

Zeitschrift: Archives des sciences [1948-1980]
Herausgeber: Société de Physique et d'Histoire Naturelle de Genève
Band: 14 (1961)
Heft: 10: Colloque Ampère

Artikel: Nuclear magnetic relaxation in aqueous solutions of strong acids
Autor: Bonera, G. / Borsa, F. / De Stefano, P.
DOI: <https://doi.org/10.5169/seals-739644>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 30.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

Nuclear magnetic relaxation in aqueous solutions of strong acids

G. BONERA, F. BORSA, P. DE STEFANO and A. RIGAMONTI

Istituto di Fisica dell'Università, Pavia

We have measured the proton spin-lattice relaxation time T_1 [1] in oxygen-free solutions of nitric acid and hydrochloric acid at different concentrations. Such solutions have already been studied by several authors [2-4] by means of measurements of chemical shift. All these authors agree on the occurrence in these solutions of fast proton transfer between molecular groups. We must therefore expect to observe a unique proton spin-lattice relaxation time [5, 6]. Actually the return of the longitudinal component of the nuclear magnetization to the equilibrium

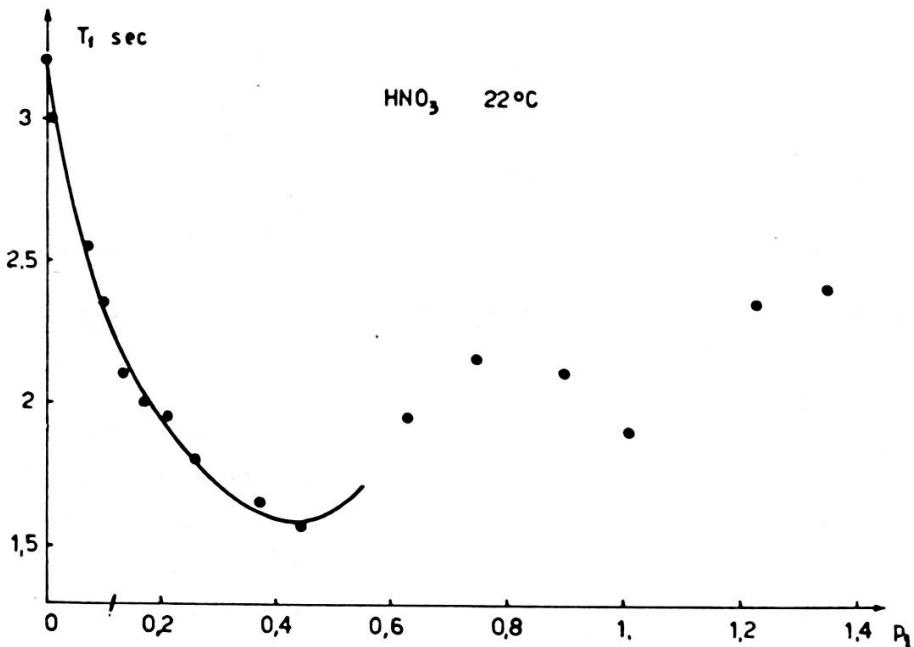


Fig. 1.

T_1 of aqueous solutions of nitric acid versus the proton concentration p_1 in the H_3O^+ group. This quantity is related to the molar fraction of acid N_1 by the relationship $p_1 = 3N_1 / (2 - N_1)$.

value, which we have studied with a technique previously described [7], has always been found exponential within the limits of resolution of our experimental apparatus.

The experimental results we obtained for HNO_3 are shown in figure 1.

We tried to interpret these results, at least qualitatively, making the following assumptions: (a) the acid is completely dissociated; (b) the reciprocal of the proton relaxation time we measure is the weighted average of the reciprocals of the relaxation times of the protons in the water molecules and in the hydronium ions

$$\frac{1}{T_1} = \frac{p_1}{(T_1)_{H_3 O^+}} + \frac{1 - p_1}{(T_1)_{H_2 O}} ; \quad (1)$$

(c) the relaxation times $(T_1)_{H_3 O^+}$ and $(T_1)_{H_2 O}$ are related to the viscosity η of the solution according to the theory of B.P.P. [8].

$$\begin{aligned} \frac{1}{(T_1)_{H_3 O^+}} &= \left(\frac{1}{T_1} \right)_{\text{intra}} + \left(\frac{1}{T_1} \right)_{\text{inter}} = A_{H_3 O^+} \eta + B \eta N \\ \frac{1}{(T_1)_{H_2 O}} &= \left(\frac{1}{T_1} \right)_{\text{intra}} + \left(\frac{1}{T_1} \right)_{\text{inter}} = A_{H_2 O} \eta + B \eta N \end{aligned} \quad (2)$$

where N is the number of protons per cm^3 , $A_{H_3 O^+}$ and $A_{H_2 O}$ are characteristic constants and B is a constant which we assume to be approximatively equal for the two groups; in fact it seems reasonable to assume to be unimportant for the intermolecular interactions which group carries the protons, provided that the proton-carrying molecules have about the same size.

From the equations (1) and (2) we obtain for the measured relaxation time:

$$\frac{1}{T_1} = A_{H_3 O^+} \eta p_1 + A_{H_2 O} \eta (1 - p_1) + B \eta N \quad (3)$$

from which we have

$$\frac{1}{T_1 \eta} - BN = p_1 A_{H_3 O^+} + (1 - p_1) A_{H_2 O} . \quad (4)$$

In figure 2 are plotted the experimental quantities $1/T_1\eta$ and the difference $1/T_1\eta - BN$ versus p_1 . We assumed for B the value that can be calculated with the help of the theory of B.P.P.

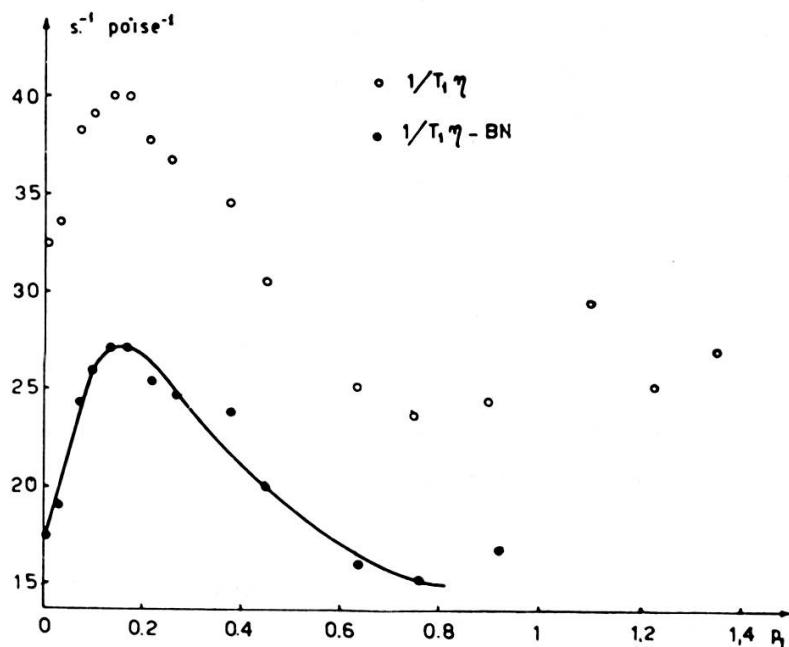


Fig. 2.

$1/T_1\eta$ and the difference $1/T_1\eta - BN$ versus p_1 for aqueous solutions of nitric acid.

It can be seen in figure 2 that the difference $1/T_1\eta - BN$ depends linearly on p_1 , as required by the equation (3), only for concentrations up to 6 moles per liter.

The slope of the experimental curve for low concentrations of acid allows us, in principle, to evaluate A for the hydronium ion. The value of about $90 \text{ sec}^{-1} \text{ poise}^{-1}$, thereby obtained, may be compared with the value of $66 \text{ sec}^{-1} \text{ poise}^{-1}$ which we have obtained using the model suggested by Hubbard for a three-spin system [10]. In these calculations we assumed as interproton distance for the hydronium ion the value $b = 1.65 \text{ \AA}$, given in ref. 11, and as molecular radius the value $a = 1.9 \text{ \AA}$, suggested in ref. 9.

The deviation from a straight line of the curve of figure 2 at higher concentrations may be accounted for with the presence of undissociated acid molecules. If we introduce an apparent degree of dissociation $\alpha < 1$ and we take into account the contribution of the undissociated nitric acid molecules to the measured relaxation time, we obtain

$$\frac{1}{T_1 \eta} - BN = p_1 A_{H_3 O^+} + (1 - p_1) A_{H_2 O} - \frac{(1 - \alpha)}{3} (3 A_{H_3 O^+} - 2 A_{H_2 O} - A_{HNO_3}) \quad (5)$$

As the quantity A_{HNO_3} is negligible, for the presence of only one proton in the nitric acid molecule, the term in parenthesis is certainly positive.

It is therefore evident that the introduction of a degree of dissociation $\alpha < 1$ decreasing with the increasing of concentration accounts qualitatively for the increasing deviation of the experimental curve from a straight line. The value of α we must introduce in the equation (4) in order to obtain a quantitative agreement with our experimental results are however considerably lower than the values obtained from Raman spectroscopy [12] and from measurements of chemical shift [3].

For a concentration of about $p_1 = 0.7$ the experimental curve reaches a minimum; for $p_1 > 0.7$ the experimental points do not seem to stay on a smooth curve. This minimum and the following irregularities might be attributed to hydration and polymerization of the acid. On the other hand at high acid concentrations the measurements were difficult to perform because of the few protons present in the solutions.

Measurements of T_1 for two solutions of HNO_3 at various temperatures have been also performed. The experimental results, which are given in figure 3, show that the quantity $T/T_1 \eta$ is not constant with the varying of temperature, as we should expect, but increases slightly with the increasing

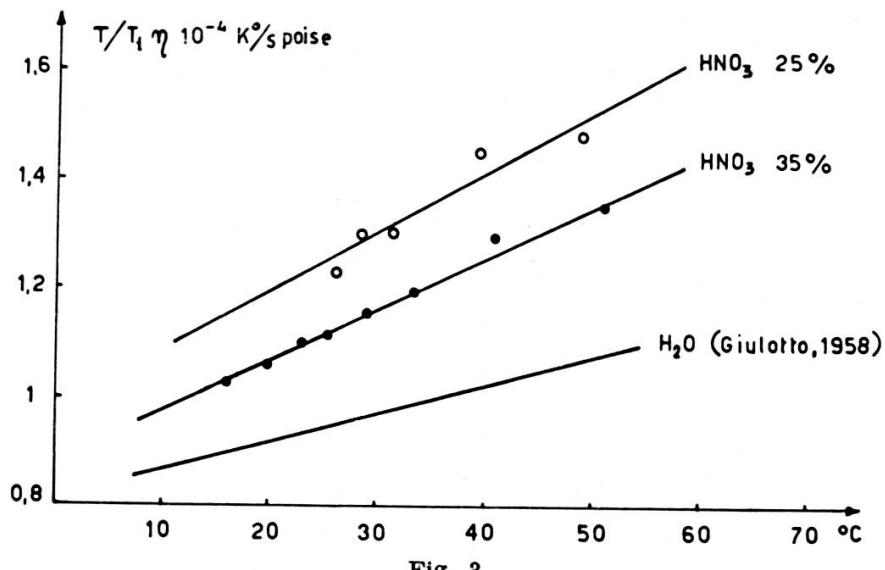


Fig. 3.

$T/T_1 \eta$ versus T for two samples of aqueous solutions of nitric acid.

of temperature. It may be pointed out that the same behaviour of $T/T_1\eta$ with the varying of temperature has been observed for water [13].

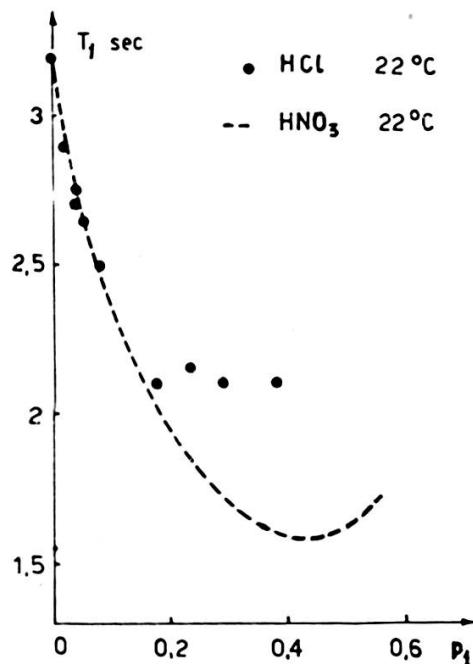


Fig. 4.

T_1 versus p_1 for aqueous solutions of hydrochloric acid. The dashed curve is that of figure 1.

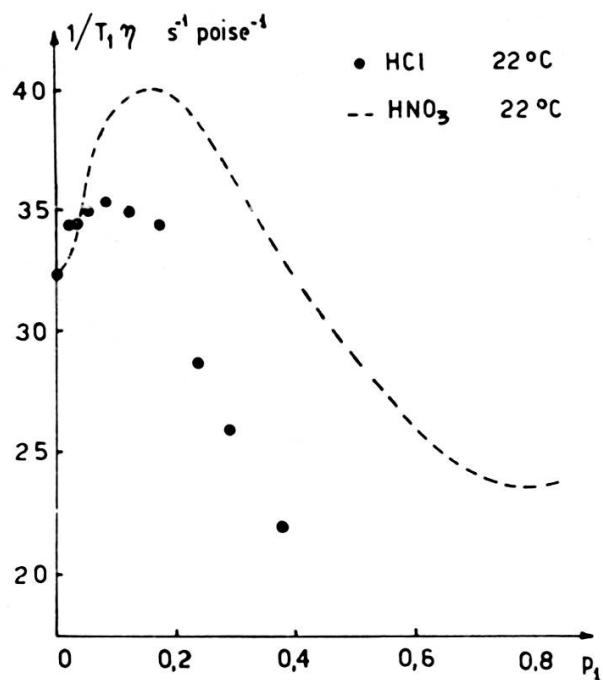


Fig. 5.

$1/T_1\eta$ versus p_1 for aqueous solutions of hydrochloric acid. The dashed curve is the corresponding curve for HNO_3 .

Measurements on aqueous solutions of hydrochloric acid have been also performed. In figures 4 and 5 the relaxation time T_1 and the quantity $1/T_1\eta$ for solutions of HCl are plotted versus p_1 .

It is possible to make for HCl the same assumptions that were made for HNO_3 ; therefore we should expect that the plot of $1/T_1\eta$ versus p_1 should be about the same for the two acids, at least at low concentrations of acid. It is seen in figure 4 that the plot of $1/T_1\eta$ versus p_1 for HCl is rather different from the corresponding curve for HNO_3 . It does not seem possible to explain this behaviour in a simple manner.

The AA thank Prof. L. Giulotto for his advice and the C.N.R. for its financial contribution.

BIBLIOGRAPHY

1. CHIAROTTI, G., G. CRISTIANI, L. GIULOTTO and G. LANZI, *Nuovo Cimento*, **12**, 519, 1954.
2. GUTOWSKY, H. S. and A. SAIKA, *J. Chem. Phys.*, **21**, 1688, 1953.
3. HOOD, G. C., O. REDLICH and C. A. REILLY, *J. Chem. Phys.*, **22**, 2067, 1954.
4. HAPPE, J. A. and A. G. WHITTAKER, *J. Chem. Phys.*, **30**, 417, 1959.
5. ZIMMERMAN, J. R. and W. E. BRITTIN, *J. Phys. Chem.*, **61**, 1328, 1957.
6. BONERA, G., L. CHIODI, G. LANZI and A. RIGAMONTI, *Nuovo Cimento*, **19**, 234, 1961.
7. ——, L. CHIODI, G. LANZI and A. RIGAMONTI, *Nuovo Cimento*, **17**, 198, 1960.
8. BLOEMBERGEN, N., E. M. PURCELL and R. V. POUND, *Phys. Rev.*, **73**, 679, 1948.
9. BLICHARSKY, J., J. W. HENNEL, K. KRYNICKI, J. MIKULSKI, T. WALUGA and G. ZAPALSKI, *Arch. des Sci. (fasc. spéc.)*, **452**, 1960.
10. HUBBARD P. S., *Phys. Rev.*, **109**, 1153, 1958.
11. KAKIUCHI, Y., H. SHONO, H. KOMATSU and K. KIGOSHI, *J. Chem. Phys.*, **19**, 1069, 1951.
12. REDLICH, O. and J. BIGELEISEN, *J. Am. Chem. Soc.*, **65**, 1883, 1943.
13. GIULOTTO, L., G. LANZI and L. TOSCA, *Arch. des Sci. (fasc. spéc.)*, **250**, 1957.