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DISTRIBUTION DES VITESSES
DANS UN SYSTEME SPHERIQUE
QUASI PERMANENT

PAR

P. BOUVIER

Résumeé

Une méthode obtenue antérieurement [1] pour déterminer les distributions de vitesses dans un
systéme a symétrie sphérique est développée ici plus complétement sur le modéle polytropique
d’indice 5. La distribution isotrope des vitesses y est comparée a des distributions anisotropes par-
ticuliéres. On discute également (n° 7) des moyens de former la distribution des vitesses la plus
générale dans un systéme sphérique quasi permanent.

Abstract

A method devised formerly [1] to find out the velocity distributions within a spherical steady
system is carried out in this paper for the polytropic model of index 5. The isotropic velocity dis-
tribution is compared to certain anisotropic distributions of this same model. Possibility is also dis-
cuessed (No. 7) of constructing the most general velocity distribution in a spherical system.

1. INTRODUCTION

Dans un travail antérieur [1] noté I, nous avions considéré un systéme a symétrie
sphérique en état stationnaire caractérisé par une loi de densité p = p (r) ou r est la
distance au centre. Tant que I’on néglige I’effet des rencontres entre membres du
systéme, ce qui est admissible pour un systéme trés peu dense (non relaxé), chaque
membre décrit une orbite spécifiée par 4 intégrales premiéres du mouvement, a
savoir I’énergie totale E et les trois composantes du moment angulaire A.

La distribution la plus générale que I’on puisse former dans ces conditions est
donc une fonction définie positive de ces 4 intégrales. Cependant, si nous exigeons
de celle-ci d’étre invariante du groupe des rotations autour du centre, il suffit d’écrire

f=r(E, A% (1)

ol A est le module du moment angulaire.
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196 DISTRIBUTION DES VITESSES

fconserve la forme (1) a tout instant si le systéme, tout en évoluant lentement
sous l’action des rencontres, est en régime quasi permanent.

Nous avons donné en I une méthode permettant d’obtenir explicitement les
diverses distributions de type (1) relatives a la densité p (r) d’un systéme sphérique
stationnaire.

Ce probléme avait d’ailleurs déja été examiné par Lynden-Bell [4] d’une maniére
qui mettait en jeu des situations physiques tres artificielles. Lynden-Bell a également
souligné que la condition d’invariance de f vis-a-vis des rotations n’est pas nécessaire
pour que p ne dépende que de r; il est notamment possible de concevoir un systéme
sphérique en rotation [5].

Nous reviendrons sur cette question au n° 7.

La méthode exposée en I repose sur le développement de (1) en série entiére des
puissances de A2:

f(E, A) = fo (E) + f, (E) A* + f, (E) A* + ... (2)

Cette série converge certainement dans la région centrale du systéme, que seules
traversent les orbites de faible moment angulaire; en outre elle représente une dis-
tribution des vitesses en tout point du systéme ou elle possede une somme définie
positive. Comme exemples de telles représentations, signalons les deux cas

5 1
fu(B) = Ce™2* — (= 2kj2)"
n!

et
!

f(E) = C g (—k)'(—E)'" (C, k, constants)
n!(v—n)!

qui correspondent, le premier a la distribution ellipsoidale de Schwarzschild

f(E, AZ) = Ce—Zj'—’(E-!-kA?}
et le second au modéle
f(E, A*) = C(—E—kA?)"

3
dérivé du polytrope d’indice v+5 - [2].

Une correspondance biunivoque a été mise en évidence dans I entre le développe-
ment (2) et celui de la densité p (r) sous la forme

p (1) = po(U) + py (U) 1 + p, (U) r* + ... (3)

Ce développement (3) est purement formel et non univoque; a toute maniére d’ex-
primer p (r) par une série du type (3), ou le potential U = U (r) satisfait I’équation
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de Poisson, correspond une série (2) qui, dans la région ou sa somme est une fonc-
tion définie positive de E et de A fournira une distribution particuliére ou « sous-
modele » du systéme physique caractérisé par la loi de densité p = p (r).

2. POLYTROPE D’INDICE 5

L’application de la méthode a été tentée sur le polytrope d’indice 5 qui est le
seul modele connu de masse finie dont la densité et le potentiel se présentent sous
forme analytique simple. L’indice ¢ se rapportant aux valeurs centrales, nous avons

22\ % |

p(r) =pc(1+2) (4)
a
r2\ ¥

U®) = Uc(1+;5) (5)

ou a est le rayon de la sphére contenant, en projection, la moitié de la masse totale
M égale a

My — -2 (6)
30 G °

Ce modele a été invoqué autrefois par Schuster puis Plummer pour représenter
les amas globulaires, bien qu’il semble que la densité spatiale des régions périphériques
décroisse moins vite que d’aprés une loi en r~ >,

Cependant Kreiken a montré récemment [3] que le modele polytropique d’indice 5
représentait de fagon raisonnable un assez grand nombre de systémes sphériques,
notamment certains amas galactiques ainsi que le sous-systeme des amas globulaires,
ce dernier n’étant d’ailleurs pas autogravitant.

De (4) et (5) nous déduisons immédiatement

U 5
> = () ?

et obtenons ainsi la distribution isotrope bien connue

64p. (— E)'?

O (Ey = A
f () 7\/2R2(—Uc)5

(8)

ou les énergies sont coupées a une valeur finie E,, condition nécessaire pour un
modéle de masse totale finie; ici E, = 0.
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Pour trouver d’autres sous-modeéles de (4), il faut partir de 'identité

n n—2 n

r2\ 2 P\ 2 2 2\ 2
1+ ) =1+ 5 S
(r5) = 0n) R0 s

a laquelle satisfait (5) sous la forme
U n U n—2 ’,2 U n 9
v.)"\u) "\ &
On fera ici n = 5 pour €tre en accord avec (7) et a ’égalité
U 5 U 3 '.2 U 5
— ) Sf=—] —=f— 10
(0) (o)~ (0) a0

correspondra le « sous-modele un » ayant comme fonction de distribution

4p, (- Ey" A E
f‘”(E,Az)=\/§KZE_U))3(1+4GZ—UQ)- (11)

Notons que les trois parameétres a, p,, U, sont liés par la relation (6) et que la
fonction (11) n’est définie positive que s1 r < a (v. I).
En appliquant (9) pour n = 3, on peut transformer (10) en

U, U 2 /UN PR Uy

u,) U, a*\U, a* \ U,
En procédant de méme avec n = 1, on fait apparaitre les puissances 5, 3, 1, —1 du
rapport U/U., et ainsi de suite; cependant, les fonctions (fE, A%) correspondantes

sont toutes définies négatives. Nous ne retiendrons donc que (11) comme sous-
modele possible dans la région centrale r < a du polytrope.

3. PROPRIETES DU SOUS-MODELE UN.

En tout point distant de r du centre, nous pouvons repérer la vitesse v par son
module v et 'angle polaire 9 mesuré depuis la direction radiale r qui est un axe de
symétrie des vitesses. Désignant par g (r, v, {) la distribution des vitesses, ot { = cos 9,
nous aurons pour la densité de masse

1

p(r)y = 27[}3 fg@r,v,Dvidvd
5

1
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en rappelant que nous envisageons ici, comme dans I, un systéme d’objets ayant des
masses toutes égales a la masse unité.
Passant des variables v, { aux variables E, 4% nous écrirons

g(r,v,{)dvdl =f(E, A*) |4| dEdA?
ou le déterminant fonctionnel est égal a

0@, D 1
0 (E, A% 22 AL — A2

On retrouve bien, en tenant compte de (5), I’expression de la densité (4) du polytrope
aprés avoir intégré sur A2 de 0 a A%, = 2 r? (E—U), puis sur E de U a O. Par consé-
quent, certains membres du systéme, parmi I’ensemble décrit par la fonction (11)
en tout point r < a auront une énergie assez élevée pour que leur trajectoire ne soit
pas entierement comprise dans la sphére de rayon a.

Quoiqu’il en soit, le caractére négatif du terme en A4 de (11) implique une raré-
faction des moments angulaires élevés lorsqu’on passe du centre r = 0 a la fron-
tiere r = a.

Dans tout systeme a symétrie sphérique, les coordonnées de position se réduisent
a la distance au centre r; quant aux coordonnées de vitesse, nous désignerons par

P la composante radiale (parall¢le a r) et par
Q la composante tangentielle (perpendiculaire a r).

En I’absence de rencontres, toute fonction de distribution f'(r, P, Q) doit satisfaire
I’équation fondamentale deLiouville

2 ~ -~
p?IJr(“ﬂ%%)ﬁ_iQ_Efi:o. (12)
aor dr r

On vérifie que tel est le cas pour (11) aprés avoir noté
Lo 2
U=-V E=§(P+Q)—V A=rQ.

Calculons ensuite les vitesses quadratiques moyennes; nous rencontrerons des inté-
grales définies du type

0 2m—1 2n=1
—5 = 2m— D! (20— D!
Jmn = I(E_U) 2 (—-_E) 2 dE = TEVm+"( m ) ( h ) .
¢ (2m +2n)!!

ayant écrit n!! pour n(n—2) (n—4)...
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La moyenne de ’expression v* = 2 (E— U) sera donnée par

2

1 o 0 Am
—2-,[)7)2 = 4RJ(E—U)2dE jf(”(E, A?) |4 | dA?
U 0

soit, avec f*1) de la forme (11) et A2 =2 r? (E—U) = 2 r* (E+V),

Los_ 6o, 16750
5 ¢ VIR T3y

¥
d’ou, en posant - = &.
a

e — 52) (13)

valeur positive si & < 3.
La composante tangentielle a pour carré moyen

1 — 64p 32J;,
‘~2 _ o AZ — i J _ -~ . 2
PO" =1 3nvg( 2" gy
soit
— V., 8 ———
sz_f(___-z\/méz) (14)
12 \\/1 T 62 /
valeur positive tant que &2 < 3.
Enfin pour la composante radiale,
P -t g

donc, par soustraction de (14) d’avec (13)

— V.
P? = S 1+é) (15)
(\/1+<: i

valeur toujours positive.
Nous remarquerons qu’au centre ¢ = 0 du systéeme sont vérifiées les relations
d’isotropie

Sl R
MR

Wi N
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tandis qu’en un point quelconque

P? 34 1

0? 6-¢& 72

la direction passant par le centre est une ligne des vertex.
En multipliant les deux membres de (12) par PdAPQdQ et en intégrant sur les
deux variables on obtient I’équation du mouvement macroscopique radial

d — 1V — =
P —p -+ L @PP-0 = 0
dr dr r

et 'on peut s’assurer, aprés quelques calculs, que cette relation est effectivement
satisfaite par les expressions (5), (14), (15).

4. SOUS-MODELE ZERO — UN

En formant une combinaison linéaire des sous-modéles zéro et un:
fE, A*) = af @ (E) + (1—a) fV(E, A?)

ou « est un coefficient indéterminé inférieur a ’unité, on construit un « sous-modele
zéro-un » dont la fonction de distribution

, 4p, 16 (—E) . A2E
f(E,A)=\/E it U)3{7a U + (1 —a) (—E)" ’[1 + 4 U}} (16)
nm(— U, c

sera définie positive pour toute distance au centre supérieure a une valeur finie
arbitraire.
Si nous voulons en particulier que (16) soit définie positive pour tout 42 tel que

A* < AL = 2r* (E-U)

E r
nous devons exiger f(E, 4,,) > 0 ou, posant T = et - = &,
a

c

64
[8(1—a)52+7a];12—8(1-a) _n+1—a>0

J1+&

L’inégalité est vérifiée pour y = 0 et p = 1; elle le sera pour toute valeur inter-
médiaire si le discriminant du trindme en # est négatif, c’est-a-dire si ’'on a

(1—o) &* — (1+0,140) &2 — 1,140 < 0
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condition satisfaite tant que &2 reste inférieur a la racine positive ¢2 de 1’équation
du second degré en &2

(1 —a) &* — (140,140) &% — 1,142 = 0

En particulier ¢2 — oo quand « — 1 ce qui montre que seul le sous-modéle
zéro est valable jusqu’a linfini. Dés que « < 1, ¢4 a une valeur finie a laquelle
correspondent une distance

b =al,

My (&N
M 1 2

b3

Py = p (L +E)7E

une fraction de masse

et une densité

Le tableau I renferme quelques valeurs numériques a titre d’exemples

TABLEAU 1
@ &y Milpe | Pe/pe
i 0 1 0,35 0,177
oy, 1,275 0,49 0,089
1, 1,61 0,61 0,041
2/ 1,97 0,71 0,019
2y 2.26 0,77 0,011
1 o0 1 0
|

Comme il a été rappelé plus haut, le modele polytropique d’indice 5 représente
assez correctement un grand nombre de systémes sphériques [3]. De toute fagon,
I’ajustement d’un tel modele d’extension spatiale illimitée a un systeme réel nécessaire-
ment fini comporte un certain degré d’arbitraire; le systéme sera confiné a la région
centrale r < b du polytrope. Dans I’ignorance des conditions originelles de formation
de ce systéme nous n’avons aucune raison d’admettre que les vitesses y soient
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distribuées isotropiquement comme dans le sous-modéle zéro plutét que d’une
maniére conforme a I’anisotropie d’un sous-modéle zéro-un.

Soit, pour fixer les idées, un amas stellaire a symétrie sphérique et en état quasi
stationnaire. La distance apparente pour laquelle la densité projetée n’est plus que le
quart de celle qu’on mesure au centre nous fournit une premiére approximation de a;
admettons en outre que I’amas puisse €tre observé jusqu’a une distance apparente
d’environ 2a depuis le centre. Dans ces conditions le polytrope d’indice 5 qui est censé
représenter le systéme observé aura les 719 de sa masse totale M a l'intérieur de la
spheére de rayon 2a (tableau I); en d’autres termes la masse totale observée vaudra
0,71 M. Quant au résidu 0,29 M, il concerne des étoiles qui seraient au dela de r = 2a
et qui ne sont donc pas comptées comme étoiles de cet amas.

5. VITESSES RADIALES ET MOUVEMENTS PROPRES
Les observables éventuelles dont nous disposons sont les vitesses radiales R le

long de la ligne de vue et les vitesses tangentielles T (mouvements propres) dans le
référentiel li€é au centre de masse du systéme considéré.

Fig. 1

Si A, désigne la ligne de vue du centre C du systéme et A celle d’une étoile S
de ce systeme, A, et A sont paralléles pour un systéme dont le diamétre est tres
inférieur a la distance de ’observateur.

r= CS, 0 et ¢ étant les coordonnées polaires de S par rapport a C (fig. 1), il
est utile d’opérer ici en coordonnées cylindriques d’axe A, (ou A); la position de
I’étoile sera déterminée par

y =r sin 0, z =r cos 0, Q@

et sa vitesse particuliére v par R, T,
ou ¥ est I’angle des plans (r, A) et (v, A)
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En désignant par 3 'angle du vecteur v avec la droite CS et par p I’angle dece
méme vecteur avec la direction A, nous aurons pour le moment angulaire de S autour
de C

A = rv sin 3

ou
cos 3 =cos 0 cos f + sin O sin f§ cos Y
R :
= ———cos 0 + ——— sin 0 cos ¥
\/R2+T2 \/R2+T2
par suite

A* = R*y* + T? (22 +y? sin® ) + 2RTyz cos ¥

alors que d’autre part ’énergie totale s’écrit
L 2
E = 5 (R°+T*) -V

Adoptons donc le sous-modéle zéro-un défini par (16); cette distribution de-
viendra, en termes des coordonnées cylindriques.

4p o g .
g(y) z, R9 T,'J/)=W(2V—R —T)"+

pc(l _“)
n?v?

. 2 i, .
{(21/— R?> — T%: — 3 QV—=R* =T [y* R®* + (y* sin® y+z3) T? +

+ 2yzRT cos l//]}

elle nous permet d’évalue la variance des vitesses radiales au point y

— tzm Rm Tm 2n
c(WR*(y;2) =2 [ dz [ R*dR [ TdT[dyg(y,z, R, T, )
0 0

—Im 0

avec

T2 =2V —R?, R, =2v

Zm

o(y) =2[p(r)dz
0

-3
,,
P (T
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Si z,, = oo . la densité projetée est égale a

) 4 a’
c(y) ==p, ———-
37 (a® +y?)?
L’intégration sur  fait tomber le terme en cos ¢ ; les intégrations sur 7 et
R n’offrent pas de difficultés et se raménent toujours a des quadratures de type
connu
n/y

[ sin?x cos?x dx (p, q entiers).
0

Il reste finalement
+zpm
£z 2 5 2 6
— wp, M (1—-a)p 4y° V 2z°V
R*(y;a) = PO s e % Pre i | g 17
a(y) R*(y; ) 6V5'f Z+— s =242 (17)

€ —Zwm c

Un calcul analogue nous fournit

a(y) T (y;a) =

Vedz +
qps | Vo 213

+z 5 2
ap. " (1-a)p, J’ (V4 y:2ve o o4zt v
pour la variance des mouvements propres.
Quant 4 la limite supérieure des z, elle s’exprime en termes du rayon b de ’amas:

z = bZ_yZ

m

de sorte que

2 a>  3a* +2b* +y* ———
U(y) = s Pc 2 2,2 2 273/, \/b2 _yz
3 " (a*+y9) (a®+b%)"

L’intégration au second membre de (17) et (18) est élémentaire mais conduit a
des expressions compliquées que nous avons calculées pour les valeurs particuliéres
o = 2/3 donc b = 2a et y =0, a, 2a. Le tableau 2 et la fig. 2 montrent I’allure des
courbes

R? (y; 2/3) T? (v; 2/3)
comparées aux courbes du sous-modéle zéro (x = 1, b = o0) données par

Roin=av——2 13
U T e g 2
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TABLEAU 2

y [REG 2| REG: ) | T2 (%) | T*(y: 1)

0 0,18 0,15 0,33 0,30
a 0,11 0,10 0,23 0,20
2a 0,03 0,07 0,15 0,14

les carrés de vitesse sont en unités V.

T*(Y:%)
T*(Y: 1)
N EQ(Y" 1)

N~ RA(Y4)
0 a 2a !

Fig. 2

L’anisotropie affecte peu les mouvements propres mais se manifeste par une
décroissance accrue vers le bord r = 2a des vitesses radiales observées.

6. SOUS-MODELE DEUX

Nous nous sommes limités jusqu’ici & des distributions de la forme (2) ne compor-
tant que les deux premiers termes. Rien ne nous empéche de construire un « sous-
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modeéle n » ol sont retenues les puissances de A2 jusqua la n-iéme; il faut seulement
s’assurer toujours du caractére défini positif de la fonction ainsi obtenue. Le nombre
des possibilités s’accroit notablement avec n; cependant, parmi les diverses manieres
de former, en jouant sur des identités de la forme

(1+&H)™F = (1+&) P =282 (1+&H P — g (1+¢&3)78

un sous-modele 2 du polytrope d’indice 5, toutes semblent conduire a des fonctions
définies négatives hormis la suivante:

_ e 2 4
oS ) o

(—U)* |7 \U., u?

définie positive pour A4 assez petit.

Nous remarquons que (19), tout comme (11) décrit une distribution ou les
moments angulaires €levés se font plus rares lorsqu’on s’éloigne du centre. Ici encore,
f®) (E, A) sera définie positive a toute distance r pour laquelle on peut écrire

SP(E, A42) > 0

ce qui exige que le trinbme en 5 = E/U, (& = r/a)

4 4
GO

35 M+ 1+& 5

soit toujours négatif. Son discriminant doit donc étre négatif ainsi que le coefficient
de n2; tel est le cas tant que & < 0,6 mais le discriminant devient positif si ¢ = 0,7.

En conclusion, la distribution (19) est définie positive pour r < r* ou r* est
compris entre 0,6a et 0,7a.

7. DISTRIBUTIONS NON INVARIANTES PAR ROTATION

Dans tout systéeme pour lequel la distribution des vitesses est invariante par le
groupe des rotations autour du centre du systéme et se présente donc sous la forme
(1), n’importe quelle direction passant par le centre est un axe de symétrie pour les
vitesses. Par conséquent en tout point nous avons

f=f(r,v, 9

ou v est le module du vecteur v et 3 I’angle de v avec le rayon r.
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Cependant de fagon plus générale, f pourra dépendre encore de 1’azimut
compté dans le plan normal a r, sans que se trouve altérée la symétrie sphérique
si

[I§70 v, 8, ¥)v*dv sin 9d3dy = p (r) (20)

Décomposons f en série de Fourier selon y, ce qui est possible sous des conditions
suffisamment générales:

f(r,v,9,|j/)=a0+2(ak cos kY + b, sin ky) (21)

k=1

ou a, et les a,, b, sont fonctions de r, v, 3.
a, ne doit pas étre identiquement nul, car en substituant (21) dans (20) il reste

p(r) =[fay(r,v, 9 v*dv sin 9d9

D’autre part si b; = 0, le moment angulaire résultant autour d’une direction
4 quelconque est toujours nul. En effet, si § désigne I'une des étoiles du systeme
stellaire considéré, le moment angulaire de S autour de 4 est égal a

Ay = rv sin 0 sin & sin ¥

A

Fig. 3

ol le plan contenant A et r détermine ’origine des azimuts ¥ (fig. 3).
Le moment angulaire résultant autour de 4 vaudra donc

Ay =2n[[{{fr,v, 9, ) r*v® sin® 0 sin> & sin ydrdldvd9dy
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g ¢ .
L’intégration sur 6 conduit a 3 et celle sur ¥ nous redonne le coefficient de

Fourier b, (r, v, %) multiplié par =, de sorte que
oy =1 [[[b (r,v, 9 r*v® sin® 3drdvd9 (22)

Tant que b, n’est pas identiquement nul, le systéme posséde un moment angu-
laire résultant net donné par (22).

Si nous considérons a, et les a,, b, comme des distributions particuliéres du
systéme, invariantes par rotation et nécessairement définies positives, nous remar-
quons que le développement en série (21) nous fournit un moyen de construire la
fonction de distribution la plus générale d’un systéme sphérique a partir d’'un nombre
quelconque de distributions invariantes.

Si tous les a,, b, sont identiquement nuls a I’exception de a, et b, et si nous
choisissons en outre a, = b, afin d’avoir f > 0, (21) se réduit a

frov, 9, ¢9) =a,(r,v,3). (1+ sin )
soit

f(rav"gs '1[’) =a0(r,v, 9)+(5f(l',7),9, l/’)

of(r,v, 3, ¢y—n)= —0f(r,v,3,¥) =0f(r,v, 3, —¢)

ceci correspond a ’accroissement antisymétrique signalé par Lynden-Bell [4]; la
situation est celle qui résulterait du changement de sens de parcours de certaines
orbites. (systéeme « démonisé »).

Si chaque orbite est caractérisée par le (pseudo-) vecteur A de son moment
angulaire, normal au plan orbital, I’intervention d’un « démon » consiste a changer
le sens de certains des A; la résultante de ces vecteurs, auparavant nulle cessera de le
rester en général et sa direction définira un axe privilégié A.

Désignons par /, le moment d’inertie du systéeme par rapport a 4 et envisageons
un référentiel en rotation uniforme de vitesse angulaire @ autour de I’axe 4; si w est
choisi tel que /,w soit précisément égal & o/, calculé en (22), on aura compensé le
moment angulaire résultant ./, par une rotation des axes et dans ce sens, on pourra
dire qu’un systéme « démonisé » est comparable a un systéme en rotation.

Ce travail, a la mise au point duquel a collaboré M. L. Martinet, fait partie d’un
programme d’investigations subventionné par le Fonds National de la Recherche
Scientifique.

Observatoire de Genéve,
juin 1963.
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