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L’effet non linéaire du bruit blanc et du bruit
de scintillation dans les spectromeétres a résonance
nucléaire, du type « oscillateur marginal »

par Pierre GRIVET et Austin BLAQUIERE

Résumé de la communication de MM. A. Blaquiére et P. Grivet:

L’effet Flicker et le bruit blanc dans les spectrographes nucléaires du type
auto-oscillateur marginal (effets non-linéaires):

Nous donnons une théorie détaillée de la sensibilité de I’oscillateur « marginal »
(autodyne) compte tenu de la non-linéarité de la caractéristique courant plaque-
tension grille, qui détermine le niveau de Poscillation. Le bruit Schottky de
la lampe joue un réle négligeable, mais l'effet de scintillation (Flicker) au con-
traire, est important. On établit la théorie de l’effet de scintillation, sous une
forme qui est notablement différente de celle du bruit Schottky, établie anté-
rieurement.

Enfin, on accorde une attention spéciale au schéma récemment proposé
par Robinson et qui comporte un limiteur d’amplitude, aprés amplification a
niveau élevé. On montre que son avantage est dit & son insensibilité originale
au bruit Flicker.
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Nous rappellerons d’abord les grandes lignes de la méthode qui permet
d’évaluer la puissance de bruit d'un autooscillateur classique, et dans
Pinterprétation des résultats, il sera important de mettre en lumiére la
différence entre le bruit d’un circuit oscillant entretenu, et celui du méme
circuit oscillant isolé de la lampe d’entretien, pris pour élément de compa-

raison.
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Nous verrons ainsi que le bruit du circuit oscillant isolé apparait géné-
ralement comme une limite inférieure du bruit du circuit entretenu par
réaction, mais aussi que cette limite peut étre atteinte dans certains types
d’autooscillateurs qui méritent un examen attentif.

Il est commode, ici, ou I'on a en vue d’établir des lois générales, de
grouper les éléments actifs d'une part, les éléments passifs d’autre part.
On réduit ainsi le systéme au schéma simple de la figure 1: deux quadri-
pdles A et B associés, dont le premier, actif, sera caractérisé par son gain p,
et le second, passif, par son coefficient de transfert f3.

|‘<

A
- fe— =

Fig. 1.

Si ¥V, désigne la tension d’entrée aux bornes de A, et V, la tension de

sortie, on a:
ValVi = 1

et de méme, en considérant le quadripdle B: V,/V, = .
De ces deux relations on déduit 'équation classique de la boucle

1—up =0 (1)

que nous allons expliciter sur un exemple intéressant pour la spectroscopie
hertzienne.
Le quadripoéle actif A sera réduit ici 4 la seule lampe amplificatrice (L),
et le quadripdle passif B au réseau d’impédances de la figure 2, Z,, Z,, Z,.
La tension d’entrée de la lampe sera la tension de grille U, au point M,
et nous prendrons pour tension de sortie, la tension de plaque U ,, calculée
entre le point N et la cathode.
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-— iy
N I )
Z, :
— |
(L) ___. Zz |
) _ f'7 2 : .lj’:
! Z, [
Y, I
I I
¥ . ]
Fig. 2.

Le tube ayant par hypothése une trés grande résistance interne, I'inten-
sité du courant de plaque sera liée a la tension de grille, en régime linéaire,
par la relation:

i, =SU

p

(S pente de la lampe)

g .

D’autre part, 'impédance du réseau passif, vu des bornes plaque et cathode
est:
_ Z,(Zo+Z)
Zy+Z,+Z,

On en déduit la tension de plaque:

Z,(Zy+2Z
U,= —Zip=—.2(—°-—1—) . U,
et le gain du tube amplificateur

De méme, le coefficient de transfert B du réseau passif est:

U Z,

p=—t =
U, Zo+Z,

en admettant qu’il n'y ait aucun débit de grille.

L’équation de la boucle (1), explicitée en fonction des données: les
impédances qui constituent le circuit, et la pente de la lampe, se met ici
sous la forme:
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Z, 2,

TOPL i B - R (2)
Zo+Z,+2Z,

ou:
= ZIZZ S — ZO+ZI+ZZ . (3)

1.2. Un deuxiéme schéma de principe : la résistance négative

1.2.1. L’exemple du Colputts.

Un deuxiéme schéma de principe pour les oscillateurs fait appel a la
notion de résistance négative. On lintroduira ici, en particularisant le
circuit. On appliquera I'équation du paragraphe précédent a un oscillateur
souvent utilisé en spectroscopie, comme oscillateur marginal: le montage
de Colpitts, représenté sur la figure 3. La comparaison avec le circuit de
la figure 2 montre que I'on a dans ce cas:

1 1
- Z, = ——
joC, G+joC,

Zo= r+‘jLCU le

ou r est la résistance série et L la self du circuit oscillant. G; désigne la
conductance de charge I/R; placée entre plaque et cathode de la lampe (en
y incluant la conductance interne). Le plus souvent G; est négligeable et
en premiere approximation nous le négligerons devant Cyw» pour obtenir
des formules plus claires (pour f == 30 MHz, on a par exemple C, = 10 pF,
Cy = 100 pF).

Les deux membres de I'équation (3) deviennent alors:

S

—Z,Z,8 = -
27T CC00
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) 1 C+C,
ZO+ZI+ZZ = P‘+]LO)+ =_— *
jo GG,

La signification du second membre de la deuxiéme équation est bien claire:
c’est 'impédance-série totale du circuit oscillant envisagé isolément, dont
la capacité résultante est:

G0
C = 1C2
C,+C,
D’ou le terme résistif:
Z.ZsS S
2T e Ch0?

On remplacera w? par le carré de la pulsation propre du circuit oscillant,
qui est peu affectée par le couplage toujours lache avec la lampe amplifi-
catrice.

Ainsi, avec la valeur approchée:

0~ ook = 1 - Ci+C,
LC LcC,C,
on obtient
—Z,Z,8S ~ LS
1+C;
L’équation de la boucle est donc:
S 1 C+C
cf; = HLle+ 5:::2"
ou:
— LCw*+jorC+1 = joLS —&i ~ joLS — -
(Cs+Cy)? C,

On la mettra finalement sous la forme approchée, mais bien claire:

C
— LCo*+jw [rC — LS EL] +1=0. (4)

2
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1.2.2. La résistance négative dans le schéma série.

On voit alors que la régénération d’énergie se manifeste par l'intro-
duction dans la maille du circuit oscillant, en série avec les autres éléments
r, L, C, d'une résistance négative.

1 C,

- - Lts
# cGC,

en concurrence avec la résistance naturelle positive r.

Cette remarque nous autorise a remplacer la lampe du montage 3 par
sa résistance négative équivalente, placée en série avec les autres éléments
du circuit oscillant. On est ainsi conduit au schéma réduit de la figure 4.

Cc _L_ L

Fig. 4.

1.2.3. La résistance négative dans les schémas paralléles.

Souvent aussi on utilisera, plutét que la résistance-série r du circuit
oscillant, la résistance parallele R qui lui est équivalente (fig. 5) et qui est
liée & la précédente par la relation

C_L-ms G L
L

Fig. 5.

R=Q0%r=—":

@ désignant la surtension du circuit oscillant non entretenu:

Lw
Q = — avec

| 1
W = —F—
r VILC
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Posant :

G =1/R (conductance-paralléle du circuit oscillant)
et C,/Co = m
la condition d’accrochage s’écrit:
L(G—mS) =0 ou G—mS =20

et I’équation (4) de la boucle devient elle-méme avec ces notations, dans
le cas général ou I’accrochage n’est pas obligatoirement réalisé:

— LCw? + JoL (G—mS) +1 =10 (5)

-

Sur le schéma (5), on associera, en parallele avec la conductance G, la
conductance négative —msS.

1.3. Index de réaction.

La limite d’accrochage est atteinte lorsque la résistance négative
compense exactement la résistance naturelle du circuit oscillant, ¢’est-a-dire
lorsque les paramétres de I'oscillateur vérifient la relation

C,
rC—-LS—=0.
C,
Dans la discussion qui suit, nous caractériserons I'écart a ’accrochage
par un nouveau parametre: U'index de réaction * n défini par:
m—m,

n =
mgy

ou m, est la valeur du rapport C,/C, a 'accrochage, c¢’est-a-dire

G
Mog= —"

S

* Cette notation commode a été introduite par Buyle-Bodin (4) et Hasen-
ager (5).
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Nous choisirons pour variable expérimentale la tension de grille U, et
nous ferons croitre progressivement l'index 7, ce qui nous conduira &
classer les différents comportements possibles du circuit de la fagon sui-
vante:

a) Pour O <m <<my ou —1<n<0, le circuit de la figure 3 est un mul-
tiplicateur de surtension. Son coefficient de surtension ) augmente et tend
vers I'infini lorsque n augmente et tend vers zéro.

b) Pour my<<m ou 0<n, le circuit est un autooscillateur. Nous suppo-
serons que son amplitude d’oscillation atteint une valeur de régime stable

/U\‘s, et ceci nous conduira a introduire la non-linéarité de la caractéristique
de la lampe. A partir de la valeur d’accrochage, la croissance de n entraine
I’augmentation de 'amplitude de régime et la forme de l'oscillation, elle-
méme, s’écarte de plus en plus d’une sinusoide théorique. Elle prend méme
un aspect relaxé, a cycles pratiquement rectangulaires, pour les trés grandes
valeurs de n.

II. BRUIT DE FOND D'ORIGINE THERMIQUE

2.1. Les paramétres du circuit liés au bruit

2.1.1. Le iemps © mesure de la mémoire du circuit.

Dans les cas a), b), le bruit du circuit dépend principalement de deux
facteurs:

— d’une part, de 'intensité de la source de bruit c’est-a-dire de 'am-
plitude des perturbations produites par chacune des impulsions délivrées
par la source de bruit.

Mais ce parametre n’interviendra pas dans notre discussion car nous
supposerons que la source de bruit reste invariable en grandeur et en
position. Ce sera d'une part I'effet thermique de la résistance r du circuit
oscillant, d’autre part I'effet de grenaille de la lampe.

— d’autre part, du temps de réaction du circuit, ¢’est-a-dire du délai
d’extinction de la perturbation produite par un choc trés bref, supposé
unique.

Dans le cas a) ou il n'y a pas d’autoentretien, ce délai correspond au
retour au repos, suivant une loi oscillante & amplitude exponentiellement
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amortie, représentée sur la figure 6 et caractérisée en termes techniques par
le paramétre Q.

U;{t)“ ]

Fig. 6.

La constante de temps 7t avec laquelle la perturbation s’amortit est
d’autant plus grande que n est plus voisin de sa valeur d’accrochage.
7 devient infini & I’accrochage.

Dans le cas b), ce délai correspond au retour au régime stationnaire
d’amplitude U,, conformément a la figure 7.

Fig. 7.

De ce point de vue unificateur, il n’y a donc plus de différence treés
profonde entre les divers types d’évolution, sinon que, dans le dernier cas,
les fluctuations vont se produire autour de ’amplitude moyenne U,, alors
que en dessous de I'accrochage elles se produisent autour de ’amplitude
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moyenne nulle. Ce fait est important et peu intuitif puisque les conditions
de fonctionnement sont radicalement différentes dans les cas a) et b):
dans le cas a) le systéme fonctionne dans des conditions pratiquement
linéaires, alors que dans le cas &) 1l est radicalement non linéaire.

Une étude détaillée du bruit engendré par la source thermique r, a été
antérieurement développée [1] a partir de I’équation qui régit I’évolution
du circuit sous 'effet de ce genre d’excitation.

2.1.2. Le caractére non linéaire de la lampe d’entretien.

On tient compte de la non-linéarité de la caractéristique de la lampe
d’entretien en adoptant pour cette derniére une représentation de la forme

i, = SU, + aU; + bU;

dans laquelle i, et U, sont les parties variables de 'intensité de plaque et
de la tension de grille.

Le cas linéaire apparait alors comme une premiére approximation,
valable lorsque la variable U, est suffisamment petite pour qu’il soit
légitime de négliger les termes en Ug et U:.

2.1.3. L’équation d’évolution du circuit, pour I'excitation aléatoire.

I1 est facile de voir que, dans le cas présent, I’équation d’évolution du
circuit est:

2

d*U dU
LC dt2"+L(G—mS—2maUg—3mbU§)7"+Uﬂ=E(t) (6)

Elle généralise 1'’équation (5) écrite sous la forme conventionnelle
couramment utilisée en radioélectricité, dans laquelle les dérivées par
rapport au temps de la variable sont remplacées par les facteurs jw, (jw)2.

L’équation (6) est une équation de Van der Pol avec second membre,
dans laquelle E(t) est ’excitation aléatoire produite par la source de bruit
thermique r (fig. 4).

2.2, L’effet du bruit sur le circuit, passif ou oscillant entretenu.

Nous résumerons ici les conclusions auxquelles on aboutit, dans les
différentes conditions d’utilisation du montage décrites au paragraphe 1.3.
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2.2.1. Etat passtif.
Lorsque le circuit oscillant est isolé de tout dispositif d’entretien,

I’équation (6) se réduit a:

d*U, du,
+LG—* +U,=E()) (7)

LC—
dt dt

I.a constante de temps 1 du circuit oscillant a pour valeur
v =2 (C[G) (8)
Sa pulsation propre est:
w, = 1/ LC 9)
et on obtient pour carré moyen de la tension de bruit, en explicitant les
différents facteurs qui interviennent dans le terme de source thermique:

r, la résistance de bruit; 7, sa température absolue; %, la constante de
Boltzmann:

ij wet = WyT . (10)

Compte tenu de (8) et (9), 'expression (10) prend ici la forme particulic-

rement simple:
p_pr- T
I C

Notons qu’il s’agit ici de la puissance totale de bruit, c’est-a-dire de la
puissance intégrée sur tout le spectre des fréquences, or il est généralement
utile d’expliciter aussi la puissance de bruit comprise dans une bande de
fréquences, ou de pulsations, Aw, donnée.

Plus exactement, comme 'on s’intéresse aux fluctuations d’amplitude
du signal, c'est le spectre des fluctuations d’amplitude, abstraction faite de
la porteuse, qu’il faudra préciser. On passera d’ailleurs sans difficulté du
spectre du signal modulé en amplitude par le bruit, au spectre de son
enveloppe, ce qui conduit, pour cette derniére, a la distribution spectrale:

2 kT LGw?Aw
P(w)dw = — 2

' n C (l>2+w2 (11)

T
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2.2.2. Etat passif désamorti (multiplicateur de qualité).

Pour —1<<n<<0, au-dessous de la limite d’accrochage, le régime est
encore linéaire. La formule (10) reste valable, mais avec la nouvelle cons-
tante de temps:

2C 12C

T = =
G—mS n G

L.e carré moyen de la tension de bruit devient:

B 1kT (12)
- n C

P =

S|

et la puissance de bruit, dans la bande Aw, reléve encore de la formule (11),
avec la valeur de t appropriée.

2.2.3. Etat d'osctllation.

Dans les conditions d’auto-oscillation, le régime est non linéaire. L’équa-
tion d’évolution (6) peut étre mise sous une forme plus commode, en faisant
intervenir I’amplitude d’oscillation U,.

Posant

U, (t) = U, sin (0t+¢)

ou U, est une fonction lentement variable du temps, tant que le régime
stable n’est pas atteint, on est conduit a remplacer 1’équation (6) par la
nouvelle:

d*U

LC
di?

Imb _,1dU
g+L[G—mS——%—Uﬂ—EE+Ug=EU) (13)

Cette approximation est valable dans les limites ou les harmoniques de
I'oscillation d’ordre supérieur ou égal & 2 sont de tres faible amplitude.

De I’équation (13), on déduit la constante de temps de retour au régime
stable, aprés perturbation:

C —
G-—mS

T =

1C
nG
(n est positif au-dela de I’accrochage),

puis la puissance de bruit, en assimilant le retour au régime a une loi pen-
dulaire linéaire.
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Cette linéarisation dans le voisinage de 1'état stationnaire est légitime
tant que le bruit reste faible devant ’amplitude d’oscillation. Lorsqu’il en
est ainsi, la formule (10) est encore valable, en considérant «w, comme la
pulsation de régime, que nous désignerons dans ce cas par w;. On obtient
dans ces conditions:

kTr , kTLG ,

P=—-a)s‘r— W, T
2 2C
P d K (14)
o C

et la puissance de bruit dans la bande Aw, de I’oscillateur linéaire équivalant
qui nous sert ici de modele, est encore donnée par la formule (11), en adop-
tant pour 7 la constante de temps de retour au régime que nous venons de
calculer.

2.2.4. Diagramme représentant Ueffet du bruit dans les trois états possibles
du circuit oscillant.

On rassemblera maintenant ces différents résultats sur un méme gra-
phique, figure 8, en portant la puissance de bruit totale P en ordonnée,
et n en abscisse, ce qui montre clairement comment évolue le bruit du
circuit lorsque I'on s’approche de ’accrochage, par valeurs inférieures ou
par valeurs supérieures de n. Ces résultats ont été vérifiés expérimentale-

o}

-1 (o)

A Y
mulliplicateur avtooscillateuvr

de surtenscon

Fig. 8.
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1
ment par Buyle-Bodin [4] et Renard [11]. Par exemple, pour n = 100 la

puissance de bruit totale du circuit entretenu est 50 fois plus grande que
la puissance de bruit totale du circuit oscillant isolé.

2.2.5. Expression des résultats en langage de circuit, introduction du coefficient
de surtension (ou de qualité Q) d’un circuit a réaction.

Au lieu de discuter en fonction de la constante de temps 7, on peut
faire intervenir le coefficient de surtension du circuit & réaction, plus usuel
en théorie de circuits.

Dans le cas ou le circuit oscillant est isolé de la lampe d’entretien, le
coefficient de surtension est:

Par extension on adoptera cette derniére expression dans le cas général,
avec la valeur de t appropriée, ce qui conduit, dans le cas @) des multipli-
cateurs de surtension, au facteur:

et dans le cas b) des autooscillateurs, au facteur:

1Cow, 10 w, 10
o* = = = '

n 2G _n2w0—;2_

Pratiquement, la pulsation wg du régime stabilisé est trés voisine de la
pulsation w, du circuit oscillant isolé, ce qui permet d’assimiler & I'unité

ws
le rapport — .
@o
L’expression de la puissance de bruit thermique dans la bande Aw
(formule 11) est alors:

Pour un circuit amorti:

_2kT LG 2kT LGdo

P(w)dw = _— A =—-— —
(@) T C 1 +co2 n C n? +co2
4 0% w} 40 o
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et pour un circuit autooscillant:

2kT LG 2kT LGAw

P(0)do = = — — L o =22 Z722
n C 1 +w n C n +a)

507" W P

2.3. Calcul des constantes de temps des autooscillateurs.

Nous avons pris pour exemple un auto-oscillateur tres simple, le Colpitts,
et 1l ressort des formules précédentes qu’il est nécessaire de réduire le plus
possible la constante de temps © de retour au régime, pour réduire le bruit.
Cette conclusion subsiste dans le cas général; aussi, pour comparer différents
types d’autooscillateurs du point de vue du bruit, sera-t-on amené a évaluer
en premier lieu leurs constantes de temps. Ce calcul peut étre développé
en utilisant une méthode de linéarisation approchée que nous avons exposée
dans différentes publications [3], [6], et d’olu on tire rapidement ’expression
de 7 en fonction des parametres caractéristiques du circuit.

Nous nous contenterons ici d’en résumer les points les plus saillants et
de I'appliquer & deux exemples:

a) l'oscillateur du paragraphe précédent;

b) un oscillateur récemment introduit par F. N. H. Robinson, et dont
le bruit est particulierement réduit. Notre théorie expliquera ses excellentes
performances.

Dans son principe, la méthode consiste & associer a l'oscillateur une
fenction analytique analogue & celle qui a été introduite par Nyquist dans
le cas linéaire, mais qui est plus complete en ce sens qu’elle dépend non
seulement de la pulsation w, mais aussi de I’amplitude de fonctionnement

U

-
Cette fonction complexe se présente sous la forme

H (0, jw)

On l'obtient aprés une linéarisation approchée de I'oscillation, sur
laquelle nous n’insisterons pas ici, en remplacant les dérivées successives
par rapport au temps qui figurent dans son équation différentielle d’évo-
[ution par jw, (Jw)?, (jw)3, ete.

Ainsi, dans 'exemple précédent, I'équation (13) permet d’engendrer la
fonction analytique
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3mb
LC(jw)? + jcoL(G—mS—% U§)+ 1

3mb
1—LCw2-§-ja)L(G—mS— % Uj)

Dans le cas général, on séparera la partie réelle et la partie imaginaire
de H (U,, jw), que I'on écrira: :
H(0,, jo) = X (0, ©)+Y (U, o)

moyennant quoi la constante de temps t de retour au régime stabilisé est

donnée par I’expression:
aX\? N aY\?
| dw Jw

, 0X oY 0X aY

(15)

)

Les dérivées partielles sont évaluées dans les conditions du régime,
pour U, = U et o = o,

Dans I'exemple précédent, on trouve, en tenant compte des relations
qui fournissent 'amplitude et la pulsation de régime:

U§=4G—mS= _4_8 n
3kb 3b 1+n

w, = 1/JLC

X = 1—-LCw?

3mb
Y = Lw(G—mS——m— U;)
4

a2 0 ox 2LC

-—_— —_—_— = - w

609 ow *
Y 3mb aY Imb
m=—lesUs — = L G—mS———n—q——Uf =0
oU, 2 dw 4
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0X\2  [8Y\?
(a—) 4% (a—> = 412 C?w? = 4LC
w w

0X Y cX 0Y
— - = - 3mbL*Cw’U,= — 3mb LU,
00,00 0w dl,

On obtient finalement pour 7, la valeur:

4LC c _1c -
3mbLO?  G-mS nG

On reconnait I’expression mentionnée au paragraphe 2.2.3.

2.4. Limites de I'approximation menant a une équation de Van der Pol.

2.4.1. Le caractére privilégié des oscillateurs du type Van der Pol.

Les approximations qui nous ont permis de mettre I’équation d’évolution
du circuit sous la forme particulierement commode d’une équation de Van
der Pol (équation (6)) doivent étre discutées.

En effet, nous avons montré antérieurement [1],[2] que I’équation de Van
der Pol correspond a un cas idéal pour lequel la fréquence de I'oscillation
est pratiquement indépendante des écarts d’amplitude au régime. Il
s’ensuit que les fluctuations d’amplitude dues au bruit, n’entrainent pas
de fluctuations de fréquence:

Ce type d’oscillateur a une fréquence trés stable.

2.4.2. Le couplage amplitude fréquence.

Au contraire, lorsqu’une légére non linéarité est introduite dans le
coefficient du dernier terme, la fréquence de I'oscillateur peut devenir tres
sensible aux fluctuations d’amplitude.

Par exemple, si on remplace I’équation (6), écrite sous la forme simplifiée
(en supposant que le coefficient a est nul):

d*U dUu
LC 3 ¢+ L(G—mS —3mb U}) dt“+Ug=E(t)

t2

par la nouvelle équation:

d2U,

LC
dt?

dU
+ L(G—mS —3mb UY) dr” + (1+nUY) U, = E(1)
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(en introduisant le parametre n) on obtient une loi de dépendance « fré-
quence-amplitude » de la forme:

3

La valeur du parameétre 5 caractérise donc l'instabilité de fréquence
de D’oscillateur, c¢’est-a-dire I'importance du couplage entre les fluctuations
d’amplitude et les fluctuations de fréquence.

2.4.3. Exemple de Uoscillateur Colpiitts.

Pour discuter nous reviendons a I'équation générale (3) qui nous a
servi de point de départ:

_ZIZZS — Zo+zl+22

Dans le cas de I'oscillateur qui nous intéresse, on a:

Zo+Z,+7Z, = r+jL +—1 vee C = 172
r w avec
0 1 2 J ja)C C1+C2

S

-Z,72,8 =
! . C1C2w2 _ijIGi

et, comme nous allons le voir, c’est ce deuxiéme terme qui est responsable
de I'instabilité de fréquence. En effet différentes approximations nous ont
conduit & n’en conserver que la partie réelle:

YAV LS
142 =G

Or s1 on tient compte aussi de la partie imaginaire en posant

L
C,

I’équation du circuit devient:

1 L
r+jLo+ —= — S+ jwiS
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soit:

c
—LCw® + jow I:I'C—LC—1 S:|+ [1+ w?ACS]=0
2

Sous forme différentielle, avec les notations utilisées précédemment, il
vient:

d*U d

Lc Y t-m?Y s (1+2s\u, = 0
dt? dt L g

Finalement, si on fait intervenir la non-linéarité de la caractéristique de la
lampe, en remplacant S dans cette équation par:

S+ bU}?

(il est facile de voir que le terme aU , ne joue aucun réle dans cette théorie,
aussi en ferons-nous abstraction ici); on obtient:

LCd2U9+L(G S bUz)dU"+ 1+'ls+lbU’- U 0
—m — = — — R
dt? mO% dt L | ¢

On en déduit la loi de dépendance « fréquence-amplitude »:

A 3
= 1+ — S+ ——b0?
! V°[ 2L° T 8L "]

et les écarts de fréquence sont liés aux écarts d’amplitude par:

v 3 A
EE 22 B A, .
voe 4L
Dans I’exemple actuel on a:
C,G; G;
A~ 12'L2= m — L2
C C,

D’ou la loi qui définit I'instabilité de fréquence

Av

3 LG;
~mb — 0,40, .
VO 4 Cz
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I1I. L’EFFET DE SCINTILLATION ET SON INFLUENCE
SUR LE REGIME D’AUTOOSCILLATION

3.1. Représentation du bruit de la lampe
par la résistance équivalente R,,

Dans les précédents paragraphes, nous avons principalement porté
notre attention sur le bruit d’origine thermique. Nous tiendrons compte
maintenant du bruit de la lampe en placant sur la grille une résistance
fictive R, qui a 'avantage de ramener les différents effets & un méme type
et de faciliter leur comparaison.

L’introduction de cette nouvelle résistance de bruit nous fait passer
des schémas 2 et 3 aux schémas 9 pour I’analyse générale, et 10 pour notre

exemple (Colpitts).
N
I B T
z, .
M Re ]
.- =g
[V B
Ty sz 1T 4

Fig. 9.

3.2. Equations d’excitation du circuit par le bruit de la lampe.

Du point de vue théorique, il est facile de se rendre compte de la modi-
fication ainsi apportée & I'équation de la boucle. Nous la préciserons d’abord
dans le cas général de la figure 9, puis dans le cas plus particulier de la
figure 10.

Comme il n’y a aucun débit de grille, le gain du tube amplificateur
n’est pas modifié par la présence de la résistante R;. On a donc toujours:

U,=nU, (17)
avec

Z,(Zo+Z,) S

——— (18)
Zo+Z,+ Z,

'u=
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Le coefficient de transfert 3 du réseau passif, abstraction faite de R, est
toujours:

Yoo p= L (gure 9) (19)
—=f= igure
U, 7ot 2, B
Mais la nouvelle tension de grille est:
U,= u,+E (20)

E, désigne la force électromotrice aléatoire dont la résistance R, est le
siége, et qui représente deux types de bruits:

1. le bruit Schottky de la lampe,
2. le bruit de scintillation.

Nous reviendrons ensuite sur la distinction qu’on peut établir entre ces
deux types de bruit et a leurs spectres pour appliquer les résultats de notre
théorie. Mais pour le calcul lui-méme nous utiliserons la force électromotrice
instantanée totale E; (f) présente aux bornes de R.

Des équations (17), (18), (19), (20), on déduit:

(1-pp) U, = E, . (21)

Or, comme [3 et w sont, dans le cas général, des symboles opérationnels,
cette derniére équation n’est autre qu'une équation différentielle avec
second membre.

Ceci signifie physiquement que le circuit dont nous avons étudié plus
haut I’évolution va maintenant étre excité par la force électromotrice
aléatoire E,; (t), dont la densité spectrale de puissance est donnée par la
valeur de R; & un facteur 4kT prés.

Si on explicite les facteurs et w dans le cas de la figure 9, on obtient:

Z,Z,
1+—2__§\U,=E,

[Zo+Zy+Z,4+Z,Z,S] U, = (Zo+Z,+ Z,) E,

puis:

Enfin dans le cas de la figure 10, il vient:
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Fig. 10.

+jLo+ : LS U +jLw+ ! E
r w — =|r @ SR

£ jCCU Cl + Cz g / jCCO :
soit, avec les approximations précisées plus haut:

C
[—LCw2+jer+1 —jwLS —C—l] U,=(—LCo*+jorC+1)E, (22)
2

Finalement, si on tient compte de la non-linéarité de la caractéristique,
I'équation (22) s’écrit sous forme différentielle, avec les notations précé-
demment définies:

d*U

LC
dt*

g

g 2 dUg
+ L(G—mS —2maU,—3mbU,) ar +U

d? d
=(LCF+LGE+1)E, (23)

D’autre part il est bien clair que, en pratique, c’est la tension u, et
non la tension U, qui est expérimentalement observable, aussi est-il indis-
pensable de réécrire I’équation (23) en adoptant la nouvelle variable u,.
Elle devient alors:

2

d*u, du,
LC +L(G—mS)E+u9

dt?

=0 (24
dt dt dt ] (24)
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3.3. Distinction entre le bruit Schottky et le bruit Flicker.

Il est maintenant nécessaire de préciser les caractéristiques du bruit
étudié.

En ce qui concerne le bruit Schottky, nous avons montré dans un
travail antérieur [7] que son effet est négligeable, dans un montage de ce
type, devant l'effet thermique de la résistance r. Mais 1l n’en va pas de
méme pour le bruit de scintillation dont le spectre est donné sur la figure 11.

Req
(0) T ll ™
9000 LAl
1 ‘\
Vb
8000 Al \‘;
i !\-l"\l
7000 | -‘=“
TN
6000 ‘ ‘Ul
| \Iv
5000 M;‘i%
1l
4000 L]
J LN
t_ﬁ’
3000 e {rr.;,.
[ 110
2000 il f ™
IBRARE
L]
[ 11l
1000 Pl
| "\ \“
] Liglill f(HZ)
100 500 1K 2K 5K 10K 20K S50K 100K

Bruit de scintillation dans les triodes et
les pentodes montes en triodes

Fig. 11.

La densité spectrale (:4 RT, = 1,6.10720J) dans l'effet de scintillation
des triodes.

Cela provient de ce que le spectre présente une branche d’allure presque
infinie aux basses fréquences, jusqu’a 1000 Hz environ, ce bruit anormal
est d'un ordre de grandeur incomparablement plus grand que le bruit
thermique.

Méme en faisant intervenir 'atténuation importante dont rend compte
notre théorie antérieure [7], qui nous a conduit a négliger de ce fait le bruit
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Schottky, 'effet du bruit anormal sur le régime de I'oscillateur conserve
un ordre de grandeur notable et en fait il concourra avec ’effet thermique,
pour définir le niveau de bruit total de ’oscillateur.

3.4. Calcul de Ueffet Flicker.

3.4.1. L’équation différentielle approchée.

En ce qui concerne la force électromotrice E, (t), elle présente des
fluctuations lentes et de grande amplitude (par suite de la limitation aux
basses fréquences du spectre), ce qui nous autorisera a négliger dans les

calculs ses dérivées par rapport au temps Zt—l’ etc.
Avec cette hypothese, I’équation (24) s’écrit:

d*u du du? du
LC S+ L(G-mS) 2 +u,—mL|la—2+b—2
R M) et mA e i

du du du
= mL| 2aE, —2+ 6bE,u, — 2+ 3bE*—¢ 25
m[a’dr+ the gy T dr] £42)

3.4.2. Résolution de U'équation différentielle.

Enfin nous appliquerons a cette équation la méthode du premier har-
monique. Posant:

u, = 4, sin wyt

(4, amplitude constante; w, = I/JR)

et identifiant les termes fondamentaux des deux membres, il vient:

3mb
(G—mS)d,w, cos wyt — Tﬁ:wo cos wyt

= 2maE;d,w, cos wgt+ 3mbE} i, cos wyt

Négligeant le terme E? au second membre, on obtient ’expression de
I'amplitude d’oscillation #, qui se trouve lentement modulé par la fonction

EI (8)
G— -2
i = 2\/ mS —2makE, (26)
Imb
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3.4.3. Discussion de Uexpression de u,.

L’accrochage ne peut se produire que si 'expression qui figure sous le
radical est positive. Nous nous placerons dans la zone d’accrochage, assez
loin pour que le terme fluctuant laisse toujours I’argument du radical
positif. La zone ainsi interdite est si étroite qu’elle n’intervient pas en
pratique.

Dans ces conditions, on tire de ’expression (26) les fluctuations relatives
d’amplitude dues & I'effet de scintillation. En dérivant logarithmiquement
on obtient finalement pour le carré moyen:

4ma? o

FsA N2 2
) = G —ms) © 27

Si on exprime ce carré moyen en fonction de I'index de réaction n, on trouve:

4a* 1+n —
oi1,)) = — — —E} - 2
(02,) s n (28)

Il est aussi intéressant de noter que le coefficient de courbure a qui
n’intervient pas dans la valeur de I'amplitude stabilisée en I’absence de
bruit, joue un réle trés important dans «'injection » du bruit de scintilla-
tion, de méme qu’il joue un réle important dans la création d’harmoniques.
Et ceci est bien intuitif puisque le bruit de scintillation, qui s’introduit en
basse fréquence, ne peut avoir un effet sensible au voisinage de la fréquence
d’oscillation (qui est une fréquence élevée), que par la création de « pro-
duits de modulation » entre les termes de basse fréquence et le signal. Ce
mécanisme s’apparente a celui de la création des harmoniques.

3.4.4. Relation avec la théorie phénoménologique de Buyle-Bodin.
u
Si on regroupe les termes linéaires en d—: dans I’équation (25), on
obtient pour coefficient:
L[G—mS —2maE; —3mbE}]

que I'on peut interpréter en introduisant une fluctuation aléatoire de la
pente de la lampe comme I’a fait M. Buyle-Bodin [9]. On retrouve ainsi
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la formule (1) de la référence (9). Les fluctuations de pente proviennent
ici de la polarisation aléatoire de grille, et notre méthode les explicite en
fonction des paramétres classiques, suivant:

S(E;) = S+2aE;+3bE} ~ S+2aE,

(en négligeant EZ)

3.4.5. Comparaison rnumérique des effets du bruit flicker et du bruit ther-
mique.

De la formule (28) on déduit la distribution spectrale de la perturbation
d’amplitude apportée par 'effet de scintillation:

4a% 1+n
Pr(N)4f = = oo —— 4KTR,4f (29)

(-3

ce qui permet une comparaison avec la perturbation due au bruit thermique,
dont le spectre de fréquence est, comme nous I’avons vu:

Pnar=a s Y (30
C n? o?
A
On adoptera par exemple les valeurs:
r = 1 Q (résistance série du circuit oscillant)
Q = 100
T' =300°K

k = 1,37.10723 joules/°K

ce qui donne:

kT A .
4 i LG = 4kTr = 1,64 . 107 “" joules
.
—; est négligeable dans la bande des basses fréquences considérée.
Wo
De la formule (30) on tire, pour l'effet thermique

104
P,(f) = — 1,64 .107%°
n
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Dans la formule (29) relative au bruit de scintillation, a, b, § sont géné-

ralement du méme ordre de grandeur. Admettons par exemple que le
2
a

coeflicient — 35S soit de I'ordre de 10, ce qui semble une valeur raisonnable.

Au voisinage de la limite d’accrochage, n est petit, par exemple on
prendra:
1 1+n
= 100 d’ou "
ce qui donne pour le coefficient de surtension du circuit entretenu:
Q* =50 @ = 5000
De ces valeurs on déduit:
P,(f)=10°.1,64.107%° R,
P,(f)= 10%.1,64.1072°,

Pour la valeur B, = 10° Q le bruit thermique et le bruit de scintillation
ont des effets qui sont du méme ordre de grandeur, et pour les valeurs
supérieures de R;, le bruit de scintillation devient prépondérant. Or a la
fréquence de 10 kHz, la résistance équivalente de bruit anormal du tube
6 AK5 dépasse 10*Q et devient trés supérieur a cette valeur pour des
fréquences légérement plus basses.

L’examen de la figure 11 confirme 'intérét de cette théorie dans le
domaine des basses fréquences.

~ 100

3.4.6. Pentodes et triodes.

Cette explication donne une raison nouvelle:pour préférer les triodes
aux pentodes, lorsqu’on tient compte d’une particularité peu connue des
caractéristiques statiques des pentodes. Celles-ci montrent en effet une
structure fine qu’il est possible de mesurer avec des méthodes appropriées
(cf. [12]), la courbure de la caractéristique i, = f (U,) présente des oscil-
lations qui la font passer par la valeur zéro comme le montre la figure 12.
En ces points particuliers on a donc b = o et la formule (29), montre que
la contribution du bruit Flicker est alors trés importante, car a ne s’annule
pas. L’effet décrit par la figure 12 est général, et se produit pour toutes les
pentodes: on attribue sa cause a4 l'optique électronique, dans la région
grille plaque, car ces oscillations de la courbure ne se manifestent pas dans
le courant cathodique total; c’est 1a encore un phénomeéne de partage et
dans le cas des autooscillateurs son influence néfaste vient s’ajouter a celle
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du classique effet de partage. On doit donc employer des triodes, dont les
caractéristiques sont réguliéres, comme le montre la figure (13) empruntée

a Hasenjager [5].

- b
I=sv+ aVf2 + bV} Zma] i8
t o2s / 1
ave =& 116
(#4) | 676 !
s I "
~rl

11,2 r g7 5 / 412
d =
. ] N

%= 1 s
“taa) [ /// 18

S
/ 5‘\
7 6 5 4 3 2 1 0
-02 -

CARACTERISTIQUES D'UN TUBE 6J6

Fig. 12a.
U=Ug=ai0 v
UM'DV

UgTIOOnyVe”
a ]
mA/VI'z__ o it ‘1:

Dol 2=

0,5/ :
—/ ]
SN GE -

E==r TS

L G S —— a— .

=1 R G 4+ I—*—— -12
L ! 1 | |
-5 4 -12 -10 -8 -6 -4 -2 g
q Voir
Fig. 12b.

L’allure des coefficients caractéristiques S, a, b pour des triodes (12a) et
des pentodes (12b). On remarquera allure trés différente de b dans les deux cas.
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IV. LOSCILLATEUR A FAIBLE BRUIT DE ROBINSON

4.1. Différents types de non linéariiés
et leur représentation par une pente modulée.

Dans I'’exemple classique de la figure 3, la non-linéarité de la caracté-
ristique de la lampe d’entretien, dont ’aspect général est indiqué sur la
figure 13, a été exprimée par la relation utilisée plus haut

) is

fa-1—poiné de Fonclionnement

/M
Us

—

Fig. 13.
i,= SU,+aU;+bU} (31)

Il s’agit 14 d’un modele simplifié, commode en théorie, et qui permet
de mettre en évidence de fagon claire certains aspects marquants du fone-
tionnement de I’autooscillateur.

Supposons en premier lieu que le circuit oscillant de la figure 3 soit
déconnecté de la grille (fig. 14) et que, & sa place nous branchions sur la
grille de la lampe un générateur fournissant la tension sinusoidale:

Fig. 14.

U= Usin(wi+o)
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La partie variable de I'intensité de plaque qui en résulte est alors:

. 30° .
i =(S+ 2 b)Usm(wt+(p)

02 cos 2 (wt+¢)

Ao NS

U3 sin 3 (wi+ @) (32)

Enfin si nous éliminons les harmoniques 2 et 3 par filtrage, ce qui se produit
pratiquement dans le montage complet par suite de la présence du circuit
oscillant sélectif, nous obtenons I'intensité sinusoidale:

- 3b0?
asar

Tout se passe donc comme si la caractéristique de la lampe était rectiligne
au point de fonctionnement, et de pente variable avec 'amplitude suivant
la loi:

3p 02

S(0Y) =S+ (33)

Nous reconnaissons le terme qui 8’introduit dans le coefficient

foon(eeto)

de I'équation (13) et qui est responsable de la stabilisation de I’amplitude
de I'autooscillateur.

4.2. Généralisation de la notion de pente modulée;
application a Uoscillateur.

Cette fagon de procéder nous conduit & envisager le cas plus général
ou la variation de pente locale est de la forme

S(0) = ¢(0)
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et nous allons voir que, effectivement, la fonction s (U) peut différer pro-
fondément de la loi (33), en examinant ua second exemple: 1oscillateur
de Robinson.

Le circuit oscillant étant toujours déconnecté de la grille, et remplacé
par le générateur de tension, supposons que I’on fasse subir & I'intensité
de plaque les opérations suivantes (fig. 15):

NANAL. HA
T A

oscillation initiale

P
K wmpose

creneav Filtre

Fig. 15.

1) une trés grande amplification;

2) un écrétage, de niveau imposé, qui transforme I'oscillation précédente
en une oscillation de forme pratiquement rectangulaire et de hauteur fixée
uniquement par le niveau d’écrétage, des que cet écrétage est prononce,
ce qu'on sunpose réalisé; ‘

3) un filtrage conservant seulement le fondamental du créneau pério-
dique.

I’onde sinusoidale obtenue finalement a la particularité d’avoir une
amplitude indépendante de 'amplitude de la tension de grille U. Elle est
représentable par la loi:

. KU KU sin (ot + @)

i= 7= 0 = K sin (ot+¢)

ou K est une constante positive qui ne dépend que de I'écrétage.
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Ainsi, la suite de ces opérations équivaut a la donnée d’une caracté-
ristique linéarisée de pente variable avec 'amplitude suivant la loi

K
S(0) = 7 (34)

Il suffira de débrancher le générateur de tension de grille, et de recon-
necter le circuit oscillant primitif, qui sera maintenant alimenté par I'inten-
sité de plaque transformée par amplification et écrétage (le filtrage est
assuré automatiquement par le circuit oscillant lui-méme) pour obtenir un
autooscillateur obéissant a la loi: :

d*U, mK\ dU,
g

L’exemple que nous venons d’analyser a été réalisé par F. N. H. Robin-
son. Il est représentable par le schéma 16.

Amptificateur dimitevr

G

Fig. 16.

4.3. Les particularités de Uoscillateur de Robinson.

I est facile de se rendre compte que I’oscillateur régi par I’équation (35)
différe des oscillateurs radioélectriques classiques sur un certain nombre
de points:

1) II est dépourvu de condition d’accrochage. Si I'amplitude est tres
faible (dans les limites ou les différentes opérations qui ont été définies
plus haut gardent leur sens, c’est-a-dire ou I'intensité de plaque conserve
une amplitude trés supérieure au niveau d’écrétage, et ou I’onde est pra-
tiquement un créneau: cette condition est discutée en appendice), le terme

22
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mK|U, est trés grand. C'est lui qui impose la croissance de 'oscillation
jusqu’au moment ou il est compensé par le terme positif G.
[’amplitude stabilisée est donc:

mK
O,= — 36
G (36)

Il est bien clair aussi que si I'amplitude d’oscillation était amenée a
dépasser cette valeur, sous l'effet d’'une perturbation quelconque, le terme
positif G deviendrait alors prépondérant et son amplitude décroitrait
jusqu’au régime.

2) La constante de temps de retour au régime aprés perturbation sera
calculée par application de la formule (15).

La fonction complexe associée a l'oscillateur est:

H(U,,jo) = (1 —LCcuz)-}-ij(G— Tﬁli)
q
Ses parties réelle et imaginaire sont:
X = 1 -LCw?
Y = L(G _ ﬁ) o
09

Les conditions du régime sont définies par (36) et par w, = 1/\/L_C, et il
vient:

oX oX

— =0 — = — 2LCw,

ovU, ow

oY LmK Y e mK 0
—_— = —_— —_— = —_— =
o0, 0t dw 0,

OX\2 [0Y\? s B
) +(5) =42 C ol = 4LC

0X 0Y 060X Y mK2I’Cw? = 2LmK

90,00 w80, U 02
On obtient finalement pour 7 la valeur:
2C C
=2 0 22¢

mK G
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Ce résultat est important car il montre que ce type d’autooscillateur
a la méme constante de temps que le circuit linéaire qui le pilote, alors que
de la discussion du paragraphe 1 il ressort que les autooscillateurs conven-
tionnels ont une constante de temps trés supérieure & cette valeur limite,
d’autant plus grande d’ailleurs que les conditions d’utilisation sont plus
voisines de ’accrochage: cela tient évidemment a ce que I'oscillateur fonc-
tionne en fait assez loin des conditions physiques de ’accrochage, qui ne
sont pas décrites dans notre modele comme il est expliqué en appendice.

3) Des résultats du paragraphe 1, il résulte que le bruit de cet auto-
oscillateur est trés faible, comme sa constante de temps, et il est justiciable
des formules (10) et (11):

P(w)4 2L e 4
. w_n? 1 +w2 @
0> w;

4.4. Effet négligeable de Ueffet de scintillation de la lampe.

Nous avons établi plus haut que la perturbation apportée au régime de
I’autooscillateur par I'effet de scintillation est liée au coefficient a de la
caractéristique de la lampe, ’absence de ce coefficient entrainant corré-
lativement 1’absence de 1'effet di au bruit anormal.

D’autre part ce coefficient est aussi celui qui fixe le taux d’harmonique 2;
par conséquent I’absence de I’harmonique 2 apparait comme un critére de
qualité puisque 'autooscillateur est alors insensible au bruit de scintillation
de la lampe.

Cette condition se trouve ici réalisée. En effet I'intensité obtenue aprés
amplification et écrétage obéit a une loi en créneau périodique, et 1'on sait
que le développement en série de Fourier d’une telle fonction ne contient
que des harmoniques impairs. :

Ce point peut étre précisé en définissant pour I’ensemble «lampe-
amplificateur-ecréteur » une caractéristique, qui jouera, dans le nouveau
montage, le méme réle que la caractéristique de la figure 13 relativement
aux oscillateurs classiques.
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On portera en abscisse la partie variable de la tension de grille U, et
en ordonnée la partie variable de l'intensité de plaque transformée par
amplification et écrétage.

Dans I’hypothése ou la fonction obtenue est un créneau périodique
d’amplitude imposée par 1'écrétage, la caractéristique présente 'aspect
discontinu de la figure 17 a).

— 1 Ly

(a)
Fig. 17 a.

Un filtrage idéal, conservant seulement le fondamental de ’oscillation,
remplace cette caractéristique par le segment MN, figure 17 b, dont la pente
est inversement proportionnelle 4 I'amplitude U, de la tension d’entrée.

C’est ce segment de pente variable qui est a I'origine de la loi (34) et
de I'équation d’évolution (35).

N
K P |
'lI /” < :
Il I,r I’
r',/ :
U, o :
%’ ol ” '
' .7 ) L[a
o +
1 Py ‘}
’
: /’ 4
1 T
] - ,/
!L:—“’ _.K
Fig. 17 b.

Un filtrage plus imparfait remplacerait la caractéristique par une courbe
continue (fig. 17 b), courbe II) présentant un point d’inflexion en O.

C’est parce que le point de fonctionnement est ici un point d’inflexion
que le coefficient @ du développement (31) est nul et que, par suite, le
bruit anormal est éliminé.
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4.5. Un oscillateur d’actualité : le pendule a échappement a ancre.
Amélioration des horloges a quartz.

Supposons qu’apres 'amplification et I’écrétage on procéde a une déri-
vation du courant obtenu. Le créneau périodique sera transformé en une
suite d’impulsions, alternativement positives et négatives.

Comme la hauteur des créneaux est indépendante de la tension de grille
d’entrée, il en sera de méme pour les « tops » successifs.

Le circuit oscillant qui « pilote » I’autooscillateur n’intervient dans ces
conditions que pour imposer les époques des chocs successifs qu’il regoit,
et il choisit ces époques de telle sorte que chaque impulsion lui soit com-
muniquée en un point d’élongation nulle, et dans le sens convenable.

On comprend ainsi pourquoi I’autooscillateur a la méme constante de
temps que le circuit oscillant pilote, c’est qu’en effet tout se passe comme
s1 la suite d’impulsions qui I’entretient provenait d’une source autonome
la réaction n’intervenant que pour transmettre une information pure a
cette derniére, et ne faisant intervenir qu'une condition de phase.

On peut évidemment traiter le probléeme comme nous I’avons fait dans
les paragraphes précédents: le filtrage du créneau périodique ou de la
suite d’impulsions par le circuit oscillant sélectif conduit & peu prés au
meéme résultat, et dans les deux cas, le fondamental ainsi extrait a une
amplitude indépendante de celle de la tension de grille.

Mais il est maintenant plus simple de I’examiner a la lumiére de la
remarque précédente, auquel cas on s’apercoit que 'on a réalisé un auto-
oscillateur linéaire, et qui pourtant se stabilise (ce qui peut sembler en
désaccord avec les théories générales concernant la stabilisation des auto-
oscillateurs) grace & une boucle de réaction qui ne met en jeu aucun transfert
d’énergie, mais seulement un transfert d’information.

Finalement le mécanisme que nous venons d’analyser est le méme que
celui des horloges a échappement & ancre. Le circuit oscillant pilote est
I'équivalent du balancier. Les impulsions sont fournies par une source
autonome: un ressort, et la pendule impose, grace au dispositif de I’échap-
pement & ancre, les dates des chocs nécessaires 4 son entretien.

On voit ainsi que les horlogers au cours d’une longue évolution histo-
rique se sont orientés vers un montage dont les qualités sont exceptionnelles
en ce qui concerne le bruit, et sans doute y aurait-il avantage a tirer parti
de cette analyse dans la conception des horloges & quartz actuelles, en
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substituant a l'excitation sinusoidale un entretien par impulsions « symé-
triques » (c’est-a-dire alternativement positives et négatives), du genre de
celul que fournit le montage de Robinson; mais un nouveau probléme tech-
nique se trouve ainsi ouvert. Est-il possible de douer un montage de ce
genre des qualités métrologiquement exigibles, pour que les autres facteurs
d’instabilité ne viennent pas détruire 'avantage fondamental escompté en
ce qui concerne le bruit de fond.

APPENDICE

La théorie de l'oscillateur de F. N. H. Robinson peut étre élargie et
ainsi approfondie, en tenant compte du fait que I'amplification suivie de
I’écrétage de l'intensité de plaque ne conduit pas a un créneau périodique
parfait.

[’écart entre la fonction réelle et le créneau parfait est d’autant plus
important que la tension de grille est plus faible, et il advient méme que
pour des tensions de grille extrémement faibles le niveau d’écrétage ne
soit pas atteint, ce qui conduit & une onde de sortie pratiquement sinu-
soidale.

Une étude plus précise exige donc la recherche du fondamental de I’onde
sinusoidale écrétée, et une discussion tenant compte de son amplitude et
du niveau d’écrétage.

Désignant par A 'amplitude de 'onde obtenue aprés amplification, et
par E le niveau de I'écrétage, on obtient pour I'amplitude du fondamental
de la sinusoide écrétée (figure 18):

I
P

+
MNiz)

£ - W, ©C

Fig. 18.
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2AT 2A 4E
— — —SInNTCOST+ — coOSs T
T b T

i=

(la signification de t est indiquée sur la figure 18; c’est le segment MN).
Nous supposerons que ’amplification est linéaire, et nous poserons:

A=yUg

ol y est un facteur constant.
[’amplitude du fondamental du courant de sortie est donc:
4E

2yT 2
i=—}—Ug——ngsintcosr+——cosr (37)
T T n

et, pour un niveau d’écrétage imposé, T est une fonction de A, donc de U
) ) ) g’

comme l'indique la figure 18.
De I'expression (37), on déduit la loi S (T,) qui généralise la formule
(34):
i 2 4E
S(0)=—= —y(‘c— sin T cos 1) +
n0

g % g

Cos 1T

Notamment, pour v = 0, on retrouve bien la loi (34)

) K K 4E
= — avec = —
0 m

[’équation d’évolution de ’autooscillateur devient elle-méme:

dU
cos 1.':| —dti+ Uu,=0 (38

d*U, 2my _ 4mE
LC—=—+ L} G— — (v—sinz cos 1) —
dt m T

g9
Nous préciserons les conditions de fonctionnement en remarquant

que 7 diminue de 7/2 a 0, lorsque A croit, de la valeur limite £ a I'infini.
Pour A = E, on a:

S(U,) =1y

Pour A < E, lamplification étant par hypothése linéaire, §(0,)
conserve la valeur constante y.

Ces remarques conduisent & représenter la loi de variation de la pente
s (0,) en fonction de U, (fig. 19).
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Fig. 19.

On voit alors que la résistance négative — mS (U,) ne devient pas
infinie lorsque U, tend vers zéro, comme semblait I'indiquer la théorie

K
simplifiée, qui extrapolait la loi de variation S (U,) = — aux trés faibles

0

g
amplitudes.

g s G ; . :
La condition y = — définit la limite d’accrochage; mais alors I'écrétage
m

n’entre pas en jeu, figure 20.

\ s(%) £  niveau d'écretage

limite daccrochage
Fig. 20.
Cette limite est d’ailleurs théorique. Pour que l'autooscillateur fonc-

G
tionne, il faut que l'on ait y > —, auquel cas il se stabilise au point P
m

de la figure 19.
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