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AIRES ET THEOREME DE PYTHAGORE
EN GEOMETRIE AFFINE

PAR

P. ROSSIER

§ 1. Introduction

Dans les ouvrages de géométrie, la théorie des aires planes est généralement
traitée du point de vue métrique. Par exemple, on prouve que dans un triangle,
le produit d’un c6té par la hauteur correspondante est indépendant du choix du coté
et on construit la notion d’aire sur cette propriété. Plus tard, dans I'étude de Uaffinité,
on ¢énonce le théoréme suivant: les rapports d’aires sont conservés par l'affinité.
Or la géométrie affine a pour objet I'étude des propriétés invariantes dans cette
transformation, de la précédente en particulier. Il est donc judicieux d’élaborer
une théorie des aires qui ne fait appel qu’aux axiomes de la géométrie affine a I'exclu-
sion des propriétés métriques, de la similitude notamment.

Dans les traités classiques, on trouve souvent un chapitre intitulé « comparaison
des aires » de caractere affin et cela naturellement sans le dire puisque la distinction
entre les deux géométries n’y est pas faite.

L’application du théoréme de la conservation des rapports d’aires dans 'affinité
conduit a diverses généralisations de quelques théoréemes classiques. Nous nous
proposons de retrouver ces énonceés en nous appuyant exclusivement sur les méthodes
de la géométrie affine. Nous considérons Celle-ci comme une géométrie projective
plane dans laquelle a été distinguée la droite impropre du plan, lieu des intersections
de droites paralléles. '

L’extension a la géométrie affine du théoréme de Pythagore nous conduira
a un énoncé de celui-ci indépendant de la notion d’aire et a quelques remarques
sur la nature de cette proposition.

Rappelons sommairement les principales notions de la géométrie affine dont
nous ferons usage. Le tracé de paralleles est possible; deux figures liées par une
translation sont affinement congruentes; la notion de rapport de deux segments
portés par des droites paralléles ou confondues a un sens et le théoréme dit de Thales
est valable: si deux droites concourantes sont coupées par deux paralléles, les rapports
des paires de segments ainsi déterminés sur ces droites sont égaux et ce rapport
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2 AIRES ET THEOREME DE PYTHAGORE

est égal a celui des segments portés par les deux paralléles. Les coordonnées dites
obliques sont souvent d’un usage commode.

Terminons par une remarque de terminologie. Souvent on appelle relation d’équi-
valence une relation réflexive, symétrique et transitive alors que les géometres appellent
équivalence des figures ’égalité de leurs aires. Cette équivalence géométrique est une
relation d’équivalence logique, d’ou possibilité de truismes apparents. Dans la suite
le mot équivalent sera pris dans le sens classique en géométrie.

PREMIERE PARTIE

THEORIE AFFINE DES AIRES PLANES

§ 2. Axiomes des aires et premiéres propriétés

A toute portion finie de plan est attachée une notion, I'aire, caractérisée par les
propriétés suivantes.

Deux aires peuvent étre égales. L’égalité des aires est réflexive (4 = A ), symé-
trique (A = B implique B = A ) et transitive (A = Bet B = C impliquent 4 = C).

Deux figures affinement congruentes ont méme aire.

Le partage d’une figure possédant une aire en deux parties par une sécante
rectiligne ou curviligne conduit a deux figures possédant des aires telles que la somme
des aires des figures partielles est égale a I'aire de la figure totale.

Notre propos n’est pas de discuter 'indépendance ou la compatibilité de ces
axiomes mais bien d’en tirer quelques applications.

Additionnons les aires de p figures affinement congruentes juxtaposées par des
segments communs de leurs contours. L’aire de la figure totale est égale a p fois
celle d’une des figures composantes. Si deux figures sont décomposées comme
ci-dessus 'une en p figures, l'autre en ¢ figures et si ces figures partielles sont

’ o p
congruentes entre elles, le rapport des aires des deux figures primitives est —. Ce
q

rapport est conservé si I’'une des figures subit une transformation conservant les aires.
Admettons en outre un axiome de continuité étendant cette notion de rapport des
aires au cas d’incommensurabilité, par intervention d’une suite appropriée d’approxi-
mations convergentes. Ainsi est acquise la notion de rapport de deux aires. Les
constructions de cette nature sont si fréquentes qu’il est inutile d’insister.

§ 3. Aires des parallélogrammes

Soient ABCD et ABC’D’ deux parallélogrammes ayant un c6té commun AB
et dont les cdtés AD et AD’ sont portés par la méme droite. Supposons ’existence
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d’une partie aliquote AE de AD et AD’ telle que AD =p-AE et AD’ =q- AE.
Graduons la droite AD a partir de A en choisissant AE comme unité et menons par
les points de division les paralléles & AB. Les deux parallélogrammes donnés sont
décomposés en p et g parallélogrammes congruents et le rapport des aires des deux

; p 5 o 2
parallélogrammes est --. Un passage a la limite approprié permet de passer au cas
q

ou les cotés considérés sont incommensurables.

Soient deux parallélogrammes ayant leurs cOtés respectivement paralléles.
Deux applications du théoréme précédent montrent que le rapport des aires de deux
parallélogrammes ayant leurs cotés homologues paralléles est égal au produit des
rapports de leurs cotés; en particulier, le rapport des aires de deux parallélogrammes
homothétiques est égal au carré de leur rapport d’homothétie.

Soient ABCD et AB’C’ D’ deux parallélogrammes ayant un sommet commun A4
ainsi que les supports des deux cOtés passant par 4 ; supposons paralléles les droites

. AB AD’
B’D et BD’. Le théoréme de Thalés donne — =
AB’ AD

. Ces deux parallélogrammes

ont donc méme aire.

Ce théoréme conduit a celui appelé du gnomon par les Anciens: dans un parallé-
logramme ABCD, soit E un point de la diagonale AC. Les paralleles par E aux cotés
du parallélogramme donné déterminent deux parallélogrammes BFEG et DF'EG’
ne contenant pas la diagonale AC; ces deux parallélogrammes sont équivalents
car le rapport de leurs aires est égal au produit des rapports de leurs cotés paralléles
et le théoréme de Thalés montre que ces deux rapports sont inverses.

Soient ABCD et ABC’D’ deux parallélogrammes ayant un c6t¢ commun AB
et dont les cotés CD et C’ D’ sont portés par la méme droite. Supposons I’existence
du trapéze ABC’D’ commun aux deux parallélogrammes (ou du triangle ABC
si C et D’ sont confondus). Les deux triangles ADD’ et BCC’ sont congruents.
Les deux parallélogrammes ont donc méme aire. Le cas ou les deux segments CD
et C'D’ sont sans point commun se traite de méme par soustraction de triangles
congruents.

Sur les cotés AB et AC d’un triangle construisons deux parallélogrammes quel-
conques ABDE et ACFG. Soit H I'intersection des droites DE et FG respectivement
paralleles a AB et AC. Sur BC, construisons le parallélogramme BCJK dont
les cotés BK et CJ sont paralléles et équipollents (donc congruents) a AH ; laire
de ce parallélogramme est égale a la somme des aires des deux premiers. Pour le
voir, il suffit de faire glisser le c6té DE du parallélogramme ABDE sur lui-méme
de fagon a amener E en H puis d’amener A sur BC par un glissement de AH sur lui-
méme. En opérant de méme sur le parallélogramme ACFG, on construit deux parallé-
logrammes adjacents tels que la somme de leurs aires est celle du parallélogramme
BCJK. Ce théoréme est dit a Pappus.
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§ 4. Conservation des aires par symétrie, aire du triangle

Soient un arc de courbe, un axe et une direction de symétrie. Construisons
I’arc symétrique de I'arc donné et soient 4 et 4’ deux points correspondants dans
cette construction. Par 4 et A’, menons deux paralléles & I’axe et tragons une droite
voisine de AA’ parallele a la direction de symétrie. Nous déterminons ainsi deux
parallélogrammes congruents ayant un co6té commun sur ’axe de symétrie. Par
un passage a la limite approprié, on est conduit a I’égalité des aires limitées par les
deux courbes symétriques, I’axe et deux droites paralléles a la direction de symétrie.
On étend la propriété aux figures symétriques par décomposition en figures adjacentes
sur I'axe.

Une diagonale d’un parallélogramme partage celui-ci en deux triangles syme¢-
triques donc équivalents. Donc I'aire d’un triangle est égale a la moitié de celle du
parallélogramme construit sur deux quelconques de ses cotés.

L’aire d’un triangle ne varie pas si un de ses sommets subit une translation
paralléle au coté opposé. Sur ce théoréme repose la transformation d’un polygone
en un polygone équivalent ayant un cotés de moins que le polygone donné, par
translation d’un sommet paralielement a la diagonale passant par les deux sommets
adjacents a celui qui est déplacé et enfin celle d’un polygone en un triangle équivalent.

On démontre souvent le théoréme du gnomon (§ 3) en se basant sur la décompo-
sition du parallélogramme en deux triangles équivalents au moyen d’une diagonale
et en soustrayant des deux triangles ainsi construits deux triangles respectivement
équivalents. La démonstration donnée plus haut ne fait pas appel a I'’équivalence
par symétrie.

Par un point intérieur a un triangle, menons des paralleles aux cotés; le triangle
est partagé en trois parallélogrammes et trois triangles opposés deux a deux.
Le produit des trois rapports de l'aire d’un de ces parallélogrammes a celle du
triangle opposé est ¢gal a 8. Pour démontrer cette proposition, choisissons un des
sommets du triangle comme origine d’un systeme de coordonnées dont les axes sont
les cOtés passant par lui; prenons les sommets comme points unités sur ces axes.
Soient x et y les coordonnées du point choisi. La paralléle au troisi¢me coté passant
par ce point coupe les axes aux points d’abscisses x -+ y. De la, on tire les valeurs
suivantes des rapports des aires:

2xy: (1 =x—p)*, 2x(1 =x—y): y? et 2y (1 —x—y): x*. Leur produit est bien 8.

Dans les ouvrages de géométrie élémentaire ou l'on traite ce probléme, la
distinction n’est pas faite entre I’aire et le nombre qui la mesure, relativement a une
certaine unité. Cela permet de parler du produit de deux aires, en réalité¢ du produit
des nombres qui mesurent ces aires; alors le théoréme peut étre énoncé comme suit:
le rapport du produit des aires des parallélogrammes a celui des aires des triangles
est égal a 8.
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Soit O un point intérieur a un triangle ABC et A’, B’ et C’ les intersections

0OA'" OB’
de chaque c6té avec les droites OA4, OB et OC. La somme des rapports 14"’ BE
et ——- est I'unité car ces rapports sont ceux des aires des triangles OBC, OAC

et OAB a celle du triangle total et la somme des aires des triangles partiels est ’aire
du grand triangle. Par un choix approprié de signes, le théoréme peut étre étendu au
cas out O est extérieur au triangle.

§ 5. Conservation des rapports d’aires par affinité

Soient deux parallélogrammes de cotés respectivement paralleles; le rapport
de leurs aires est égal au produit des rapports de leurs cotés paralléles. Transformons
la figure par une affinité; les rapports des segments parall¢les sont conservés, donc
aussi le rapport des aires des deux parallélogrammes. La propriété s’étend aux autres
figures par décomposition appropriée en parallélogrammes. Donc I’affinité conserve
les rapports d’aires.

Dans une affinité homolocale, il existe toujours au moins un point uni propre
et deux impropres, réels ou imaginaires. Le faisceau de droites ayant le point uni
propre comme sommet a deux rayons unis; si ces rayons sont réels, il est possible
de construire sur les deux figures correspondantes des parallélogrammes correspon-
dants ayant leurs cotés homolognes parall¢les. Dans ce cas, il est possible de déter-
miner le rapport des aires de deux figures correspondantes dans une affinité.

L’homothétie, I'affinité perspective et la symétrie sont deux cas particuliers
de l'affinité précédente. Les rapports de deux aires correspondantes sont alors le
carré du rapport d’homothétie, le rapport d’affinité ou I'unité.

§ 6. Rappel de quelques propriétés des coniques a centre

Dans une conique a centre, on appelle cordes supplémentaires deux cordes
issues d’un point de la courbe et qui coupent celle-ci aux extrémités d’un diameétre.
Les directions de deux cordes supplémentaires sont conjuguées par rapport a la
conique et réciproquement, deux cordes se coupant sur la conique et dont les direc-
tions sont conjuguées par rapport a celle-ci coupent la courbe aux extrémités d’un
diametre.

Rapportée a un systéeme d’axes porté par deux diametres conjugués (donc ayant
le centre de la courbe comme origine), I’équation d’une conique ne comporte que
deux termes carrés et un terme invariable. Pour le voir, il suffit, dans I’équation
générale d’une conique en coordonnées projectives de vérifier que I’équation est
satisfaite si I’on change le signe d’une quelconque des coordonnées d’un point
de la courbe.
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Si I'on choisit comme points-unités sur les deux axes I'une des intersections
avec la courbe, I’équation devient x> 4 y? = 1 dans le cas des ellipses et x> — y* = |
dans celui des hyperboles; I'’équation de I’hyperbole conjuguée est —x? + y? = I.

Par un point d’une ellipse, menons deux cordes supplémentaires; I’équation
de la courbe montre que la somme des carrés des rapports des longueurs de ces cordes
a celles des diameétres qui leur sont paralleles est 'unité. Dans le cas des hyperboles,
c’est la différence de ces carrés qui est égale a I'unité; le terme positif est celui relatif
au diamétre qui coupe la courbe en des points réels et I'autre concerne un diameétre
de I’hyperbole conjuguée.

§7. Aire d’une ellipse

Pour alléger le langage, appelons parallélogramme régulierement circonscrit
a une ellipse tout parallélogramme dont les cotés sont tangents a I’ellipse et dont
deux cotés adjacents ont des directions conjuguées par rapport a I’ellipse. !

Toute ellipse et un de ses parallélogrammes régulierement circonscrits sont
symétriques par rapport a un diametre de l'ellipse parallele & un c6té du parallélo-
gramme. Donc les diamétres d’une ellipse partagent celle-ci en deux figures équiva-
lentes et I’aire de la portion d’ellipse comprise entre deux demi-diametres conjugués
est égale au quart de celle de I'ellipse entiére. Dans la figure précédente, les triangles
curvilignes ayant comme cOtés deux demi-cotés du parallélogramme circonscrit
et ’'arc d’ellipse compris entre eux sont équivalents.

Soient deux ellipses et deux parallélogrammes qui leur sont réguli¢rement cir-
conscrits. Trois de leurs paires de sommets homologues établissent une affinité dans
le plan. Dans cette collinéation, les quatriémes sommets des parallélogrammes, les
milieux des c6tés des parallélogrammes, ces cotés se correspondent, donc aussi les
deux eilipses. Le rapport de I’aire d’une ellipse a son paraliélogramme circonscrit
est le méme sur les deux figures. En particulier, choisissons deux paraliélogrammes
régulierement circonscrits a la méme ellipse; le rapport de I'aire d’une ellipse a 'un
de ses parallélogrammes régulierement circonscrits est constant et tous les parallé-
logrammes régulierement circonscrits a une ellipse ont méme aire.

Dans une ellipse, découpons des bandes infiniment étroites a bords paralleles.
Rapportons ’ellipse a une paire de diameétres conjugués dont’un est paralléle a la direc-
tion de ces bandes; employons la représentation paramétrique x =acos @, y = bsin ¢.
L’aire d’une de ces bandes de largeur dx est 2 b sin ¢ dx = 2 ab sin® ¢ d ¢. Une inté-
gration montre que I’aire de I’ellipse est proportionnelle & n ab alors que celle d’'un
parallélogramme réguliérement circonscrit est 4 ab. Le rapport de I'aire d’une ellipse

- : : n
a celle d’un parallélogramme régulierement circonscrit est i

1 En géométrie métrique, les parallélogrammes réguliérement circonscrits 4 un cercle sont
des carrés.
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Soit donné un systéme d’axes et leurs unités. Menons I’ellipse d’équation
x? + y* = 1, I'ellipse unité. Choisissons un nouveau systéme d’axes dont les direc-
tions sont conjuguées par rapport a I’ellipse unité et sur eux, prenons comme points
unités deux des intersections des nouveaux axes avec I’ellipse. Les aires d’une méme
figure déterminées en prenant comme unité d’aire un parallélogramme de cotés
paralléles aux axes et de cOtés unités seront égales dans les deux systémes. Ainsi
il est judicieux de choisir comme unité d’aire le quart de ’aire de tout parallélogramme
régulierement circonscrit a I’ellipse unité.

§ 8. Applications

a) Lunule elliptique d’Hippocrate !

Soient une ellipse de centre O et un de ses parallélogrammes réguliérement
circonscrits dont deux cOtés adjacents sont tangents a la courbe en 4 et B. Choisissons
les deux demi-diametres OA et OB comme unités; I’équation de Dellipse est
x* 4+ »* = 1. Une diagonale du parallélogramme passe par le point de coordonnées
x = 1, y = 1; son équation est x = y. Les coordonnées de 'une de ses intersections

avec l'ellipse sont x = y = ——. Le parallélogramme circonscrit et celui ayant pour

sommets les intersections des diagonales avec I’ellipse sont homothétiques; le rapport

d’homothétie est ﬁ

Dans le parallélogramme inscrit, inscrivons I’ellipse homothétique a la premiére
et inscrivons-lui le parallélogramme analogue au second. Appelons C et D les inter-
sections de la petite ellipse avec la diagonale paralléle a4 AB. Le troisiéme parallélo-
gramme est homothétique au premier et le rapport d’homothétie est 4. Ce parallé-
logramme est congruent a celui porté par les axes et deux cotés du premier, dont AB
est une diagonale. Faisons subir au troisiéme parallélogramme la translation qui
conduit Cen A donc D en Bet un de ses sommets en un sommet E du premier parallé-
logramme, opposé au centre O. Le quart AFB de I'ellipse primitive et la demi-ellipse
AEB constituent une lunule elliptique d’Hippocrate AFBE. L’aire de la demi-ellipse
AEB est égale a celle du quart de I’ellipse primitive OAFB et les deux triangles OAB
et ABE sont équivalents; I’aire du segment elliptique AEB est donc égale a la somme
des aires des deux segments limités par AE et BE. Ajoutons et soustrayons ces aires
égales de celle du triangle ABE: I'aire de la lunule elliptique est égale a celle du
triangle AEB.

1 Hippocrate a étudié la lunule limitée par un quart de cercle et le demi-cercle ayant comme
diametre la corde de ce quart de cercle et il a montré que I'aire de la lunule est égale a la moitié de
celle du carré attaché au quart de cercle. Les lunules liées au triangle rectangle souvent appelées
«d’Hippocrate » n’ont pas été examinées par lui.
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b) Salinon d’ Archiméde

Partageons un segment 4B en trois segments partiels AC, CD et DB, le premier
et le troisieme étant congruents entre eux: AC = BD = p, CD = q. Le milieu M
de AB est aussi celui de CD. Tragons une ellipse ayant A B comme diameétre et soit EF
son diamétre conjugué a AB. Menons encore trois demi-ellipses ayant respectivement
AC, CD et DB comme diamétres et homothétiques, les deux extrémes a AEB, la
médiane a AFB. La figure curviligne AEBDCA est le salinon elliptique d’Archi-
mede.

Soit G l'intersection de la demi-ellipse de diametre CD avec le diametre EF.
MG est le demi-diameétre de cette demi-ellipse conjugué a CD. Menons encore ellipse
homothétique a AEBF et qui a EG comme diameétre. Ce diametre est conjugué a
la direction de AB. Déterminons le diametre de cette ellipse parallele a 4B. L’homo-
thétie entre les ellipses donne p + ¢ pour ce diametre. L’aire de 'ellipse de diametre
EG est proportionnelle a 2(p + ¢)*.

L’aire du salinon est proportionnelle a

2p+q) —2p* +q* = 2(p+q)*.

L’aire du salinon est donc égale a celle de I'ellipse de diametre EG.

c¢) Théoréme de |’ Huillier

Soient une ellipse A DBE de diamétre 4B, C un point de ce diameétre, AE'C
et CD’B deux demi-ellipses homothétiques aux demi-ellipses AEBet A DB, k le rapport

C
5 L’aire limitée par les trois demi-ellipses est proportionnelle a
AB®> + AC* — CB® = AB*(1+k*—[i—k]?*) = AB*- Zk .

Autrement dit, le rapport de I'aire de la figure considérée a celle de I’ellipse ADBE
est égal a celui de AC a AB.

La propriété démontrée par L’Huillier est le cas particulier ou I'ellipse donnée
est un cercle.

§ 9. Digression sur quelques ellipses liées a un triangle

Soit ABC un triangle quelconque; construisons une ellipse qui passe par ses
trois sommets et a le c6té BC comme diameétre, ellipse que nous appellerons princi-
pale. 1l existe une infinité de telles ellipses ; elles appartiennent a un faisceau de coniques.

Tragons les deux ellipses homothétiques a la précédente et qui ont les cotés
AB et AC comme diamétres, les deux ellipses secondaires.

Les deux directions des cotés AB et AC du triangle ABC sont conjuguées par
rapport aux trois ellipses puisque BC est un diametre de I'une d’elles. AB est un
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diametre de I'une des ellipses secondaires: celle-ci est donc tangente a AC en A.
Les deux ellipses secondaires sont respectivement tangentes a AC et a AB; elles
sont contenues I'une entre AB et sa parallele par C, I'autre entre AC et sa parallele
par B: toutes deux coupent donc le c6té BC du triangle. Soit D 'intersection de BC
avec I’ellipse secondaire de diametre A B; les directions de BC et de A D sont conjuguées
par rapport a elle, donc aussi par rapport a I'ellipse secondaire de diametre AC.
Les deux ellipses secondaires se coupent donc sur BC.

Réciproquement, tragons deux ellipses ayant respectivement AB et AC comme
diametres, tangentes I'une a AB, I'autre & AC et qui se coupent en un point D du
coté BC. Elles sont déterminées. Les directions de AD et de BC sont conjuguées
par rapport a chacune d’elles, ainsi que celles de AC et AB. Elles ont deux paires
distinctes de diamétres conjugués paralléles; ces ellipses sont homothétiques entre
elles. Construisons I’ellipse homothétique aux précédentes qui a BC comme diametre.
Les directions AB et AC sont conjuguées par rapport aux trois ellipses; BC étant
un diametre, le triangle ABC est inscrit a cette troisieme ellipse; celle-ci passe par A.
Les directions de AD et de BC sont conjuguées par rapport aux trois ellipses.

Soient a et b les demi-diametres de Iellipse principale, le premier parallele a BC,
le second a AD. La relation entre cordes supplémentaires donne

BD—aY+ ADZ_1
a / b B

AD\? BD DC
(T) - <7) ' (7) '

Le carré du rapport d’une corde d’une ellipse au diametre qui lui est parallele
est égal au produit des rapports au diamétre des segments qu’elle détermine sur le
diamétre conjugué a la corde.

Cette propriété est la généralisation affine du théoréme de la hauteur d’un triangle
rectangle.

Examinons quelques cas particuliers. Si D est le milieu de BC, A D est le diamétre
conjugué de BC et la tangente en A a l'ellipse principale est parallele a BC.

Si, ce qui n’a aucun sens en géométrie affine, 4 D est une hauteur du triangle, BC
est un axe de l’ellipse principale.

Si D est confondu avec I'un des points B ou C, I'ellipse principale dégénére en
le support du coté AB et sa parallele par C ou en celui de AC et sa paralléle par B.
La troisieme paire de droites du faisceau de coniques auquel appartient ’ellipse prin-
cipale est constituée par BC et sa parallele par 4. Ces cas de dégénérescence sont
sans intérét.

ou, apres réduction
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§ 10. Application a I’arbélon elliptique

Soit une demi-ellipse limitée par un de ses diamétres BC. Par un point D de ce
diamétre, menons la paralléle au diamétre conjugué de BC; elle coupe la demi-
ellipse en A. Tragons les deux demi-ellipses homothétiques a la premiere situées du
méme cdté de BC que celle-ci et ayant BD et DC comme diametres. La figure limitée
par ces trois demi-ellipses est I’arbélon elliptique d’Archimede.

La figure obtenue est la méme que celle du § précédent. Par conséquent, si
a et b sont les demi-axes de la grande demi-ellipse, la relation précédente entre A D,
BC et CD est valable.

L’aire de I’arbélon est proportionnelle a

BD +DC\* (BD\* (DC\* _ 5 BD\ /DC
a a a B a a )’
L’aire de ellipse homothétique aux précédentes de diametre AD est propor-

tionnelle au double du carré du rapport a a de son diametre x parallele a BC.
L’homothétie donne

L’aire de cette ellipse est proportionnelle a

@) -=(%)
2{-) =2—
a ( b
Le théoréme précédent montre I'’équivalence de I'arbéion et de Iellipse de
diamétre A D.

§ 11. Théoreme de Pythagore

Pour alléger la suite, dans la figure du § 9, il est commode de choisir comme
segments unités sur BC la moitié de la longueur de ce c6té du triangle ABC et, sur
le diametre de D’ellipse principale conjugué a AB, le demi-diameétre de cette ellipse.
La relation relative au carré de AD devient

AD?* = BD .DC. (1)

Appelons 1 et u les deux rapports d’homothétie entre I'ellipse principale et
les deux ellipses secondaires de diameétre AB et AC. Les rapports des aires de ces
ellipses a celle de I’ellipse principale sont respectivement A% et u?.
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Appliquée a l’ellipse secondaire construite sur AB, la relation entre cordes
supplémentaires (§ 6) donne

BD\? ADZ-I 5
(g) +('2*—;L') = ou ()

BD? = 4> — AD? et de méme
DC? = 44> — AD?. (3)

Remplagons 4 D? par sa valeur, tenons compte de BD + DC = 2 et additionnons
les deux équations obtenues. Apres division par 4, il vient

A2+t =1

Par conséquent la somme des aires des deux ellipses secondaires est égale a
’aire de ’ellipse principale. Le théoréme de Pythagore est le cas particulier métrique
ou I'ellipse principale est un cercle. L’énoncé de ce théoré¢me en géométrie affine est
donc le suivant: a un triangle ABC, circonscrivons une ellipse ayant BC comme dia-
meétre; son aire est égale a la somme des aires des deux ellipses homothétiques a la
précédente et ayant AB et AC comme diametres.

On peut éviter I’emploi des aires: a un triangle ABC, circonscrivons une ellipse
ayant BC comme diamétre, tragons les deux ellipses homothétiques a la précédente
et ayant AB et AC comme diamétres; dans ces ellipses, menons trois diametres
paralléles entre eux. La somme des carrés de ces diamétres des deux dernieres ellipses
est égale au carré de celui de la premicere ellipse.

Dans le cas métrique ou la preniiére ellipse est un cercle, tous les diametres sont
congruents entre eux et ’on obtient I’énoncé classique du théoréme de Pythagore.

De I’ellipse principale ne retenons que I’arc BAC et des deux ellipses secondaires,
les moitiés limitées 3 AB et AC qui ne contiennent pas D. La somme des aires de ces
derniéeres est égale a I’aire de la demi-ellipse principale. En retranchant les aires de
deux segments elliptiques appropriés, on voit que la somme des aires des deux lunules
restantes est égale a celle du triangle. Ainsi est étendue a la géométrie affine et aux
triangles quelconques la propriété des lunules liées au triangle rectangle, lunules
dites parfois d’Hippocrate.

En tenant compte de la valeur de AD*> = BD.DC I’équation 3) relative & BD
peut étre écrite

BD (BD +DC) = 4% ou BD = 4,* et de méme, DC = 44°.

Autrement dit, le rapport des aires des ellipses secondaires est égal a celui des
deux segments qu’elles déterminent sur le troisiéme coté du triangle. On reconnait
ici un lemme qui apparait dans une démonstration classique du théoréme de Pythagore.
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§ 12. Barycentre

Sur une figure possédant une aire A4, soient x et y les coordonnées affines d’un
¢lément d’aire ds. Le barycentre de cette figure est le point de coordonnées x,, y,
données par les équations

Axy = [xds et Ay, = [yds.
F F

Les intégrales sont étendues a la figure entiére.

Si Torigine du syst¢tme de coordonnées est au barycentre, les deux intégrales
ci-dessus sont nulles.

Le barycentre est indépendant de la direction des axes. Pour le montrer, I'origine
ayant été prise au barycentre déterminé par un premier systéme d’axes, menons par
ce point un nouvel axe des y’. Sur lui, comme point unité, choisissons ['intersection
avec la parallele a I'axe des x qui passe par le point unité de I'ancien axe des y. Les
ordonnées y ne sont pas modifiées; le théoréme de Thales montre que la relation
entre les anciennes et les nouvelles abscisses est x” = x—my ou m est une constante.
L’intégrale de détermination du barycentre relative a x’ se réduit a la somme des
deux intégrales nulles précédentes. Le barycentre est donc bien indépendant du
systeme de coordonnées choisi.

Si une figure posséde un axe de symétrie, le barycentre appartient a cet axe et
si elle a un centre de symétrie, ce point est le barycentre.

§ 13. Moments d’inertie

Soit une figure possédant une aire A rapportée a un systeme de coordonnées
affines x, v. Le moment d’inertie de cette figure relatif a I’axe des x est I'intégrale
[ ¥* ds, ou ds est une aire infinitésimale d’ordonnée y ; I'intégrale est étendue a toute
3

la figure.

Une translation de tout ou partie de la figure parallelement a I’axe des x ne
modifie pas le moment d’inertie précédent. Ce moment est indépendant de la direction
de I’axe des ordonnées a condition que les points unités des deux axes des ordonnées,
I’ancien et le nouveau appartiennent a une paralléle a 'axe des abscisses. En effet,
dans ce cas, les ordonnées ancienne et nouvelle d’'un élément d’aire sont égales.

Transportons I’axe des x parallelement a lui-méme et faisons passer sa nouvelle
position par le barycentre; soit @ I’ordonnée de ce point. La relation entre les deux
ordonnées d’un point est y == a -+ y’. Le moment d’inertie est

I, = [y%ds + 2a|y'ds + a*A.
F F

La seconde intégrale est nulle puisque le nouvel axe passe par le barycentre.
Le moment [ y'ds est appelé moment central relatif a la direction de 'axe considéré.
F
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L’équation ci-dessus montre que le théoreme de Huygens-Steiner est valable en géo-
métrie affine: le moment d’inertie par rapport & une aire est égal a la somme du
moment central correspondant et du produit de I'aire de la figure par le carré de la
distance du barycentre a I'axe.

§ 14. Symétrisation

Soient une figure fermée, un axe et une direction. Une parallele a la direction
coupe sur la figure des segments dont la longueur totale est finie. Sur cette droite,
de part et d’autre de son intersection avec I’axe, portons la moitié de la longueur
totale précédente. Faisons varier ia transversale. Le lieu des points obtenus est la
transformée de la figure donnée par symétrisation selon I'axe et la direction choisis.

L’axe et la direction ci-dessus sont axe et direction de symétrie de la figure
obtenue.

Le barycentre de la figure aprés symétrisation appartient a 'axe de symétrie.
Avec le barycentre de la figure initiale, il détermine une paralléle a la direction de
symétrisation.

Coupons la figure par deux droites infiniment voisines paralléles a la direction
de symétrisation. Le moment d’inertie du trapeze infinitésimal découpé par rapport
a I'axe de symétrisation est df. -a® ds ou dI. est le moment central de ce trapéze
et a la distance a 'axe du barycentre du trapéze. Le second terme n’est jamais négatif
et n’est nul que si le barycentre appartient a I’axe de symétrisation. Ainsi, la symétrisa-
tion diminue le moment d’inertie relativement a I’axe de symétrisation. Au contraire,
le moment d’inertie relatif a un axe parallele a la direction de symétrisation ne varie
pas lors de la symétrisation. Le calcul précédent conduit & une généralisation du
théoréme de Huygens-Steiner: la différence entre les moments d’inertie d’une figure
avant et apreés symétrisation autour de I'axe par rapport auquel est déterminé le
moment est égale a I'intégrale [a?® ds, ol a est la distance a I'axe de I'élément d’aire ds.

DEUXIEME PARTIE

THEOREME DE PYTHAGORE

§ 15. Quelques hyperboles liées a un triangle

Au § 9, nous avons étudié une extension du théoréme de Pythagore liée & trois
ellipses homothétiques en relation avec un triangle. Nous allons voir que I'une des
constructions indiquées a ce propos ne conduit pas toujours a des coniques honio-
thétiques. Nous savons déja que sur la figure précédente, pour que les coniques
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envisagées soient des hyperboles, il faut que le point D soit extérieur au segment BC.
Nous allons voir que la condition est suffisante.

Soient donc un triangle ABC et D un point de la droite BC situé sur la demi-
droite ayant B comme origine et ne contenant pas C. Tragons la conique b qui passe
par A, est tangente en ce point a AC, passe par 2 et par D et a AB comme diamétre.
En B, la tangente a cette conique est paralléle 8 AC, la conique est déterminée et
unique.

Le point D est hors de la bande comprise entre les tangentes en 4 et en B a
la conique b, celle-ci est donc une hyperbole; les points B et D appartiennent a la
méme branche, mais non A4 et D.

De méme, construisons la conique ¢ qui passa par A, y est tangente a AB, passe
par C et D eta AC comme diametre; elle est aussi une hyperbole et, sur elle, les points
A et D appartiennent a la méme branche.

Les deux hyperboles b et ¢ ne sont pas homothétiques car la seconde possede
une tangente paralléle a AD et pas la premiére. Relativement a ces deux hyperboles,
les directions des cotés AB et AC du triangle sont conjuguées; DA et DB sont deux
cordes supplémentaires de la premiére; DA et DC le sont relativement a la seconde;
donc les directions de DA et de BC sont conjuguées par rapport aux deux courbes
et les hyperboles b et ¢ ont mémes points impropres. La conjuguée de I'une est donc
homothétique a l'autre.

Tragons encore I’hyperbole qui a BC comme diameétre, qui passe par 4 et dont
les tangentes en B et C sont paralléles & A D, hyperbole que nous appellerons princi-
pale. Relativement a elle, les directions 4D et BC sont conjuguées ainsi que celles
de ABet AC; cette hyperbole a donc mémes points impropres que les deux premiéres;
elle est homothétique a ¢ car elle possede des tangentes paralleles a AD.

§ 16. Théoréme de Pythagore lié aux hyperboles

Appelons hyperboles secondaires du triangle ABC I’hyperbole ¢ et la conjuguée
de b ; soient u et A les rapports d’homothétie entre I’hyperbole principale et les deux
secondaires. Comme unités de longueur suivant BC et AD, prenons les deux demi-
diamétres de I’hyperbole principale paralleles a ces directions.

Sur I’hyperbole principale, la relation entre cordes supplémentaires donne

(1+BD)? — AD? = 1 ou AD? = BD.CD.

A un signe pres d’un facteur du second membre, cette relation est identique
a celle obtenue dans le cas des ellipses.
Sur les hyperboles secondaires, la relation entre cordes supplémentaires conduit a

AD\? 3132_1 AD\? (CDZ_ |
2 2. 7\ 2u 2u)
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ou
BD? — AD* = — 4)% et CD?* — AD* = 4,2

Remplagons A D? par sa valeur et BC par 2; il vient
-1t =1

Les longueurs de diameétres des trois ellipses paralleles entre eux sont propor-
tionnels a 1, 4 et u. La derniére équation conduit au théoréme de Pythagore: le carré
d’un diamétre de I’hyperbole principale est égal a la différence suivante entre carrés
de diametres paralléles au premier: celui de I’hyperbole secondaire qui passe par deux
sommets du triangle moins le carré de celui de I’hyperbole secondaire qui ne passe
pas par des sommets du triangle.

On sait par ailleurs que si m est la longueur d’un diamétre d’une hyperbole, im
est celle du diametre de méme support de I’hyperbole conjuguée. En introduisant cette
notion dans 1’énoncé du théoréme, celui-ci prend méme forme que dans le cas des
ellipses: la somme des carrés de deux diameétres paralléles des deux hyperboles b et ¢
est égale au carré du diamétre de méme direction de I’hyperbole principale. L’un
de ces carrés est négatif puisque le diamétre correspondant a une longueur imaginaire.

§ 17. Conclusion

L’habitude est de lier le théoréme de Pythagore a la théorie des aires. Il n’y a
ricn 1a de nécessaire, mais bien une commodité car I’énoncé de la proposition est
allégé par I’emploi de cette notion. De fagon générale, le théoréme est une relation
entre des diamétres de certaines coniques non dégénérées. De ce fait, il est de nature
affine. Sa démonstration repose essentiellement sur la relation entre cordes supplé-
mentaires; cette propriété est obtenue a partir de I’équation des coniques rapportée
d un systéme d’axes porté par deux diamétres conjugués. Cette équation est donnée
par la géométrie projective et résulte de la définition projective des coniques. l.e théo-
reme des cordes supplémentaires n’est donc fondé que sur des propriétés projectives
et affines.

En géométrie élémentaire, on établit souvent I’équation des coniques en partant
d’une définition métrique et en employant le théoréme de Pythagore. Cette facon
de faire masque la nature des coniques, celle du théoréme et leurs relations; le théo-
reme est subordonné a la théorie des coniques et pas les coniques au théoreéme.
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