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SUR LES
TRAJECTOIRES DES SATELLITES ARTIFICIELS
ET D’AUTRES VEHICULES SPATIAUX

PAR

Per 919408

Le présent texte n’est pas destiné a faire connaitre les résultats d’une recherche
scientifique originale. Il doit étre compris comme un « article », au sens out peut I’ entendre
I’auteur, journaliste scientifique. C’est-a-dire qu’au lieu d’étre destiné aux spécialistes
du domaine traité, il a été écrit en pensant a ceux qui lui sont étrangers, et en faisant
appel avant tout a leur intuition. Cette option tient au fait que la technique spatiale ne
tardera pas a toucher de trés nombreux secteurs de la recherche scientifique, et que les
spécialistes des disciplines autres que [I’astronomie n’en auront pas moins, sinon d par-
ticiper a des expériences spatiales, en tout cas a prendre connaissance de résultats
obtenus dans leur branche par ce moyen. Une juste idée — tout intuitive qu’elle soit —
des conditions dans lesquelles peuvent étre établis les laboratoires spatiaux leur sera
alors trés utile pour la compréhension de ces expériences .

Ajoutons que par souci d’élaborer un texte aussi durable que possible, nous avons
volontairement renoncé a tous les exemples que nous aurions pu tirer de I’actualité du
moment. Les expériences qui seront réussies au cours des vingt prochaines années ne
peuvent certes pas étre prévues ; mais ce dont on peut étre assuré, c’est qu’elles resteront
soumises aux antiques lois de la gravitation. En nous limitant a I’exposé de celles-ci
et de leurs conséquences, nous pensons avoir pris les précautions nécessaires pour éviter
d’étre trop rapidement démodés.

PLAN

1. Quelques précurseurs.
2. Notions de mécanique céleste: trajectoire d’un corps attiré par un autre.
3. Mécanique céleste au voisinage de la Terre.

1 N.D.L.R. Etant donné I’actualité et le développement croissant des recherches spatiales, le
Comité de la Société de Physique et d’Histoire Naturelle a retenu avec intérét cet article d’information
générale destiné aux lecteurs non spécialistes de sa revue.
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4. Choix et obtention d’une orbite pour un satellite artificiel.
5. Modification de I’orbite d’un satellite artificiel.
6. Résultats.

1. Quelques précurseurs

Avant d’examiner quelles sont les principales lois de la mécanique céleste, et
comment elles s’appliquent au cas particulier des satellites de la Terre, il n’est pas sans
intérét de rappeler trés brievement comment ces lois ont ¢été mises au point, La
recherche spatiale apparait en effet trop souvent comme une activité révolutionnaire
et ultra-moderne sous tous ses aspects, alors méme qu’elle trouve certains de ses fon-
dements dans des travaux quiremontent au XVII¢siecle. Nous nous bornerons naturel-
lement a un rappel extrémement succinct.

Képler a énoncé en 1609, dans son ouvrage « La nouvelle astronomie », les trois
lois qui portent son nom. Elles ne s’appliquaient a I'’époque qu’aux planétes du systéme
solaire, et elles peuvent €tre exprimées de la maniére suivante:

1. Les orbites de toutes les planétes sont des ellipses dont le Soleil occupe I'un des
foyers.

2. Le mouvement des planétes est tel qu’une ligne imaginaire joignant la planéte au
Soleil balaye des aires égales en des temps égaux.

3. Le carré de la période de révolution de chaque planéte est dans le méme rapport
que le cube de sa distance au Soleil.

Ce sont les trés nombreux relévements, effectués par Tycho Brahé, avec une trés
grande minutie, qui permirent & Képler d’énoncer ses lois. Ce détail est intéressant,
car il permet de constater que Képler est parvenu a ses conclusions sur la base d’un
travail expérimental, et non pas théorique.

Newton étendit, un demi-siécle plus tard, les lois de Képler a I’ensemble des
systemes planétaires. Cette fois, le travail fut théorique, beaucoup plus qu’expéri-
mental, ainsi qu’on va le voir.

Sil’on en croit la tradition, les recherches de Newton dans ce domaine commen-
cérent par une étude du mouvement de la Lune. L’illustre chercheur aurait échafaudé
un raisonnement a base d’un canon trés puissant sur une montagne tres haute,
raisonnement qui se trouve €tre maintenant — chose curieuse — un des plus utilisés
par les vulgarisateurs de la recherche spatiale ! En voici I'idée: lorsqu’un canon tire
un boulet horizontalement, depuis une colline élevée et aux pentes suffisamment
abruptes pour qu’on puisse observer la trajectoire du boulet, le mouvement de celui-ci
peut étre décomposé en deux: un mouvement horizontal a vitesse constante, a con-
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dition de ne pas tenir compte de ’atmosphére terrestre, et un mouvement accéléré
vertical, d@ a la force d’attraction de la Terre. La combinaison des deux mouvements
donne la trajectoire parabolique bien connue, qui se termine au point d’impact du
boulet sur le sol. Toujours en négligeant I’atmosphére terrestre — abstraction parfai-
tement autorisée lorsqu’on fait un raisonnement qui doit s’appliquer a la Lune —

HORI1ZON

Fig. 1.

on peut alors se dire que la Terre est ronde, et qu’elle s’efface 1égérement sous la tra-
Jectoire d’un boulet normal; I'effet de cet effacement sera d’autant plus grand que la
vitesse a 'origine du boulet, donc sa portée, sera elle aussi plus grande; a la limite, il
doit exister une vitesse telle que la Terre s’efface d’une distance toujours égale a la
« chute », de telle sorte que le boulet ne touche plus le sol.

Ce raisonnement, de méme que les conclusions qu’il permit & Newton de tirer, a
¢té publi€ par son auteur en 1687 dans son ouvrage « Philosophiae naturalis principia
mathematica ». C’était la premiére théorie d’un satellite artificiel moderne.

En chiffrant son raisonnement du canon, aprés avoir remplacé le boulet par la
Lune, Newton put calculer I’accélération que subit notre satellite naturel; une com-
paraison avec les résultats de Galilée, sur I’accélération a la surface de la Terre, lui-
permit de dégager empiriquement la loi qui I’a rendu célébre:

deux objets matériels s’attirent mutuellement avec une force proportionnelle au
produit de leurs masses et inversément proportionnelle au carré de la distance qui
les sépare.

La démonstration expérimentale de cette loi, en laboratoire, n’intervint qu’apreés la
mort de Newton et fut réalisée par Cavendish.

Par la suite, ayant créé pour son usage personnel un procédé de calcul infinité-
simal, Newton mit en accord sa loi avec les trois lois de Képler: il démontra que les
trois derniéres sont une conséquence de la premiére. C’est en cela qu’il accomplit une
ccuvre fondamentale puisque d’une part il démontra mathématiquement la justesse
«des lois de Képler, et que d’autre part il leur conféra la plus grande généralité.
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2. Notions de mécanique céleste:
trajectoire d’un corps attiré par un autre

La loi de Newton, que nous rappelions précédemment, s’exprime mathémati-
quement de la maniére suivante:
MM,

F=G —

F représente la force avec laquelle les deux corps s’attirent; M, et M, sont les masses
de ces corps; R est la distance qui les sépare; enfin G, appelé constante de gravitation
universelle, sert a faire la liaison entre les deux membres et a transformer la propor-
tionnalité en une égalité.

Lorsqu’on particularise le probleme, et que I’on envisage deux astres dont I'un
a une masse beaucoup plus importante que I’autre — ce qui permet de considérer le
plus gros des deux comme fixe — on montre par des relations mathématiques que le
« petit » astre a pour trajectoire une conique, dont le « gros » astre occupe un foyer.

Les coniques sont des courbes simples, que les Grecs connaissaient déja. Elles
tirent leur nom de famille du fait qu’elles peuvent toutes étre considérées comme
I'intersection d’un cdne de révolution avec un plan. Bien qu’elles puissent se définir
d’une maniére beaucoup plus élégante, mathématiquement parlant, il nous semble
utile d’insister quelque peu sur cette propriété, son caractére expérimental présentant
certains avantages pour la clarté des explications qui suivent.

Lorsque le cone est coupé par le plan perpendiculairement a son axe, I'inter-
section est un cercle. Lorsque la coupure se fait « en travers », peu au-dessous de la
précédente, comme le montre notre dessin, I'intersection est une ellipse; intuitivement,
on peut considérer cette courbe comme un cercle étalé, dont le centre s’est dédoublé;
la définition mathématique considérant le cercle comme «le licu géométrique des
points a égale distance d’un point appelé centre » subit alors un dédoublement
correspondant et devient « le lieu géométrique des points dont la somme des distances
a deux points donnés appelés foyers est constante »; c’est la propriété utilisée lorsqu’on
trace une ellipse au moyen d’un cordeau.

Lorsque le plan coupe le cOne parallelement a une génératrice, I'intersection est
une parabole; par les mémes considérations intuitives que précédemment, on peut
considérer la parabole comme une ellipse dont I’extrémité — et du méme coup le
centre géométrique — a €té rejetée a I'infini; on remarquera encore que cette courbe,
la premiere de la liste & n’étre pas fermée, n’a qu’une direction asymptotique, ce qui
est trés important dans le domaine spatial. Enfin, lorsque le plan coupe le cone encore
plus «verticalement » — si I'on se reporte a notre dessin — l’intersection est une
hyperbole, pourvue de deux asymptotes.
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La description qui précede permet de remarquer que le cercle et la parabole sont
des cas particuliers, correspondant a une seule orientation du plan; tandis que 'on
peut obtenir une large gamme d’ellipses par des intersections comprises entre le
cercle et la parabole, et une aussi large gamme d’hyperboles par des intersections
situées « au-dela » de la parabole. 1l en va de méme dans le domaine spatial, ol
I’on a souvent le choix, pour I'orbite d’un engin se trouvant dans certaines conditions,
entre un seul cercle, une infinité d’ellipses, une seule parabole, et une infinité d’hyper-
boles. Cela peut étre mis en paralléle avec le fait mathématique que le cercle et la
parabole — orientation mise a part — dépendent d’un parameétre de moins que
I’ellipse et 1’hyperbole.

Remarquons encore que lorsque les relations de Newton nous ameénent a parler
de coniques, ou quand la premiére loi de Képler parle d’ellipses, il s’agit chaque
fois de courbes planes. En d’autres termes, les trajectoires que nous considérons
se déroulent dans un plan. Ce fait a une grande importance, comme on le verra
par la suite.

Les ellipses et les hyperboles pouvant avoir des « formes » diverses, on décrit leur
aspect au moyen d’un paramétre appelé 'excentricité, parametre auquel on assigne,
par continuité, une valeur fixe dans le cas du cercle et de la parabole: I’excentricité
du cercle est zéro, celle de I’ellipse varie de zéro a un, celle de la parabole est un, et
celle de I’hyperbole varie de un a I’infini.

L’excentricité est importante, dans le domaine spatial, avant tout pour ses valeurs
allant de zéro a un; c’est pourquoi il nous semble intéressant d’en donner une défini-
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tion — elle non plus trés élégante mathématiquement — limitée a ces valeurs: I’excen-
tricité peut €tre considérée comme le quotient de la distance entre le centre géomé-
trique de ’ellipse et I'un des foyers, par le demi-grand-axe de I'ellipse. Notre dessin
représente deux ellipses, dont I’'une est assez proche d’un cercle et 'autre tres « allon-

Fig. 3.

gée ». On constate que dans la premiére le rapport permettant de calculer I’excentricité
est plus proche de zéro que dans le second. L’excentricité de la premiere ellipse est
donc relativement faible; on dit que cette ellipse est « peu excentrique » ou que son
excentricité est peu marquée. L’excentricité de la deuxiéme ellipse est beaucoup plus
forte, on dit alors que cette ellipse est « trés excentrique ».

Ce qui précéde permet de comprendre qu’on ait attribué au cercle une excentricité
nulle, puisque la confusion entre le centre géométrique et les deux foyers implique
une distance nulle entre le premier et le second. On comprend également qu’on ait
assigné a la parabole une excentricité égale a un, puisque la parabole est la forme
limite vers laquelle tendent les ellipses de plus en plus étalées, dont 1’excentricité
tend par ailleurs vers I'unité.

Le genre de la conique décrite par un engin céleste, considéré a un instant
donné, dépend de sa vitesse — en valeur absolue et en direction — de I’endroit ou il
se trouve, c’est-a-dire de la distance qui le sépare du « gros » astre, et enfin de la
masse de ce dernier. Pour des raisons que nous exposerons avec plus de détail par la
suite, nous nous limitons au cas ou la vitesse, au moment considéré, est perpendi-
culaire a la direction du point d’attraction. C’est le cas du canon de Newton, dont
I'image va nous permettre d’imaginer ce qui se passe.

Supposons notre canon a une certaine distance de I’astre attirant, braqué per-
pendiculairement a la direction de ce dernier. On congoit intuitivement que s’il tire
« tres fort », la trajectoire de son boulet, bien que courbée par I’attraction, s’en ira
vers I'infini; ce sera un arc d’hyperbole. Au contraire, dans le cas d’un tir a plus faible
vitesse, on obtiendra une orbite conforme au raisonnement attribué a Newton,
astre attirant « rattrapant » en quelque sorte le boulet et lui faisant adopter une
trajectoire elliptique.
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La géométrie permet de prévoir que la limite entre les deux genres de courbes
est une parabole. Il existe donc une vitesse-limite, dite vitesse parabolique, pour
laquelle I’engin échappe tout juste a I’astre attirant: la composante « horizontale »
de sa vitesse reste constante, et celle qui correspond a I’attraction diminue de plus en

HYPERBOLE \\\ N e .
LARGE VI ~
LN
/ o
L
HYPERBOLE \
MPOINS LARGE ELLIPSE \
PEUV EXCENTRIQUJE \
\
\
PARABOLE \

ELLIPSE PLUS
EXCENTRIQUE

Fig. 4.

plus; il s’ensuit une courbe ayant la « verticale » pour direction asymptotique. (Cette
vitesse-limite est proportionnelle a la racine carrée du quotient de la masse attirante
divisée par la distance qui la sépare du corps attir¢).

En recherche spatiale, c’est le plus souvent I’ellipse qui se présente, avec diverses
excentricités. La parabole n’intervient que pour le calcul théorique, car sa réalisation
absolue est impossible: il y aura toujours une décimale sur laquelle la vitesse de ’engin
sera en désaccord avec la vitesse théorique. En fait, dans les cas ou I'on cherche a
obtenir le départ irrémédiable d’un engin, c’est I'hyperbole qu’on choisit, en ajoutant
une certaine marge a la vitesse parabolique théorique. C’est le cas des sondes spatiales,
dont nous reparlerons a la fin de cet article.

Les ellipses elles-mémes, que peut parcourir le corps considéré ci-dessus, se
divisent théoriquement en deux familles. Correspondant aux vitesses immédiatement
inférieures a la vitesse parabolique, on trouve des ellipses trés excentriques, qui s’éloi-
gnent beaucoup du corps attirant. Si 'on descend dans la gamme des vitesses, les
ellipses sont de moins en moins excentriques, jusqu’a une seconde vitesse limite qui
correspond a une ellipse d’excentricité nulle, c’est-a-dire a un cercle. Cette seconde
vitesse limite est dans le rapport \/j avec la vitesse parabolique; on I'appelle la vitesse
circulaire. Au-dessous de cette vitesse, on trouve de nouveau des ellipses, et I’évo-
lution de I’excentricité se fait alors en sens contraire: les ellipses sont de plus en plus
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excentriques — la position relative du corps attirant, comme foyer, ayant été inver-
sée — jusqu’a ne plus se réduire qu’a une ligne droite, correspondant a une chute
simple, c’est-a-dire & une vitesse horizontale nulle au « point de départ ».

ELLIPSE
"DE 2¢ESPECE"

“7CERCLE

ELLIPSE
"DE 1€ ESPECE"

Fig. S.

L’orbite elliptique, par I'importance qu’elle revét dans la recherche spatiale —
puisque c’est la trajectoire de loin la plus pratiquée — mérite que I’on s’arréte a ses
particularités pour bien les fixer dans I’esprit du lecteur. Bien que nous en restions pour

PERIGEE APOGEE

Fig. 6.

Pinstant aux considérations de mécanique générale, on nous permettra de particu-
lariser les appellations, et de définir les deux points extrémes de ces ellipses comme si la
Terre se trouvait a I’'un des foyers. Nous appellerons apogée le point le plus éloigné
du foyer attirant, et périgée celui qui en est le plus proche. La deuxi¢me loi de
Képler, — celle qui touche aux aires balayées — nous enseigne que la vitesse linéaire,
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décrite par 'objet le long de sa trajectoire, doit étre variable: en effet, puisqu’il doit
balayer des aires égales en des temps égaux, il ira moins vite a I’'apogée qu’au périgée,
puisqu’a 'apogée une plus grande hauteur du « triangle » implique de plus petites
« bases » (nous raisonnons sur des triangles trés petits, mais le fait est intuitivement
compréhensible, méme sur les « triangles arrondis » de notre dessin).

D’autre part, si I'on imagine observer le corps céleste en mouvement depuis le
foyer qui I’attire, la diminution de la vitesse lorsque I’engin se dirige vers I’apogée
sera encore plus sensible: a la vitesse linéaire qui diminue s’ajoutera I'effet de I'¢loi-
gnement, de telle fagon que I’objet, par rapport au fond du ciel, paraitra diminuer de
vitesse beaucoup plus que dans la réalité.

3. Mécanique céleste au voisinage de la Terre

Les planc¢tes en général — aussi bien celles du systéme solaire que tous les corps
planétaires de 'univers — répondent aux lois que nous venons d’exposer. Leurs
orbites sont parfois légérement modifiées, par rapport aux coniques pures, par des
¢léments perturbateurs tels que par exemple la présence d’un troisi¢me corps, ou des
effets secondaires relevant de la relativité. Mais on peut dire qu’en premiére approxi-
mation, leurs orbites sont des coniques.

Il nen va pas de méme au voisinage de la Terre, ou quelques suppositions
simplificatrices que nous avons faites implicitement ci-dessus ne sont plus valables.
Les orbites, tout en conservant I’allure générale des coniques, subissent de beaucoup
plus grosses transformations que celles des planétes, transformations dont on est
alors obligé de tenir compte, méme dans les toutes premiéres approximations.

Les suppositions simplificatrices qui ne conviennent plus sont essentiellement les
deux suivantes. Tout d’abord, nous avons admis qu’une des deux masses ¢tait beau-
coup plus importante que 1’autre, ce qui nous a permis de ne pas considérer 'effet de
la petite sur la grosse, mais uniquement celui de la grosse sur la petite. Sil’on se reporte
au systéme solaire, on peut constater que cette maniére de procéder est parfaitement
admissible: la masse du Soleil équivaut a quelques 300.000 fois celle de la Terre.
D’autre part, nous avons admis que le plus petit corps évoluait a une trés grande
distance du plus gros, ce qui nous a permis de ramener ce dernier a un point; et par
voie de conséquence, nous a évité de considérer comment se répartissaient les masses
dans son intérieur. Pour en rester au systéme solaire, rappelons que la distance
moyenne du Soleil 4 la Terre est de quelque 150.000.000 de kilométres, le rayon
du Soleil étant d’environ 700.000 kilométres; le rapport du rayon de I’orbite terrestre
au rayon du Soleil est donc de I’ordre de 200. Pour Neptune, ce rapport passe a
6.000, puisque le diamétre de 1'orbite de cette planéte vaut environ 30 fois celui de
Iorbite terrestre.
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Citons enfin — bien que cela s’applique autant aux planétes qu’aux satellites
de la Terre — le fait que nous n’avons pas envisagé la présence, a une distance relati-
vement proche, d’un troisiéme corps dont l'attraction, si légere soit-elle, pouvait
perturber les orbites considérées.

La Lune, déja, ne se soumet pas a nos lois, dans I’état trés simple ot nous les
avons exposées. Au vu de ce qui précede, il est facile de comprendre pourquoi. Le
rapport de la masse de la Terre a celle de la Lune n’est que de I’ordre de 100 (cf 300.000
pour celle du Soleil par rapport a celle de la Terre); le rayon de l'orbite lunaire,
d’autre part, ne vaut que 60 fois le rayon de notre globe (contre 200 pour le cas
Terre-Soleil). On doit donc considérer, pour la Lune déja, I'influence du « petit »
astre sur le « gros », et la répartition des masses a 'intérieur de ce dernier. Enfin, le
Soleil n’est pas tres loin — si I’on considére I'importance de sa masse — et les pertur-
bations qu’il implique dans I'orbite de la Lune viennent encore en compliquer le
calcul.

On pourrait encore, a propos de notre satellite naturel, mentionner quelques
autres causes sccondaires de perturbation. Comme la Lune n’était citée ici qu’a titre
d’exemple, et que ces causes de perturbation se retrouvent dans la liste de celles qu’il
faut prendre en considération pour les satellites artificiels, nous arrétons ici cette
¢numération.

Les satellites artificiels donnent lieu a des calculs trés compliqués lorsqu’on
veut établir avec grande précision leurs trajectoires. Par rapport aux lois simples
qui s’appliquent aux planétes, voyons donc ce qui complique ou transforme les
calculs nécessaires. Nous nous limitons au cas des satellites artificiels de la Terre, les
autres planétes pouvant présenter des conditions différentes, le jour ou I’on déciderait
de placer autour de I'une d’elles quelque sonde spatiale qui en deviendrait pour
I'occasion le satellite artificiel.

e/oza:re CIRCULAIRE
D'UN SATELLITE
) NRTIFICIEL

Fig. 7a.

1. Ladimension de la Terre, relativement a celle des orbites des satellites artificiels,
est une des principales causes du tourment des calculateurs: le rayon de notre globe
représente rarement moins des 9/10 du rayon des orbites plus ou moins circulaires;
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et ce rapport est encore largement valable pour les orbites elliptiques, quand on
considere le passage des satellites artificiels a leur périgée. On congoit bien, méme
intuitivement, que le passage d’un rapport 1/200 (rayon du Soleil sur rayon de I’orbite
terrestre) au rapport 9/10 (rayon de la Terre sur rayon de 'orbite des satellites arti-

SOLEIL RAYON DE L'ORBITE TERREITRE TERRE

ORBITE DE LA TERRE f
e

Fig. 7b.

ficicls) représente un changement considérable dans I'optique du probleme. Méme
si les progrés de la technologie devaient amener les lanceurs de satellites, au cours
des prochaines années, a choisir systématiquement des orbites plus hautes, la question
resterait la méme: des engins ayant une orbite quasiment circulaire a 6.000 kilométres
d’altitude ne représenteraient jamais qu’un rapport 1/2, ce qui reste dans le méme
ordre de grandeur.

La conséquence de ce changement dans les données du probléme est concrétisée
par deux phénoménes principaux. Tout d’abord, la Terre ne peut pas étre ramenée a
un point dans les calculs, et il faut tenir compte de sa forme; nous en reparlerons
ci-dessous. D’autre part, la moitié des ellipses que nous avions envisagées dans le cas
général ne peut pas étre réalisée: en effet, toutes celles qui correspondent a une vitesse
inférieure a la vitesse circulaire doivent étre éliminées, parce qu’elles rencontrent la
Terre; ou alors — pour les quelques-unes qui pourraient tout juste se glisser entre la
surface terrestre et ’orbite circulaire — parce qu’elles passeraient dans des couches
trop denses de 'atmosphére. Et encore, tout cela n’est-il valable que pour un lance-
ment effectué perpendiculairement a la verticale, cas particulier auquel nous nous
sommes limité dans I’exposé de la théorie générale. Cette limitation s’explique main-
tenant par notre dessin, représentant les orbites possibles lors d’un lancement oblique:
comme on le voit, toutes les orbites passent par I'intérieur de la Terre; ce genre de
lancements est donc totalement impossible. Le fait que la Terre ne puisse pas étre
considérée comme un simple point limite donc dans une trés large mesure le choix
des orbites, dans la gamme des trajectoires théoriquement possibles.

2. La forme de la Terre est également une cause de soucis: non seulement notre
globe n’est pas sphérique, mais il ne peut méme pas étre considéré comme un ellip-
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soide de révolution, les deux hémisphéres n’étant pas symétriques. Comme de plus
les masses n'y sont pas répartics d’une maniére parfaitement homogene, ’application
des équations classiques ne peut se faire que moyennant un trés grand nombre de
correctifs. A tel point que certains chercheurs travaillent en sens contraire, et tentent
de déduire la forme et la composition de la Terre de 'orbite de certains satellites
artificiels.

Fig. 8.

3. L’atmosphére terrestre, elle aussi, complique sérieusement le probleme. Elle
implique, plus ou moins nettement selon I'altitude, des freinages qui ont a leur tour
pour conséquence de modifier les orbites. En effet, la forme de celles-ci dépend de la
vitesse qu’a le satellite a un certain moment; or si cette vitesse varie, il est évident que
I'orbite va également varier. Ces freinages peuvent étre mis en parallele avec les accélé-
rations supplémentaires, que ’on déclenche parfois pour augmenter les dimensions
de certaines orbites. Nous en reparlerons en traitant un peu plus loin le probléeme
général de la modification des orbites.

4. La Lune et le Soleil, par leur relative proximité, sont également la cause de
certaines perturbations. A I’effet de leurs masses il faut encore ajouter, en ce qui con-
cerne le Soleil, la pression de radiation de son rayonnement. Elle est particuli¢rement
sensible sur les satellites de grande dimension et de faible masse, comme les ballons
lancés dans le cadre d’expériences radio-électriques.

Les vitesses-limites, correspondant & une trajectoire parabolique et 4 une tra-
jectoire circulaire, dont nous avons parlé dans le cas général, sont également signi-
ficatives pour les satellites artificiels de la Terre. A la surface du globe, la vitesse
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circulaire théorique — sans tenir compte ni des montagnes, ni de I’'atmosphére — est
de 7,9 kilomeétres/seconde; la vitesse parabolique, dans les mémes conditions, est de
11,2 kilometres/seconde. A TDaltitude de 235 kilomeétres — ainsi choisie pour des
raisons de commodités techniques — les deux vitesses sont respectivement de 7,8 kilo-
metres/seconde et 11,0 kilométres/seconde.

4. Choix et obtention d’une orbite pour un satellite artificiel

Ce qui précede représente I’essentiel de ce qu’il faut savoir pour comprendre les
satellites artificiels de la Terre. La réalisation d’un tel satellite pose naturellement
bien d’autres probléemes, d’une complication sans commune mesure avec nos expli-
cations, mais il s’agit 1a des spécialités de la recherche spatiale elle-méme, dans les-
quelles nous n’avons pas le but d’entrer. Pour les mémes raisons, nous ne nous
arréterons pas aux détails techniques des lancements proprement dit; nous nous
contenterons d’en dégager une certaine philosophie, lorsque nous parlerons de la
modification des orbites.

Pour l'instant, ou nous voulons nous limiter & passer en revue les différentes
orbites que ’on peut obtenir depuis les différents points du globe, nous considérerons
un satellite qui a été amené a une altitude suffisante pour éviter le freinage atmo-
sphérique en premiére approximation, et qui est prét a prendre horizontalement, dans
la direction que 'on veut, la vitesse que ’on veut. Il n’est pas utile d’envisager des
altitudes variables car les injections sont effectuées le plus souvent assez bas, le cas
des orbites volontairement lointaines étant réglé ensuite par une « modification »
dont nous reparlerons. Le premier probléme est donc de savoir quelle vitesse il faut
lui donner — en direction et en valeur absolue — pour obtenir I'orbite que I'on
désire. Un second probléme, traité un peu plus loin, sera de choisir le point de
lancement.

La valeur de la vitesse avec laquelle le satellite entamera sa ronde autour de la
Terre — on parle parfois de vitesse d’injection — doit étre comprise entre la vitesse
circulaire et la vitesse parabolique. En effet, la vitesse parabolique est une limite
supérieure logique, puisque nous parlons de satellites: toute vitesse supérieure déter-
minerait une hyperbole, c’est-a-dire, comme nous I’avons vu, que ’engin partirait
le long de la direction asymptotique correspondante, et ne reviendrait jamais; il se
comporterait donc comme une sonde spatiale. Quant a la limite inférieure que
nous assignons a la vitesse, elle est également logique: tout engin doué d’une
vitesse plus faible passera plus prés de la Terre & I'opposé du point de lancement,
c’est-a-dire que le point de lancement jouera le rdle de I’'apogée. Dans ces conditions,
il serait beaucoup plus économique d’effectuer le lancement, avec une vitesse 1ége-
rement supérieure, a I'altitude du périgée; c’est en effet a cet endroit-1a de la trajec-
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toire qu’il est le plus économique de lancer un satellite artificiel: toutes proportions
gardées, il colite moins cher de le lancer plus vite et moins haut, que plus haut et avec
une vitesse moindre.

INJECTION :
oui
GAMME
POSSIBLE
NON

Fig. 9.

La valeur de la vitesse d’injection — étant toujours admis que le lancement est
fait perpendiculairement a la verticale — détermine donc le plus ou moins grand allon-
gement de I'orbite; elle agit, en d’autres termes, sur ’excentricité; c’est-a-dire qu’elle
commande a la forme de ellipse. Quant a sa « grandeur », elle est fixée par la distance
séparant le point d’injection (périgée) du centre de la Terre (foyer).

La direction de la vitesse détermine unc autre caractéristique de Iorbite:
'orientation du plan dans lequel celle-ci est décrite. Nous avons attiré I’attention sur
I'existence de ce plan lorsque nous parlions des coniques; on en voit maintenant
I'utilité. La relation entre plan et direction de la vitesse est facile & imaginer, si I’on
remarque qu’une fois lancé, le satellite est indépendant de la rotation de la Terre: son
orbite est décrite dans un plan fixe par rapport au fond étoilé (sous réserve, toujours,
des modifications qui pourraient intervenir du fait des perturbations). Il devient alors
évident que ce plan ne peut étre fixé que par la direction du vecteur-vitesse au moment
de I’injection, et par la position du centre de la Terre puisque le foyer d’une ellipse se
trouve dans son plan.

L’orbite d’un satellite artificiel est donc définie complétement si I'on connait la
dimension — sous forme par exemple de 'altitude de I’apogée et du périgée, d’ou
découle I’excentricité — et 'orientation de son plan par rapport a I'espace.

En ce qui concerne la seconde de ces données, on peut encore faire intervenir
une propriété qui en simplifie ’expression. Du fait que 1'axe de la Terre, dans les
ordres de grandeur qui nous intéressent, a une direction fixe par rapport a I’espace,
le plan de I’équateur a lui aussi une orientation fixe par rapport a celui-ci. Il peut donc
servir de référence, et I’on indique en fait 'orientation de I’orbite des satellites par la
simple donnée de I’angle que forment leur plan avec I’équateur terrestre.
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La latitude du point de lancement est un élément important pour choisir I’orien-
tation de I'orbite par rapport a I’équateur. Comme on le verra, toutes les orientations
ne sont pas possibles, et leur choix diminue & mesure que I’on se rapproche des pdles.

7

=

Fig. 10.

Pour fixer les idées, considérons un satellite sur le point d’étre injecté a la verticale
d’un lieu situé par 30 degrés de latitude N. Nous admettons que cette injection est
techniquement possible dans toutes les directions du plan horizontal. Et nous allons
chercher a voir ce qu’il advient de I'orientation de I'orbite, selon la direction dans
laquelle est effectuée I'injection.

Comme nous ne nous préoccupons que des orbites proprement dites, et non pas
du sens dans lequel elles sont décrites, il n’est pas nécessaire de considérer les
360 degrés représentant la constellation des directions possibles: un seul quadrant —
nous choisirons arbitrairement celui qui est compris entre la direction N et la direction
E — suffit a fournir toutes les orientations possibles. En effet, les injections effectuées
dans le quadrant S-W vont fournir des orbites absolument identiques, a ceci prés
qu’elles seront décrites a sens opposé; et les orbites provenant des deux quadrants
N-W et S-E, liés par le méme lien de parenté, seront les symétriques des premiéres
par rapport au plan passant par le méridien du lieu de lancement. Or il ne faut pas
oublier que la Terre tourne, et qu'une orbite observée a un certain moment par un
habitant de ’équateur comme allant du S-W au N-E apparaitrait douze heures plus
tard comme allant du N-W au S-E, ¢’est-a-dire comme la symétrique de la précédente
et pourtant méme orbite.
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Dans le quadrant N-E, considérons alors les deux directions d’injection extrémes,
a savoir le N d’une part et I'E d’autre part. La conséquence d’une direction quelconque
a 'intérieur de ce quadrant découlera logiquement des conclusions auxquelles nous
ameneront ces deux cas.

ORBITE OBTENVE PAR
INJECTION N-E Ov S-W

INJECTION
N-W ov §-E

Fig. 11.

L’injection vers le nord aura pour conséquence que notre engin deviendra un
satellite polaire: le plan de son orbite, qui doit contenir la direction de la vitesse et
passer par le centre de la Terre, fera un angle de 90 degrés avec I’équateur. Autrement
dit, 'axe de la Terre sera contenu dans le plan de 'orbite du satellite; et celui-ci
survolera les pdles a chacune de ses révolutions. Si I'on admet que la période de celles-
ci est de deux heures, I’engin survolera des « bandes » allant du pdle nord au pdéle sud
et vice versa, distantes de deux fuseaux-horaires. Du fait de la rotation de la Terre,
les bandes en question ne seront pas des lignes directes nord-sud — c’est-a-dire des
méridiens — mais des lignes sinueuses, rappelant une hélice.

L’injection vers I’est est faite le long du 30¢ parallele. Le vecteur vitesse est donc
tangeant a ce parallele. Comme le plan de I'orbite doit contenir ce vecteur et passer
par le centre de la Terre, on constate immédiatement que ce plan formera avec I’équa-
teur un angle de 30 degrés. Au contraire du précédent satellite, qui survolait toutes les
latitudes, celui-ci ne passera qu’au-dessus des régions comprises entre 30 degrés de
latitude N et S.

Les deux cas particuliers précédents permettent de constater qu’une injection
effectuée par 30 degrés de latitude N — le cas S étant évidemment pareil — peut déter-

miner, selon sa direction, des orbites formant avec ’équateur un angle compris entre
90 et 30 degrés.
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En d’autres termes, et pour reprendre le langage de la généralité, on peut dire que
depuis un point de latitude ¢, seules des orbites formant avec I’équateur un angle
égal ou supérieur a ¢ peuvent étre obtenues. C’est ainsi que les orbites équatoriales,
qui peuvent revétir une certaine importance dans plusieurs domaines de la recherche
spatiale, ne peuvent €tre réalisées que par une injection effectuée au-dessus de I’équa-
teur.
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Fig. 12.

Ajoutons que dans la pratique, deux quadrants sont beaucoup plus utilisés que
les deux autres: il s’agit de ceux de I’est, car les injections effectuées dans les directions
qu’ils comprennent bénéficient d’un appoint non négligeable, constitué par la vitesse
de rotation de la Terre sur elle-mé&me. Au contraire, une injection effectuée vers ’ouest
non seulement ne bénéficierait pas d’un tel appoint, mais encore obligerait 2 une
dépense d’énergie supplémentaire pour rattraper cette vitesse.

5. Modification de ’orbite d’un satellite artificiel

L’orbite d’une planéte est quasiment immuable; il n’en va pas de méme pour les
satellites artificiels, qui subissent presque tous I'influence de ’atmosphére terrestre
dans une proportion beaucoup plus considérable que pour les autres agents pertur-
bateurs auxquels ils sont soumis en tant que corps célestes en général. De plus, leurs
orbites sont modifiées volontairement, dans de nombreux cas, par les expérimenta-
teurs qui les ont lancés; certaines expériences exigent en effet de transformer 1’orbite

ARCHIVES DES SCIENCES. Vol. 18, fasc. 1, 1965. 2
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de I'engin, et cela de diverses maniéres dont nous allons parler. Mais qu’il s’agisse de
transformations naturelles (dues a 'atmosphére) ou volontairement provoquées, le
probléme est le méme; c’est pourquoi nous le traiterons dans son ensemble.

Les modifications dans le plan de P'orbite sont les plus simples, car elles nae
font appel qu’a une transformation de la valeur absolue de la vitesse. Imaginons un
satellite gravitant sur une orbite elliptique, et considérons-le au moment ou il passe a
son apogée, c’est-a-dire ou il est le plus éloigné de la Terre. Partant de ce cas parti-
culier, nous montrerons tout a I’heure comment on peut en étendre les conclusions
a un point quelconque de I’orbite.
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Fig. 13.

Notre satellite est doué d’une certaine vitesse, qui correspond a I'orbite qu’il est
en train de décrire. Si I’on ne donnait que cette vitesse, il serait relativement facile de
calculer I'orbite qu’elle va déterminer, puisque les équations de mécanique rationnelle
dues a Newton assignent une orbite ez une seule a un engin doué d’une certaine vitesse,
en un certain point, par rapport 4 un certain astre.

Dessinons donc I'orbite que parcourrait notre satellite si sa vitesse ne subissait
aucune modification, et appliquons le raisonnement du canon de Newton, dont nous
avons déja fait état précédemment. Sil’on diminue la vitesse du satellite, il « tombera »
plus prés de la Terre; sa trajectoire sera plus courbée; on en conclut qu’un freinage
correspond a un rapetissement de [’orbite. De méme, on imagine parfaitement qu’une
augmentation de vitesse va faire « tomber » notre engin plus loin que ce n’est le cas
avec son orbite normale; sa trajectoire sera plus tendue; on constate qu’une accélé-
ration détermine un agrandissement de [’orbite.

Toujours en restant dans le cas particulier d'un changement de vitesse a I'apogée,
on peut remarquer qu’il existe la encore deux vitesses-limites. Dans le cas d’une
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accélération du satellite, un dépassement de la vitesse parabolique au point considéré
impliquerait que I’engin ne revienne jamais a son point de départ. Et dans le cas d’un
freinage du satellite, il faudrait veiller & ne pas tomber en-dessous de la vitesse cor-
respondant a ’orbite tangente a la surface terrestre, faute de quoi I’appareil irait
s’écraser quelque part sur la Terre. Quant a la vitesse circulaire, elle n’intervient pas
ici, comme on peut s’en rendre compte en examinant le dessin.

Les conclusions auxquelles nous sommes parvenus ci-dessus, quant aux consé-
quences du freinage ou de I’accélération, sont applicables a tous les endroits de
I’orbite. On peut s’en persuader, crayon en main, en raisonnant sur la troisieme loi
de Képler («le carré des temps de révolution est proportionnel au cube du rayon
moyen des orbites »): on remarque alors qu’une diminution de la vitesse est liée a une
diminution correspondante du rayon moyen, et vice versa. Ce qui varie selon I’endroit
de la courbe ol I’on se trouve, entre le périgée et ’apogée, ce sont les vitesses-limites.
La vitesse parabolique prend des valeurs différentes, puisqu’elle est calculée pour des
distantes différentes du point d’attraction.

Les modifications brusques proviennent de l'intervention d’une fusée: en diri-
geant le jet vers I’'avant ou vers I’arriére on ajoute, respectivement on retranche, des
metres/seconde a la vitesse de I’engin. L’opération est purement arithmétique, puis-
qu’elle s’effectue sur un seul et méme axe. Ce genre de modification intervient dans
différents cas: par exemple pour corriger la trajectoire, soit pour la rendre plus cir-
culaire qu’elle n’est, soit pour ’amener plus prés d’une orbite désirée; ou encore pour
agrandir I’orbite et faire passer I’engin beaucoup plus loin de la Terre; ou enfin pour
transformer le satellite en sonde spatiale, en lui faisant dépasser la vitesse parabolique.

MODIFICATION

VERS LA LUNE
Fig. 14.

Remarquons a propos du dernier cas qu’il s’agit d’une méthode trés usitée pour
les engins lancés vers d’autres corps célestes comme la Lune ou les planétes. Ce démar-
rage en deux temps (orbite d’attente, puis trajectoire parabolique) permet d’obtenir
une plus grande précision dans la direction du tir,
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Quant a I’'agrandissement de la trajectoire, cité plus haut, il représente la méthode
la plus économique pour éloigner un engin de la Terre. Un théoricien nommé
Hohmann I'avait calculée bien avant qu’on lance les premiers satellites; c’est la raison
pour laquelle cette méthode porte son nom. Pour I'illustrer, considérons un astre
qui ressemblerait a la Terre en tous points, sauf qu’il n’aurait pas d’atmosphere.
Imaginons un satellite qui effectuerait du rase-motte, c’est-a-dire qui graviterait sur
une orbite circulaire a une altitude a peu pres nulle. Sa vitesse serait de 7,9 kilométres/
seconde. Accélérons alors ce satellite de 0,1 kilométre/seconde; lorsqu’il aura fait
la moitié du tour de la « Terre », il se trouvera a quelque trois cents kilométres d’alti-
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Fig. 15.

tude, ce qui représentera son apogée pour 'orbite du moment. Accélérons-le encore
une fois de 0,1 kilométre/scconde; sa trajectoire sera a nouveau circulaire, mais
restera cette fois a trois cents kilomeétres d’altitude. La dépense totale d’énergie, chiffrée
en vitesse, représente dans ce cas 8,1 kilometres/seconde, alors qu’un lancement
direct sur une orbite circulaire a trois cents kilomeétres d’altitude, nécessite une dépense
d’énergie correspondant a la vitesse théorique de 8,3 kilométres/seconde. Cet exemple,
rappelé ici parce qu’il s’agit d’'un de ceux cités par Hohmann, se transpose aisément
dans le cas d’un engin qu’on fait partir d’une orbite circulaire quelconque, pour en
atteindre une autre de plus grand diameétre; et d’'une maniére plus générale, au cas
de tous les engins dont on veut agrandir I’orbite.

Les modifications continues doivent étre divisées en deux cas principaux. Il
faut citer tout d’abord, parce qu’il est inévitable et touche presque tous les satellites,
le freinage di a ’atmosphére terrestre. Chaque kilométre parcouru par un satellite
dans I’atmosphére détermine un certain frottement, donc une perte d’énergie, qui se
répercute a son tour sous forme d’une perte de vitesse, dont découle enfin un rapetis-
sement de I'orbite. La trajectoire du satellite prend alors la forme d’une spirale,
décrite vers le centre de la Terre, et dont les branches sont relativement serrées dans
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les zones supérieures de I'atmosphére, pour s’écarter assez rapidement au-dessous
d’une certaine altitude.

Remarquons, toujours a cause de la troisiéme loi de Képler, que lorsqu’un satellite
est freiné, il semble aller plus vite aux observateurs terrestres: a un rayon plus court
correspond une vitesse plus élevée, d’autant plus sensible sur le fond étoilé qu’elle se
déroule plus prés de I'observateur.

-—— e .

Fig. 16.

L’atmospheére terrestre a été proposée par Hohmann comme un moyen de freiner
progressivement des engins a trés grandes orbites en vue de les récupérer. Tout comme
on pourrait concevoir d’ajouter a un satellite artificiel une fraction de kilométre-
seconde a chacun de ses passages au périgée, ce qui aurait pour conséquence d’éloigner
toujours plus son apogée, on pourrait utiliser I'atmosphere terrestre pour donner un
« coup de frein » & chaque passage au périgée, ce qui aurait pour effet de rapprocher
I’apogée, petit a petit, de la Terre.

Un autre genre de modification continue, qui ne tardera certainement pas a
étre réalisé, consisterait en 'emploi d’une fusée a faible jet mais de longue durée
(plusieurs heures au moins). La trajectoire en spirale se développerait alors vers
I’extérieur, ce qui pourrait permettre une étude continue du milieu entourant la Terre.

Les modifications du plan de Porbite coltent beaucoup plus cher en énergie, ce
qui explique qu’elles ont été réalisées plusieurs années aprés les modifications de
forme évoquées ci-dessus. Au contraire de ces derniéres, qui ne touchent qu’a ’arith-
méthique, elles sont du ressort du calcul vectoriel: au moment considéré pour la
transformation, le satellite est doué d’une certaine vitesse, dont le vecteur est situé dans
le plan de son orbite; pour le faire sortir de ce plan, il faut lui appliquer un autre
vecteur, et la résultante de deux déterminera I'orientation de la nouvelle orbite, le
centre de la Terre jouant le réle du troisieme point pour la définition du nouveau plan.

A cause du gaspillage d’énergie qu’il implique, ce genre de modification devrait
servir avant tout a corriger les trajectoires, plutdot qu’a les transformer fondamenta-
lement. Toutefois, il pourrait arriver que certains lanceurs de satellites doivent
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recourir a ce moyen pour placer un engin sur une orbite équatoriale, faute de pouvoir
le lancer, pour des raisons politiques ou techniques, depuis un point situé sur I’équa-
teur. Dans ce cas, en effet, le lancement devrait intervenir en un lieu de latitude non
nulle, et I'orbite primaire ferait avec I’équateur un angle au moins équivalent a la
latitude de ce lieu. Au moment ou I'orbite du satellite couperait I’équateur, on lui
ferait « prendre le virage » grice a une fusée de correction, pour atteindre son orbite
définitive longeant I’équateur.

EQUATEUR

Fig. 17.

Pour illustrer la dépense d’énergie que représenterait un tel processus, reprenons
’exemple du lancement par 30 degrés de latitude N. L’orbite primaire formera un
angle de 30 degrés avec I’équateur, si le lancement est fait exactement vers I’est. Une
représentation vectorielle montre que pour changer la direction de la vitesse de
30 degrés sans en changer la valeur absolue, il faut faire intervenir une correction équi-
valent 4 la moitié de cette vitesse. Si I’on admet, pour fixer les idées, le chiffre de
8 kilométres/seconde pour ce satellite, il faudrait développer 4 kilométres/seconde
supplémentaires pour lui conférer une orbite équatoriale, alors qu’un appoint de
3 kilomeétres/seconde seulement suffirait a lui faire atteindre la vitesse parabolique,
pour I’envoyer a tout jamais dans I’espace. La disproportion des dépenses, par rapport
au résultat, illustre clairement I’affirmation selon laquelle une modification du plan
de I’orbite d’un satellite est proportionnellement trés coiiteuse en énergie.

Les sondes spatiales, auxquelles nous avons fréquemment fait allusion a propos
de leur départ de la Terre, peuvent étre considérées exactement de la méme maniére
que les satellites artificiels en ce qui concerne les modiffcations de leurs orbites, une
fois qu’elles ont « échappé » a la Terre. 1l suffit de remplacer la Terre par le Soleil
dans les raisonnements, de faire abstraction des remarques concernant I’atmosphére
terrestre, et de considérer que I’orbite «a transformer » coincide avec celle de la Terre.

Par exemple, pour atteindre Mars avec une sonde lancée de la Terre, il faut tout
d’abord conférer a I’engin une vitesse supérieure a la vitesse parabolique, pour le
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détacher de notre globe; puis, considérant le probléeme autour du Soleil et non plus
de la Terre, veiller a ce que la vitesse de la sonde ait juste la valeur qu’il faut ajouter
a la vitesse de la Terre sur son orbite pour « allonger » celle-ci jusqu’a la rendre

MARS AV MoMENT
DE L'ARRIVEE

TERRE AUV MOMENT
DU LANCEMENT

Fig. 18.

t:angente a celle de Mars. La date du lancement sera choisie de telle maniére qu’au
moment ou la sonde touche I'orbite de Mars, la planéte se trouve au méme endroit.

6. Résultats

Les chiffres entre parenthéses renvoient aux numéros des chapitres

(1) ® Les équations qui régissent les mouvements planétaires remontent au
XVIIe siécle.

(2) @ La trajectoire d’un astre « petit » attiré par un astre « gros » est une
conique, dont ce dernier occupe un ou le foyer; la trajectoire se déroule donc
dans un plan.
® Le genre de cOnique décrite dépend, a un endroit donné et pour une
masse du « gros » astre donnée, de la vitesse du « petit » astre.

® [l existe deux vitesses-limites, pour le « petit » astre, correspondant 1'une
a une trajectoire circulaire, I'autre & une trajectoire parabolique.
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3)

4)

(5)

SUR LES TRAJECTOIRES DES SATELLITES ARTIFICIELS

® Dans le cas d’une orbite elliptique en particulier, il est intéressant de con-
sidérer la « loi des aires » due a Képler, régissant la vitesse linéaire de I’astre
sur sa trajectoire.

® Un certain nombre de suppositions simplificatrices doivent étre éliminées
dans le cas des satellites artificiels de la Terre; en effet:

— le rayon de la Terre n’est pas trés petit par rapport au rayon moyen des
orbites considérées;

— la forme de la Terre n’est pas réguliére, et les masses n’y sont pas réparties
de maniere homogene;

— l’atmosphére terrestre intervient comme un facteur de freinage continu;

— la Lune et le Soleil impliquent des perturbations non négligeables.

® La vitesse circulaire théorique, dans le cas des satellites artificiels de la
Terre, est de 7,9 km/sec a I’altitude nulle, etde 7,8 km/sec a 235 km d’altitude; la
vitesse parabolique est dans les mémes conditions de 11,2 km/sec, respecti-
vement de 11,0 km/sec.

® Les caractéristiques de 'orbite d’un satellite artificiel terrestre, injecté
horizontalement a une altitude raisonnable pour limiter ’effet de ’atmosphére,
dépendent:

— de la valeur absolue de la vitesse d’injection, qui détermine, en fonction de
I’altitude de I'injection, I’excentricité de 1’orbite;

— de l'orientation de la vitesse d’injection, qui détermine I’angle du plan
de 'orbite avec I’équateur terrestre;

— de la latitude du point d’injection, qui limite cet angle a une valeur comprise
entre celle de la latitude et 90°.

@® La forme de I'orbite d’un satellite artificiel terrestre est modifiée par un
changement apporté a la vitesse du satellite, soit freinage soit accélération;
une modification brusque détermine un changement de forme immédiat et
une nouvelle conique; une modification continue donne a la trajectoire
I’aspect d’une spirale.

® L’angle du plan de 'orbite avec I'équateur est modifié par 1’adjonction,
a un certain moment, d’une vitesse n’ayant pas la méme direction que celle
du satellite (addition vectorielle).

® La modification des orbites des sondes spatiales est possible dans les
mémes conditions; il suffit de considérer le Soleil au lieu de la Terre comme
centre attractif’; et de prendre pour orbite de départ celle de la Terre, la vitesse
a ajouter ou a déduire tenant compte du fait que la sonde doit d’abord échapper
a I’attraction terrestre.

Manuscrit regu le 6 février 1964.




	Sur les trajectoires des satellites artificiels et d'autres véhicules spatiaux

