetr,(t) = 2.3 pc.

&, ry avec diverses valeurs du rayon initial et la fonction des luminosités observée,
cet accord sera toujours réalisé dans un temps supérieur a I’age de I’amas.

Les nombreux calculs qu'implique la méthode suivie ici, ont été effectués sur
l'ordinateur IBM 1620 de la Faculté des sciences de I’Université de Genéve.

. ARCHIVES DES SCIENCES. Vol. 18, fasc. 3. 1965. 37
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VI. LE CAS DES AMAS VIEUX

1. GENERALITES

Il aurait été intéressant d’appliquer le calcul décrit plus haut a des amas vieux.
Malheureusement, dans ce cas, plusieurs difficultés majeures surgissent:

1) Sil’on examine le diagramme H — R de M 67 par exemple, on constate que
la séquence principale n’existe pas pour M, < 3.5. En revanche, on remarque une
séquence de sous-géantes qui se prolonge jusque vers les géantes rouges. Pour ces
étoiles, en nombre non négligeable, la relation masse-luminosité utilisée jusqu’ici
n’est plus valable.

2) Le tableau 6 montre que le séjour au stade de géante pour des étoiles de magni-
tude initiale M, > 2 peut étre sensiblement plus long que la durée d’une étape de
calcul 4r.

3) Pour des amas dont I’age est voisin de celui de la Galaxie, il devient impossible
de restituer I’histogramme que 1’on observerait si I’évolution intrastellaire ne s’était
pas manifestée en donnant aux étoiles des accroissements A M, comme cela a été
indiqué précédemment, car les données de Henyey et al. ne nous permettent pas
d’estimer de fagon assez slire la valeur de ces accroissements AM, sur des durées
dépassant 10° ans.

4) Dans le cas d’amas d’age intermédiaire, on pouvait admettre que les étoiles
(peu nombreuses) parvenues a I’état de naine blanche n’avaient pas subi un nombre
suffisant de rencontres pour pouvoir « ajuster » (au sens d’une relaxation) leur mou-
vement a leur nouvelle masse. En revanche, pour des amas vieux, dans lesquels le
nombre de naines blanches peut étre considérable, cette hypotheése est plus discutable.
Etant donné les incertitudes qui subsistent quant a la distribution selon la masse de
ces naines blanches, il parait impossible de les introduire dans le calcul de I’évapo-
ration.

5) Il devient problématique de préserver sur plus de 5.10° ans la condition
M
_f- [—
cas ol une variation de v* est envisagée, le creux rectangulaire de potentiel étant
maintenu, la dépendance de 4 a I’égard de p est peu modifiée par rapport aux résultats
de Spitzer et Hirm (P. Bouvier [3]).

= cte qui assure la validité du taux d’évaporation utilisé ici. Toutefois, dans le

6) Des difficultés d’ordre matériel sont aussi a envisager: durée du calcul, accu-
mulation d’erreurs quand le nombre d’étapes devient trés grand, etc. La méthode
de calcul utilisée dans ce travail parait donc ne pas convenir sur de longues durées.

Il serait malgré tout utile d’avoir une idée approximative de ce que pourrait étre
la fonction initiale d’amas vieux, en rapport avec les résultats des chapitres précédents.
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Nous nous sommes déja référés (chap. III) au paramétre D, pente moyenne de la
partie faible de la fonction des luminosités. Nous essaierons, en utilisant ici & nouveau
ce paramétre, d’étre moins sommaires qu’auparavant. Pour cela nous allons tenter de
borner inférieurement et supérieurement la pente D a 1’époque ¢t = T = age de

I’amas, que I’on pourrait obtenir par un calcul rigoureux. Nous aurons, par définition,
(cf. équation (3.4)).

p - log ¥(M,,) —log ¥(M,)
M, — M,

avec M, < M,,.

Comme

N

dm
log ¥ (M,) =log n(m(M,)) + log (dM )

on a, a tout instant ¢,

D(1) =

dm dm
; I:log n(m,; t) —log n(m,,t) +log (dMu>I — log (de)zjl (6.1)
avec AM, = M, — M, <0.

Comme nous nous limitons a la partie faible de s (M,), donc a des étoiles qui ne
sont que faiblement influencées par I’évolution intrastellaire, nous pouvons admettre
pour ces étoiles I'invariance approximative dans le temps de la relation masse-lumi-
nosité de sorte qu’en dérivant (6.1), on a

an. 1 dn, dn,
dt  AM,\n,;dt n,dt
S S Y Gl Y Y G Y b
AM, Tr(0) \m(0) m m
\ ms my ;
d’aprés (2.2). Comme AM, < 0 et A (:- : E) - A (t; 6) > 0, D est une fonction
m m

décroissante du temps. m et £ varient dans le temps et on a & 2 époques distinctes
tett (t<t)

AM,

dt /, K

[ (512) _ o M) — A3 Y

(6.2)

dt Ju ui

B (d_D> _ o M) — AW 8

avec

. 1 - 1 my 2
~AM, Tx(0) (m(O))
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et en se rappelant que

m, m ;

— =y et — = .

m m
En se référant a la remarque finale du chapitre V, § 3, nous pouvons considérer m
comme fonction croissante du temps (conséquence de l'influence prédominante de
I’évaporation des étoiles légéres) et par conséquent u est une fonction monotone

décroissante de 1 a m donné.
( dD

Nous voulons montrer que | — _I) est une fonction croissante du temps.
dt

}-. - )\.

Posons A (u;, &) = 4; (i = 1, 2). Soit p = 2 pente de la sécante joignant les
My — K

points (4,, 1t;) et (4,, u,). Alors les équations (6.2) peuvent aussi s’écrire

1D — m, |
(_f_.)=c-p-”‘ o SRPUNE o B B
t

dt ui My L my |
' , (6.3)
dD 1 — T m, | f
-7 =C-p'.‘;,2_“=c-ﬂ_1__2 =P
dt J, My My L my | Hy
. dD : :
En considérant (6.2) et (6.3), on constate que — i est une fonction croissante du

temps au moins dans les trois cas suivants: 1) 4, — 4, est une fonction croissante du

temps; 2) 4, — 4, est une constante; 3) 4, — 4; décroit mais moins vite que g, — Y.

Dans ces trois cas, les sécantes s et s” joignant les points (4, u,) et (4,, p,) d’une

part, (A1, it;) et (4, ;) d’autre part se coupent « vers le haut » dans le graphique

A = A (u; &) (fig. 2). En d’autres termes p croit au cours du temps. Si 4, — 4, décroit
dD

comme [t — Wy, — —r est encore croissante (s et s’ sont alors parailéies, p est une
¢

constante). Enfin si 4, — 4, décroit plus vite que y; — u, (cas ou p décroit)

Ay — Ay = (g —p)" avec n > 1
alors

- e e, = Mg E (e Y

dD
et — —r est une fonction croissante pour autant que n < 2. n = 2 est un cas limite

pour lequel

dD m,\?
— — = |1 - —=] = constante.
dt m,

Il reste & montrer que cette restriction sur »n peut étre admise ici. Pour cela on peut
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recourir aux valeurs numériques de (4, — 4,) concernant les diverses masses entrant
en ligne de compte dans nos applications. Cependant cete manic¢re de procéder
implique une connaissance précise de la variation simultanée de m et de ¢ au cours
du temps, ce qui est loin d’étre le cas. Aussi, comme I’a suggéré P. Bouvier, considé-
rerons-nous ici la parabole de sommet (4,, u,) et passant par le point (4,, u,) dans le
réseau de courbes A (u, &) (fig. 11). On a la relation

}\.2 _}.1 — A([.ll _uz)z, A = Cte
Tant que la sécante 5" a une pente p’ > p” ou p” est la pente de la sécante passant par
. ’ dD .
(14, pty) et le point d’abscisse ¢, - (1, — uy) sur la parabole, — = estcroissante en 7.
[¢

Or ceci est vérifié si y; et u, (et par suite u; et u,) sont trés voisins car alors s’ tend
vers la tangente a la courbe A (i, &) en (A, i) et s” vers la tangente au sommet
(44, pty) de la parabole. Ainsi s’ et s” se coupent « vers le haut » et p’ > p”.

Fig. 11.

Cependant dans les applications, on envisage des masses bien distinctes (correspon-
dant par exemple aux magnitudes M, = 5 et M, = 9). Soient m, et m, deux telles
masses auxquelles correspondent y, et u, et par suite 1, et 4, a m et £ donnés. Divisons
Pintervalle (u,, u,) en segments de longueur aussi petite que 'on veut (y;,; — i;).
On peut alors écrire

n—1

Ay — 4y = Y (44, —4) ol A; correspond a
i=1

de sorte que
dD P ey — A
—C- ( +1 )_

2

- — (6.4)
dt i=1 ITh

Pour chacun des petits intervalles (u;, y;,,) on peut répéter le raisonnement tenu
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plus haut. On définira alors des paraboles P; de sommet (4;, u;) et passant par
(Ai41> i+ 1) de sorte que ’on vérifie les relations

Aivy — 4 = Ai(.ui+1“#i)2 , (i=1,2,..n 1)

dD
correspondant au cas limite ou — = est une constante puisque ainsi
t

dD A: (1, —1)? My —m;\?
___:C.Z z(.u:+21 ,ut) :C.ZAI_(__‘J'_‘___WE) = cte .
dt Hi my

Pour tout i(i =1,..n— 1), A;4; — A; + (i+1 — §)" avec n < 2 de sorte que

dD . : , ,
- qui s’exprime, selon (6.4), comme une somme de fonctions croissantes de ¢,

. ) D
est une fonction croissante de ¢, d’une valeur — (—) au temps ¢ = 0 avec m = my
0

dD
et & = &,, 2 une valeur — (7;) a I’époque actuelle T avec m = mpet & = & donc,
T

dD dD dD
—|l—)<—-—< —=|—}) pourO<t<T.
dt /, dt dt Jr

En intégrant de 0 4 7, on a

a2 T<D D, < e T
dat J, o T dt /;

ou, pour Dy 20et D; <0

D+dD T>D>D+dDT
0 dt J, r— T dt ;.

2. APPLICATION A M 67

Les inégalités précédentes peuvent étre interprétées de la maniere suivante:
une pente fictive | D} l, calculée a I’aide de valeurs constantes de im et & égales respec-
tivement & i, et &,, borne inférieurement la pente réelle | Dy | alors qu’une pente
| D% | calculée a I'aide de valeurs constantes de m et & égales respectivement a 7 et
Er borne | Dy | supérieurement. Nous allons estimer la borne inférieure de | Dy |
dans le cas d’une fonction initiale du type ¥, et ¥ (fonctions définies au chap. V,
§ 1, a) et la borne supérieure de | Dy | dans le cas d’une fonction initiale dutype @y gy,
pour un amas vieux tel que M 67. La méthode a déja été utilisée au cours du chapitre
III. On commence par estimer la valeur initiale du temps d’évaporation. D’apres
K. H. Schmidt [29], si la fonction initiale des luminosités est du type @, gy, 1a masse
initiale de M 67 est approximativement de 2000 M. Les masses totales données p a
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@y, ru, ¥ et Y, sont dans le rapport 8 : 7 : 6 comme on le vérifie facilement a I’aide
des données du tableau 5. Ainsi avec ¥ on aura 1750 M et avec y,, 1500 M.
La masse actuelle étant estimée a 800 M, et le rayon observé 7 a 2,2 pc, on en tire

. . .. M
les valeurs suivantes (en invoquant notamment la condition — = cte).
F

DyrHE ’ v Va
To 5.5 4.8 4.1
Eo 0.33 0.30 0.27
TR (0 2.7.108 1.8.108 1.1.108
top (0) 3.10° 2.4.109 1.7.10°

Les valeurs de D obtenues sur la base de i et Y, sont les suivantes

avec y D = — 0.11 en 2.4.10° ans
avec Yy, D = — 0.20 en 1.7.10° ans

Ces résultats sont, en valeur absolue, des bornes inférieures de D réel. Avec une fonc-

tion initiale du type @, zy, €n utilisant #11 et &1 calculables a partir des observations,
on obtient

D = — 0.11 en 3.10° ans

qui est une borne supérieure en valeur absolue de D réel. Tous ces résultats s’entendent
a 0.02 pres.
D’aprés Van den Bergh [41], on trouve pour la pente observée

DM 67 = = 0.06

Il résulte de la comparaison entre D, et les valeurs théoriques calculées que nous
devons apparemment rejeter i et i, comme fonction initiale de M 67. @, 4, par contre,
n’est pas a exclure & priori.

On peut enfin se demander au bout de combien de temps la pente D = — 0.06 =
Dy, ¢- pourrait étre obtenue par le calcul simplifié effectué ici. On obtient 1,5.10° ans.
Ainsi dans le cas ou @y est envisagée comme fonction initiale, un amas du type
M 67 dont la pente D observée = — 0.06 ne peut pas étre plus jeune que 1.5.10° ans.

CONCLUSIONS

Les résultats obtenus au cours des chapitres I1I, V et VI sur des cas particuliers
d’amas d’ages divers nous conduisent a rejeter I'universalité dans le temps de la partie
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faible de la fonction des luminosités d’amas ouverts appartenant au voisinage du
soleil et & admettre au contraire une décroissance relative du taux de formation des
étoiles faibles au cours du temps dans ces amas. Ce résultat s’oppose a celui de
M. Schmidt [30] relatif aux étoiles du champ général. Il faut toutefois remarquer
qu’en posant pour le taux de formation

dn (m)

+ [Masse de gaz]"*7'#™ pour m > m
dt ©

ou n et g sont des constantes, Schmidt introduit simplement une hypothése de travail
qui, a priori, n’est pas justifiée physiquement.

Il eiit été souhaitable de vérifier nos résultats sur d’autres exemples d’amas d’ages
divers. Malheureusement les renseignements fournis par 1’observation sont extré-
mement parcimonieux. L’amas des Hyades, bien observé, est si peu dense que son
évolution doit étre fortement influencée par le passage a proximité de nuages inter-
stellaires (Spitzer [33]). Aussi le calcul approximatif effectué¢ sur cet amas au cha-
pitre 1II est-il particuliérement sujet a caution. Nous avons écarté cet amas par la
suite.

Nos calculs ont été entrepris dans I’hypothese que les étoiles d’un amas sont
contemporaines. L’existence d’une dispersion des temps de création d’étoiles dans un
amas donné a été maintes fois envisagée. Dans un récent travail, Williams [43] donne
pour I’amas des Pléiades une dispersion inférieure a 107 ans alors que pour Praesepe
elle est inférieure a 3.10% ans. Pour M 67 elle est négligeable. Si nous admettons ces
valeurs, nous n’avons pratiquement pas a tenir compte d’une incidence de ce phéno-
mene sur nos calculs.

L’hypothése la plus contestable du présent travail est celle concernant la forme
du potentiel de "amas thécrique. Nos conclusions pcurraient étre éventuellement
affectées par I'emploi d’un taux d’évaporation propre a un modele d’amas plus
perfectionné. Bornons-nous toutefois a remarquer que dans un calcul, trés sommaire
il est vrai, basé sur le taux d’évaporation relatif au modéle anisotrope de Michie
[24, 1V], on trouve pour M 37, D = — 0.15 avec une fonction initiale @, et
— 0.28 avec ¥/, au bout de 10° ans. La pente observée pour cet amas est D = — 0.20,
mais I’age de M 17 est inférieur a 10° ans. Par conséquent ces résultats pourraient
étre en accord avec nos conclusions.

Observatoire de Genéve.
Février 1965.
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