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DISTRIBUTION DES VITESSES

DANS UN SYSTEME SPHERIQUE
QUASI PERMANENT

PAR

P. BOUVIER

Resume

Une methode obtenue anterieurement [1] pour determiner Ies distributions de vitesses dans un
Systeme ä symetrie spherique est developpee ici plus completement sur le modele polytropique
d'indice 5. La distribution isotrope des vitesses y est comparee a des distributions anisotropes par-
ticulieres. On discute egalement (n° 7) des moyens de formei la distribution des vitesses la plus
generale dans un Systeme spherique quasi permanent.

Abstract

A method devised formerly [1] to find out the velocity distributions within a spherical steady
system is carried out in this paper for the polytropic model of index 5. The isotropic velocity
distribution is compared to certain anisotropic distributions of this same model. Possibility is also dis-
cuessed (No 7) of constructing the most general velocity distribution in a spherical system.

1. Introduction

Dans un travail anterieur [1] note I, nous avions considere un Systeme ä symetrie
spherique en etat stationnaire caracterise par une loi de densite p — p (r) oü r est la

distance au centre. Tant que Ton neglige l'effet des rencontres entre membres du

Systeme, ce qui est admissible pour un Systeme tres peu dense (non relaxe), chaque
membre decrit une orbite specifiee par 4 integrales premieres du mouvement, ä

savoir l'energie totale E et les trois composantes du moment angulaire A.
La distribution la plus generale que Ton puisse former dans ces conditions est

done une fonction definie positive de ces 4 integrales. Cependant, si nous exigeons
de celle-ci d'etre invariante du groupe des rotations autour du centre, il suffit d'ecrire

f f(E,A2) (1)

oü A est le module du moment angulaire.
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196 DISTRIBUTION DES VITESSES

/conserve la forme (1) ä tout instant si le systeme, tout en evoluant lentement

sous Taction des rencontres, est en regime quasi permanent.
Nous avons donne en I une methode permettant d'obtenir explicitement les

diverses distributions de type (1) relatives ä la densite p (r) d'un systeme spherique
stationnaire.

Ce probleme avait d'ailleurs dejä ete examine par Lynden-Bell [4] d'une maniere

qui mettait en jeu des situations physiques tres artificielles. Lynden-Bell a egalement

souligne que la condition d'invariance de /vis-ä-vis des rotations n'est pas necessaire

pour que p ne depende que de r; il est notamment possible de concevoir un systeme

spherique en rotation [5].

Nous reviendrons sur cette question au n° 7.

La methode exposee en I repose sur le developpement de (1) en serie entiere des

puissances de A2:

f (£ A2) f0 (£) +/t (£) A2 +/2 (£) A4 + (2)

Cette serie converge certainement dans la region centrale du systeme, que seules

traversent les orbites de faible moment angulaire; en outre el le represente une
distribution des vitesses en tout point du systeme oü eile possede une somme definie

positive. Comme exemples de telles representations, signalons les deux cas

/„(£) Ce~2J~ — — 2kj2)n
n!

et

fn(E) C —- (-£)"(-£)""" (C, k, constants)n! (v — n)!

qui correspondent, le premier ä la distribution ellipsoidale de Schwarzschild

/(£, A2) Ce~2Ji(E+kA2)

et le second au modele

/(£, A2) C(-E-kA2y

3
derive du polytrope d'indice v + - • [2].

Une correspondance biunivoque a ete mise en evidence dans I entre le developpement

(2) et celui de la densite p (r) sous la forme

p (r) p0 (£/) + Pl (U) r2 + p2 (U) r* + (3)

Ce developpement (3) est purement formel et non univoque; ä toute maniere d'ex-

primer p (r) par une serie du type (3), oü le potential U — U (r) satisfait Tequation
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de Poisson, correspond une serie (2) qui, dans la region oü sa somme est une fonc-
tion definie positive de E et de A fournira une distribution particuliere ou « sous-
modele » du Systeme physique caracterise par la loi de densite p p (r).

2. Polytrope d'indice 5

L'application de la methode a ete tentee sur le polytrope d'indice 5 qui est le

seul modele connu de masse finie dont la densite et le potentiel se presentent sous

forme analytique simple. L'indice c se rapportant aux valeurs centrales, nous avons

P(r) Pc(1 + ^2)

U (r) Uc 1 + (5)

011 a est le rayon de la sphere contenant, en projection, la moitie de la masse totale
M egale ä

An a
M —a3pc -~UC. (6)

j o

Ce modele a ete invoque autrefois par Schuster puis Plummer pour representer
les amas globulaires, bien qu'il semble que la densite spatiale des regions peripheriques
decroisse moins vite que d'apres une loi en r~5.

Cependant Kreiken a montre recemment [3] que le modele polytropique d'indice 5

representait de fa?on raisonnable un assez grand nombre de systemes spheriques,
notamment certains amas galactiques ainsi que le sous-systeme des amas globulaires,
ce dernier n'etant d'ailleurs pas autogravitant.

De (4) et (5) nous deduisons immediatement

et obtenons ainsi la distribution isotrope bien connue

64pc (-£)''»/,,<£) 7717.(^7 (8)

oü les energies sont coupees ä une valeur finie Ee, condition necessaire pour un
modele de masse totale finie; ici Ee 0.



198 DISTRIBUTION DES VITESSES

Pour trouver d'autres sous-modeles de (4), il faut partir de l'identite

n n - 2 n

r2\ 2 / r2\ 2 r2 r2
l + 72) =y + 72) ~'?y + 72

ä laquelle satisfait (5) sous la forme

uy /u^"~2
UJ \UJ a2 \ UCJ

On fera ici n 5 pour etre en accord avec (7) et ä l'egalite

U V _ / U V t2 / L/x 5

TjJ VUJ \U~

(9)

(10)

correspondra le « sous-modele un » ayant comme fonction de distribution

4pc {~Efh A2 E\
f(i) (E, A2) \ '

i 1 +4 —=—= 1 - (11)
y2n2(~Vc)3\ a U2J

Notons que les trois parametres a, pc, Uc sont lies par la relation (6) et que la
fonction (11) n'est definie positive que si r < a (v. I).

En appliquant (9) pour n 3, on peut transformer (10) en

U V _
U }'2 (U V r2 (u\5

WJ Uc~ a2 [uj ~~
a2 \uj '

En procedant de meme avec n 1, on fait apparaitre les puissances 5, 3, 1, —1 du

rapport UjVc et ainsi de suite; cependant, les fonctions (/£, A2) correspondantes
sont toutes definies negatives. Nous ne retiendrons done que (11) comme sous-
modele possible dans la region centrale r < a du polytrope.

3. Proprietes du sous-modele UN.

En tout point distant de r du centre, nous pouvons reperer la vitesse v par son
module v et Tangle polaire 9 mesure depuis la direction radiale r qui est un axe de

symetrie des vitesses. Designant par g (r, v, Q la distribution des vitesses, oü f cos ,9,

nous aurons pour la densite de masse

oc + 1

p{r) In \ J g (r ,v v2 dv d£
0 - 1
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en rappelant que nous envisageons ici, comme dans I, un Systeme d'objets ayant des

masses toutes egales ä la masse unite.
Passant des variables v, aux variables E, A2 nous ecrirons

g (r,v,OdvdZ f (E A2) \ A \ dEdA2

oü le determinant fonctionnel est egal ä

d(v,0 1

A
d (E A2) 2rv2 JA2m - A2

On retrouve bien, en tenant compte de (5), l'expression de la densite (4) du polytrope
apres avoir integre sur A2 de 0 ä A2m 2 r2 (E—U), puis sur E de U ä O. Par
consequent, certains membres du Systeme, parmi l'ensemble decrit par la fonction (11)
en tout point r < a auront une energie assez elevee pour que leur trajectoire ne soit

pas entierement comprise dans la sphere de rayon a.

Quoiqu'il en soit, le caractere negatif du terme en A de (11) implique une
rarefaction des moments angulaires eleves lorsqu'on passe du centre r 0 ä la fron-
tiere r a.

Dans tout Systeme ä symetrie spherique, les coordonnees de position se reduisent
ä la distance au centre r; quant aux coordonnees de vitesse, nous designerons par

P la composante radiale (parallele ä r) et par
Q la composante tangentielle (perpendiculaire ä r).

En ['absence de rencontres, toute fonction de distribution /(r, P, Q) doit satisfaire

l'equation fondamentale deLiouville

8f fdV Q2\ df PQ df
P— +(— + — ]— — — 0. (12)

dr \dr r J dP r dQ

On verifie que tel est le cas pour (11) apres avoir note

1

U — V E ~(P2 + Ö - V A rQ.

Calculons ensuite les vitesses quadratiques moyennes; nous rencontrerons des

integrales definies du type

0 2m-1 2n — 1

Jmn J (£-17) 2 (—E) 2 dE nV
(2m- 1)!! (2n - 1)!!

u (2m + 2«)!!

ayant ecrit n!! pour n (n —2) (n —4).
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La moyenne de Texpression v2 2 (E— fJ) sera donnee par

2

j 0 Am

pv2 — 4u J (E-U)2 dE | /(1) (£ A2)\A \ dA2
2 u o

soit, avec f(1' de la forme (11) et A,„ 2 r2 (£- U) 2 r2 (E-\-V),

1
-2 _

16 pc/ 16^33 r2

2PS _ rfM " 3 V2 a2

r
d'oü, en posant - £

a

-, K / 10 / r \

»'=li(7TT?-Vl+{) 031

valeur positive si £, < 3.

La composante tangentielle a pour carre moyen

r\2
^

~Ä2 64ßc (j 32 J33
Pß P A J22 0 <T

r 3nV2 \ 2 SV;
soit

VrQ2=-El-==- 2jl+e) (14)
12 wi+z2

valeur positive tant que £2 < 3.

Enfin pour la composante radiale,

Y =v2 - Q2

done, par soustraction de (14) d'avec (13)

Y L (__JL= + VIT?) (15)
12yi+(2 /

valeur toujours positive.
Nous remarquerons qu'au centre £ 0 du Systeme sont verifiees les relations

d'isotropie

Y
_

1 Q2
_

2

Y 3' V 3
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tandis qu'en un point quelconque

P2 3 + £2 1

ß1 " 6 - £2
>

2

la direction passant par le centre est une ligne des vertex.
En multipliant les deux membres de (12) par PdPQdQ et en integrant sur les

deux variables on obtient l'equation du mouvement macroscopique radial

d —r d V p —r- —-
~{pP2) -p — + -(2P2-ß2) 0
dr dr r

et l'on peut s'assurer, apres quelques calculs, que cette relation est effectivement
satisfaite par les expressions (5), (14), (15).

4. SOUS-MODELE 7ERO UN

En formant une combinaison lineaire des sous-modeles zero et un:

/(£, A2) a/(0) (£) + (l-a)/(1)(£, A2)

oü a est un coefficient indetermine inferieur ä l'unite, on construit un « sous-modele

zero-un » dont la fonction de distribution

f(E A2)
4Pc

J2n2 (-Uc)2\l fU
16 (— E),/ä

+ (!-«)(-£)"-' 1 + 4-
A2 E'

a2U2
(16)

sera definie positive pour toute distance au centre superieure ä une valeur finie
arbitraire.

Si nous voulons en particulier que (16) soit definie positive pour tout A2 tel que

A2 < A2m 2r2 (£ - U)

E r
nous devons exiger/(£, A,„) > 0 ou, posant — r/ et - £

Ur a

64 "

(1 -a) e + — 0C r\2 — 8 (1 — a)
Jl+Z:

rj + 1 — a > 0.

L'inegalite est verifiee pour r] 0 et ly 1; elle le sera pour toute valeur inter-
mediaire si le discriminant du trinöme en rj est negatif, c'est-ä-dire si Ton a

(1 -a) £4 - (1 + 0,14a) £2 - 1,14a < 0
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condition satisfaite tant que reste inferieur ä la racine positive £+ de l'equation
du second degre en £2

(1 -a) - (1 + 0,14a) £2 - 1,14a 0

En particular £ + -»• oo quand at -» 1 ce qui montre que seul le sous-modele

zero est valable jusqu'ä Einfini. Des que a < 1, £+ a une valeur finie ä laquelle
correspondent une distance

b a£ +

une fraction de masse

Mj. / &
M \l+f2J

et une densite

P+ pc(\+Zl)~-K

Le tableau I renferme quelques valeurs numeriques ä titre d'exemples

Tableau 1

3t m+!m p*!pc

0 1 0,35 0,177
1.

4 1,275 0,49 0,089
1,

2 1,61 0,61 0,041
2// 3 1,97 0,71 0,019
3/

4 2.26 0,77 0,011

co 1 0

Comme il a ete rappele plus haut, le modele polytropique d'indice 5 represente
assez correctement un grand nombre de systemes spheriques [3], De toute faqon,

l'ajustement d'un tel modele d'extension spatiale illimitee ä un Systeme reel necessaire-

ment fini comporte un certain degre d'arbitraire; le Systeme sera confine ä la region
centrale r < b du polytrope. Dans l'ignorance des conditions originelles de formation
de ce Systeme nous n'avons aucune raison d'admettre que les vitesses y soient
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distributes isotropiquement comme dans le sous-modele zero plutöt que d'une
maniere conforme ä l'anisotropie d'un sous-modele zero-un.

Soit, pour fixer les idees, un amas Stellaire ä symetrie spherique et en etat quasi
stationnaire. La distance apparente pour laquelle la densite projetee n'est plus que le

quart de celle qu'on mesure au centre nous fournit une premiere approximation de a;
admettons en outre que l'amas puisse etre observe jusqu'ä une distance apparente
d'environ 2a depuis le centre. Dans ces conditions le polytrope d'indice 5 qui est cense

representer le Systeme observe aura les 71 % de sa masse totale M ä l'interieur de la
sphere de rayon 2a (tableau I); en d'autres termes la masse totale observee vaudra
0,71 M. Quant au residu 0,29 M, il concerne des etoiles qui seraient au delä de r 2a

et qui ne sont done pas comptees comme etoiles de cet amas.

5. VlTESSES RADIALES ET MOUVEMENTS PROPRES

Les observables eventuelles dont nous disposons sont les vitesses radiales R le

long de la ligne de vue et les vitesses tangentielles T (mouvements propres) dans le

referentiel lie au centre de masse du Systeme considere.

Fig. I

Si A0 designe la ligne de vue du centre C du Systeme et A celle d'une etoile S"

de ce Systeme, A0 et zl sont paralleles pour un Systeme dont le diametre est tres
inferieur ä la distance de l'observateur.

r CS, 9 et cp etant les coordonnees polaires de S par rapport ä C (fig. 1), il
est utile d'operer ici en coordonnees cylindriques d'axe A0 (ou /I); la position de

l'etoile sera determinee par

y r sin 0, z r cos 0, <p

et sa vitesse particuliere v par R, T, tjj

oil \jj est Tangle des plans (r, zl) et (v, A)
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En designant par 9 l'angle du vecteur v avec la droite CS et par ß Tangle dece

meme vecteur avec la direction A, nous aurons pour le moment angulaire de S autour
de C

ou

A rv sin 9

cos 9 cos 0 cos ß + sin 0 sin ß cos iß

R T
— cos 0 + - sin 0 cos iß

JR2 + T2 JR2 + T2

par suite

A2 R2 y2 + T2(z2+y2 sin2 iß) + IRTyz cos iß

alors que d'autre part l'energie totale s'ecrit

1

E - (R2 + T2) - V

Adoptons done le sous-modele zero-un defini par (16); cette distribution de-

viendra, en termes des coordonnees cylindriques.

4p, a p. (1 — a)
g(y, z, R, T, \ß) {2V-R2 - T2y - +

2
(2v- R2 - r2f -

—2-jTi (2V~ r2 - T2?''- [y2 R2 + (y2 sin2 ,A+22) T2 +

+ 2yzRT cos i//]

eile nous permet d'evalue la variance des vitesses radiales au point y

: m R m ' m

a (y) R2 {y ; a) 2 J dz \ R2 dR J TdT J diß g (y z R T, iß)

-zm 0 00
avec

T2, =2V- R2, R2m 2V

G (y) 2 J p(r) <lz
0

r2 y2 + z2 p (r) pc 1 + ~2
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Si Z„, -> oo la densite projetee est egale ä

<7 00 r A
3 rc(a2+y2)2

L'integration sur ijj fait tomber le terme en cos tjt ; les integrations sur T et
R n'offrent pas de difficultes et se ramenent toujours ä des quadratures de type
connu

*!>

J sinpx cospx dx (p, q entiers).
o

11 reste finalement

—r ctpc
+

z,m (1 — a) p, f a 4y2 V5 2z1 V6\
er (y) R (y; x) =—f f V dz H ;— [V 5—2 >—il^2 O?)' 6V5c_im AVl J V 3a V2 2a V '

Un calcul analogue nous fournit

t \ T2 t \ ^Pc f r/6 J ^ Pc
ff(y)T (y ,x) f V dz H ;—2V 2V

v2 v5 4z V5
5 -? Wz (18)

a2 K2 3a L2

pour la variance des mouvements propres.
Quant ä la limite superieure des z, eile s'exprime en termes du rayon b de l'amas:

2m sjt>2 - y2

de sorte que

_
2

3^c(a2+y2)2 (a2+b2r'
2 a5 3a2 + 2b2 + y2 ,-2 5

a w vPc 7-2-—/.2, l2*<. V'b ~y

L'integration au second membre de (17) et (18) est elementaire mais conduit ä

des expressions compliquees que nous avons calculees pour les valeurs particulieres
a 2/3 done b 2a et y 0, a, 2a. Le tableau 2 et la fig. 2 montrent failure des

courbes

~R2 (y; 2/3) T~2 (y; 2/3)

comparees aux courbes du sous-modele zero (a 1, b oo) donnees par

2n a 1 —f* (^1)=MK« / 2 I=?r2(y;l).64 v« + y 2
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Tableau 2

y R2 (y, 2/3) R2 0 ; l) T2 2 3) T2 (v; 1)

0 0,18 0,15 0,33 0,30

a 0,11 0,10 0,23 0,20
2a 0,03 0,07 0,15 0,14

Ies carres de vitesse sont en unites Vc.

Fig. 2

L'anisotropie affecte peu les mouvements propres mais se manifeste par une
decroissance accrue vers le bord r 2a des vitesses radiales observees.

6. SOUS-MODELF. DEUX

Nous nous sommes limites jusqu'ici ä des distributions de la forme (2) ne compor-
tant que les deux premiers termes. Rien ne nous empeche de construire un «sous-
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modele n » oü sont retenues les puissances de A2 jusquä la n-ieme; il faut seulement
s'assurer toujours du caractere defini positif de la fonction ainsi obtenue. Le nombre
des possibilites s'accroit notablement avec «; cependant, parmi les diverses manieres
de former, en jouant sur des identites de la forme

a+£2r* (i +eri - 2^2d+eyi - f4u+{2)"4

un sous-modele 2 du polytrope d'indice 5, toutes semblent conduire ä des fonctions
definies negatives hormis la suivante:

f'"(E f64f£Y 1
5 (A

definie positive pour A assez petit.
Nous remarquons que (19), tout comme (11) decrit une distribution oil les

moments angulaires eleves se font plus rares lorsqu'on s'eloigne du centre. Ici encore,
/(2) (£, A) sera definie positive ä toute distance r pour laquelle on peut ecrire

/<2)(£, Al) > 0

ce qui exige que le trinome en rj E/Uc (£ rja)

16\ 2 2? 1

r-r; i —/ n +
35/ JT+e 1 + r 5

soit toujours negatif. Son discriminant doit done etre negatif ainsi que le coefficient
de t]2; tel est le cas tant que £ < 0,6 mais le discriminant devient positif si ^ 0,7.

En conclusion, la distribution (19) est definie positive pour r < r* oü r* est

compris entre 0,6a et 0,7a.

7. Distributions non invariantes par rotation

Dans tout systeme pour lequel la distribution des vitesses est invariante par le

groupe des rotations autour du centre du systeme et se presente done sous la forme

(1), n'importe quelle direction passant par le centre est un axe de symetrie pour les

vitesses. Par consequent en tout point nous avons

f =f(r,v, 9)

oü v est le module du vecteur v et 9 l'angle de v avec le rayon r.



208 DISTRIBUTION DES VITESSES

Cependant de fagon plus generale, / pourra dependre encore de l'azimut ip

compte dans le plan normal ä r, sans que se trouve alteree la symetrie spherique
si

1J J/ (r > v >
$

> "A) y2 dv s'n MS dip — p (r) (20)

Decomposons f en serie de Fourier selon ip, ce qui est possible sous des conditions
suffisamment generates:

00

/ (r v 9 i/o a0 + ^ (au cos kip + bk sin kip) (21)
k 1

oü <70 et les ak, bk sont fonctions de r, v, 9.

a0 ne doit pas etre identiquement nul, car en substituant (21) dans (20) il reste

p (r) J | a0 (r v .9) v2 dv sin 9 d9

D'autre part si bk 0, le moment angulaire resultant autour d'une direction
A quelconque est toujours nul. En effet, si 5 designe l'une des etoiles du Systeme
Stellaire considere, le moment angulaire de 5 autour de A est egal ä

Aä rv sin 0 sin 0 sin ip

oil le plan contenant A et r determine l'origine des azimuts ip (fig. 3).

Le moment angulaire resultant autour de A vaudra done

27t J j| J J/(r v 0-, ip) r3v3 sin2 0 sin2 0 sin ip dr dO dv c/9 dip
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L'integration sur 9 conduit ä - et celle sur i/i nous redonne le coefficient de

Fourier bx (r, v, &) multiplie par n, de sorte que

stA
7t3 J J J fr, (r, v 9) r3 v3 sin2 9 dr dv d9 (22)

Tant que fr, n'est pas identiquement nul, le Systeme possede un moment angu-
laire resultant net donne par (22).

Si nous considerons a0 et les ak, bk comme des distributions particulieres du

Systeme, invariantes par rotation et necessairement definies positives, nous remar-
quons que le developpement en serie (21) nous fournit un moyen de construire la
fonction de distribution la plus generale d'un Systeme spherique ä partir d'un nombre
quelconque de distributions invariantes.

Si tous les ak, bk sont identiquement nuls ä l'exception de a0 et fr, et si nous
choisissons en outre a0 fr, afin d'avoir/ > 0, (21) se reduit ä

f (r v 9 i/i) a0 (r v 9 (1 + sin i]/)

soit

/ (r v ,9 i/0 a0 (/•, v .9) + <5/ (r v 9 i/i)

oü

Sf(r, v 9, i/i — 7t) - Sf(r, v 9 \jj) Sf(r, v 9, -\j>)

ceci correspond ä l'accroissement antisymetrique signale par Lynden-Bell [4]; la
situation est celle qui resulterait du changement de sens de parcours de certaines
orbites. (systeme « demonise »).

Si chaque orbite est caracterisee par le (pseudo-) vecteur A de son moment
angulaire, normal au plan orbital, l'intervention d'un « demon » consiste ä changer
le sens de certains des A; la resultante de ces vecteurs, auparavant nulle cessera de le

rester en general et sa direction definira un axe privilegie A.

Designons par lA le moment d'inertie du systeme par rapport ä A et envisageons

un referentiel en rotation uniforme de vitesse angulaire oo autour de l'axe A; si co est

choisi tel que IAco soit precisement egal ä siA calcule en (22), on aura compense le

moment angulaire resultant siA par une rotation des axes et dans ce sens, on pourra
dire qu'un systeme « demonise » est comparable ä un systeme en rotation.

Ce travail, ä la mise au point duquel a collabore M. L. Martinet, fait partie d'un

programme d'investigations subventionne par le Fonds National de la Recherche

Scientifique.

Observatoire de Geneve,

juin 1963.
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