Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 14 (1961)

Heft: 10: Colloque Ampère

Artikel: Paramagnetische Elektronenresonanz von Fe3+ in einem natürlichen

Mg Al2 04 Spinell

Autor: Brun, E. / Loeliger, H. / Waldner, F.

DOI: https://doi.org/10.5169/seals-739614

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Paramagnetische Elektronenresonanz von Fe³⁺ in einem natürlichen Mg Al₂ 0₄ Spinell

E. Brun, H. Loeliger und F. Waldner Physik-Institut der Universität, Zürich

Summary.

The electron paramagnetic resonance spectrum of a Fe³⁺ impurity in a natural Mg Al₂ 0_4 spinel has been measured from 8.6 kMc/s to 9.8 kMc/s at 300° K up to 10 kGauss. In this range all possible transitions with different ΔM have been observed at $\Theta = 0$ ° except the pure magnetic transition with $\Delta M = 3$ which is disturbed by the Cr³⁺ line. The crystal field parameters in the usual spin Hamiltonian for octahedral sites are:

 $g = 2.001 \pm 0.007$, $|D| = 0.247 \pm 0.001$ cm⁻¹, $|a - F| = 0.046 \pm 0.002$ cm⁻¹, $|a| = 0.047 \pm 0.004$ cm⁻¹. D and (a - F) have opposite signs.

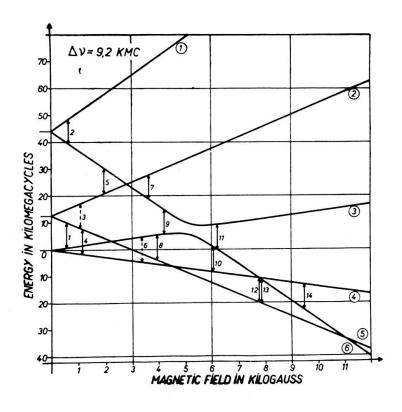
In Spinellen bilden die Sauerstoffionen eine nahezu dichteste kubische Anionenpackung mit tetraedrischen und oktaedrischen Zwischenräumen. Beim vollständig geordneten Spinell (jeder Zwischenraumstyp ist nur von einer Kationenart besetzt) haben die Kationen in tretaedrischen Zwischenräumen exakt kubische Punktsymmetrie (T_d), während die Oktaeder längs einer Würfeldiagonale deformiert sein können. Das Kation in diesen Lücken hat rhomboedrische Punktsymmetrie (D_{3d}) [1]. Bei natürlichen Spinellen sitzen die meisten Al³⁺Ionen in oktaedrischen Zwischenräumen, während bei synthetischen Spinellen die Verteilung in den möglichen Gitterplätzen ungeordnet ist [2]. Bei Messungen mit paramagnetischer Elektronenresonanz (EPR) empfiehlt es sich, natürliche Spinelle zu benützen, da bei synthetischen Kristallen die Linien durch die Unordnung stark verbreitert sind [3].

EPR-Übersichtsmessungen im X-Band an natürlichen roten, einem violetten und einem gelbbraunen Spinell [4] zeigten mehrere breite Linien zwischen 4 und 10 kGauss. Der gelbbraune Spinell (2.8 g) wurde bei 8.6 kMc/s, 9.2 kMc/s und 9.8 kMc/s bei 300° K von 0.5 kGauss bis 10 kGauss genauer untersucht. Zur Interpretation wurde die von S. Geschwind [5] auf die [111] Achse transformierte übliche Hamiltonian [6] verwendet,

$$\mathcal{H} = g\beta H S_z \cos\theta + \frac{1}{2}g\beta H \sin\theta (S_+ + S_-) + D[S_z^2 - (1/3)S(S+1)] - (1/180)(a-F)\{35S_z^4 - 30S(S+1)S_z^2 + 25S_z^2 - 6S(S+1) + 3S^2(S+1)^2\} + (a\sqrt{2}/36)[S_z(S_+^3e^{i3\phi} + S_-^3e^{-i3\phi}) + (S_+^3e^{i3\phi} + S_-^3e^{-i3\phi})S_z],$$

$$\varphi = \pi/3, \qquad S = 5/2,$$

die als Energieniveaus W für $\theta=0^{\circ}$ ($H_{_{0}}$ || Deformationsrichtung von Oktaederplätzen)


$$W \ 5/2 = g\beta H + 3D + (1/6)(a - F) \pm \frac{1}{2} \{ [3g\beta H + 6D + (1/3)(a - F)]^2 + (80/9)a^2 \}^{\frac{1}{2}} + C$$

$$W \ 1/2 = -g\beta H + 3D + (1/6)(a - F) \pm \frac{1}{2} \{ [3g\beta H - 6D - (1/3)(a - F)]^2 + (80/9)a^2 \}^{\frac{1}{2}} + C$$

$$W \ \pm 3/2 = \pm (3/2)g\beta H + (5/3)(a - F) + C$$

$$C = (1/4)D + (61/192)(a - F)$$

ergibt

Fe³+ in Mg Al $_2\,0_4$ Spinell, $\theta=\,0^o\text{.}$

Der rein magnetische Übergang mit $\Delta M=3$ (Linie Nr. 3 in Fig.) ist durch die Cr^{3+} Linie [7] verdeckt. Alle übrigen im Bereich bis 10 kGauss im X-Band möglichen Ubergänge für $\theta=0^{\circ}$ mit verschiedenen ΔM konnten bei zwei Frequenzen gemessen werden. Linienbreite und Intensität nehmen mit grösseren ΔM stark ab.

So sinkt die Linienbreite (Abstand der Wendepunkte der Absorptionskurve) von etwa 150 Gauss für $\Delta M = 1$ Ubergänge auf 25 Gauss für $\Delta M = 4$ und auf etwa 10 Gauss für den schwach sichtbaren $\Delta M = 5$ Ubergang. Die Linien bei tiefem Feld sind stark asymmetrisch.

Aus den beobachteten 13 Ubergängen bei $\theta=0^\circ$ wurden die 4 Aufspaltungsparameter bestimmt und zugleich die Ubereinstimmung mit der Hamiltonian innerhalb der Fehlergrenzen festgestellt. (Als Fehler wurde 1/5 — bei symmetrischen und 1/3 — Linienbreite bei stark asymmetrischen Linien angenommen.)

$$g = 2.001 \pm 0.007$$
 $|D| = 0.247 \pm 0.001 \text{ cm}^{-1}$ $|a - F| = 0.046 \pm 0.002 \text{ cm}^{-1}$ $|a| = 0.047 \pm 0.004 \text{ cm}^{-1}$

D und (a - F) haben entgegengesetztes Vorzeichen.

Entgegen den Erwartungen der Kristallfeldtheorie [8, 9] scheint im natürlichen Mg Al₂ 0₄ Spinell mindestens ein Teil der Fe³⁺ — Spuren auf oktaedrischen Gitterplätzen zu sitzen.

LITERATUR

- 1. HAFNER, S., Schweiz. Min. Petr. Mitt., 40, 207 (1960).
- 2. Brun, E. und S. Hafner, Die elektrische Quadrupolaufspaltung von Al^{27} in Spinell (Mg Al_20_3) und Korund (Al_20_3), Z. Kristallogr. (im Druck).
- 3. Brun, E., S. Hafner, H. Loeliger und F. Waldner, Helv. Phys. Acta, 23, 966 (1960).
- 4. Diese Spinelle verdanken wir bestens Herrn Dr. E. Gübelin, Luzern.
- 5. GESCHWIND, Phys. Rev., 121, 363 (1961).
- 6. BLEANEY, B. and R. S. TRENAM, Proc. Roy. Soc. (London), A 223, 1 (1954).
- 7. STAHL-BRADA, R. and W. Low, Phys. Rev., 116, 561 (1959).
- 8. Dunitz, J. D. and L. E. Orgel, J. Phys. Chem. Solids, 3, 318 (1957).
- 9. McClure, D. S., J. Phys. Chem. Solids, 3, 311 (1957).