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SUR L’EVAPORATION
D’UN AMAS STELLAIRE
A DEUX POPULATIONS DIFFERENTES

PAR

P. BOUVIER

Résumeé.

On considére un amas formé de deux populations d’étoiles de masse diffé-
rente, I'une des populations étant numériquement prépondérante; on reprend
les hypotheses de départ de King (1960}, soit creux rectangulaire de potentiel
et isotropie des vitesses. Le taux d’évasion en fonction de la masse est alors
calculé a partir d’un systeme de deux équations de Fokker-Planck. Discussion
et comparaison des résultats.

Abstract.

A star cluster containing two different stellar populations is considered
here, one of these populations being very much larger than the other. By
making the same basic assumptions as King (1960), i.e. rectangular potential
well and isotropic velocity distribution, the rate of escape is obtained, as a
function of mass, from a system of two Fokker-Planck equations. Results
are discussed and compared to some similar ones previously found by others.

1. Nous examinons ici le probléme d’'un amas stellaire ayant la
symétrie sphérique et composé de deux populations distinctes d’étoiles
de masses respectives my, m,. A chacune des populations est associée,
dans I'espace de phase a six dimensions, une fonction de distribution

f.o= f.(x,0,1) g= 17

— —
ou x symbolise les trois coordonnées de position, v les trois coordonnées
de vitesse et t le temps.
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326 SUR L'EVAPORATION D'UN AMAS STELLAIRE

Les fonctions f; subiront cependant des fluctuations au cours du
temps sous I'effet des rencontres ou interactions de choc entre étoiles
de 'amas et comme ces interactions sont régies par la seule attraction
de gravitation, I'on se trouve ici dans les conditions (Jeans) ou I'effet
cumulé des choces faibles 'emporte sur celul des rares chocs a proximité
immeédiate. En tout point de I'amas, chaque fonction de distribution des
vitesses varie alors d’une maniére quasicontinue, selon une équation
de Fokker-Planck. Nous allons faire ici deux hypotheéses restrictives
afin de simplifier la forme explicite des équations:

10 le potentiel est supposé constant a 'intérieur de I'amas,
20 les distributions sont isotropes en les vitesses.

Il en résulte que les fonctions f; ne dépendent plus que des deux
variables v (module de la vitesse) et t.

La forme de I'équation de Fokker-Planck a été modifiée par Rosen-
bluth et al. [3] dans le cas général de distributions de vitesses quel-
conques; si 'on tient compte de 20, I’équation revét une forme plus
simple déja utilisée par plusieurs auteurs [1], [2] et dont nous ferons
usage dans le présent probleme ou il nous faut écrire le systéme suivant
de deux équations aux dérivées partielles

e 4n ¢
(1) {l = TZI - {Fll(du[fl]fl_*- A,/ f)
ot V° Ov
e (Ti AL ATAL )
fn)_ ov
@ L_H49 {ru ("’2 A 1o+ B fz) 1
ot v? 6

of of,
+ Iy &, — + 4B, ==
22 [f2] 50 L/ %
A, et B, sont les fonctionnelles linéaires

o, [f] = [*fdv

2

1 v
B,[f] = gjv‘*fdv + %jvfdv
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fonctions de ». En outre, G étant la constante de la gravitation,

s =1,2

= 471G m? Log a,,
¥y = 1,2

011 o, est un rapport de longueurs caractéristique d’une rencontre entre
une étoile s et une étoile r; nous considérons par la suite Log a,, comme
pratiquement constant et égal 4 une valeur moyenne commune quels
que soient s, r. Done

(3) I, =T, =41G*m? Log«

sr

La vitesse quadratique moyenne est définie par addition des énergies
cinéliques des deux populations:

(4) @) = £ %) + & @? D2

< ¢2 >* étant la vitesse quadratique moyenne des étoiles s seulement,
et les coeflicients
M, : M,

SN A M, T M, 4 M,

mesurant les masses relatives, variables au cours du temps.
Quant a la vitesse d’évasion, elle se déduit de la relation

= 4{v?).

2. Lorsque la masse M, de la population 1 est trés supérieure a celle
de la population 2, on a £, >~ 1, £, ~ 0 et la vitesse d’évasion est pra-
tiquement déterminée par la seule population 1

() ve = 4<0),.

(Cest ce qui arrive quand les étoiles 1 sont beaucoup plus nombreuses
que les autres; on ne retient alors dans les équations (1), (2) que les
choes 1 — 1 et les choes 2 — 1 respectivement, de sorte que

1 of, 1 0 f1
(6) 47_{1_1 ot v_z_('ﬁ [fl]fl'*‘z [fl P

1 éfz_ 1 0 (m, fz
R e | (- ATy
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Traitant le probléme d’une seule population, King [2] est parti de
I'équation (6) et en a cherché une solution de la forme

(8) Si@, 1) = h (1) g, (v)
ou
v(t) = a(u.

La séparation des variables devient possible & condition que I'on puisse
écrire

¢, étant une constante. Il en résulte d’abord
(9) hy = _4nr1.“1hf

ou y, est une autre constante. Tenant compte ensuite de (5) qui nous
donne

ui = 4u?y,
I'équation en u s’écrit
1 d dg, 3
(10) “_Z(E{B”[gl]g[,— + (Au[gl]" 511“3>91 } +419, =0
avec
Alg:] = Ju?g,du
B,[4.] 1}4 d +”2uje d
= - u
ul91 3110“ g, au 3u“91
(11a) Ay = (1+3q,) ¥,
. L = Wh=—4T & N,
3
(11b) 91y = 5’11

N, étant la concentration des étoiles 1.
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Normalisant les u & < u? > = 1, la solution de (10) soumise aux
conditions initiales

d
du /,-,

est obtenue numériquement; elle a été tabulée dans [2] (p. 124), la valeur
propre X, ayant été fixée a 0,004283 par la condition supplémentaire

£:(2) =0.

Ce calcul est toutefois insuffisant en raison du caractére sommaire des
hypothéses de départ; la dépendance spatiale de f; ainsi que la contrac-
tion de 'amas consécutive a 'évaporation ont été négligées. 11 en résulte
entre autres une valeur négative de y, telle qu’on la déduit de (11 a)
et (11 b) apreés élimination de ¢,u, et ceci nous conduit d’apres (9) a
une fonction f; croissante au cours du temps.

King s’est efforcé d’introduire la contraction aprés coup, mais cette
tentative n’est pas vraiment satisfaisante.

3. Sans modifier les hypotheses faites au n° 1, admettons cependant
pour (7) également une solution du type (8) soit

(12) f2(v, 1) = hy () g, (u)

Iille permettra la séparation des variables ¢, u si, ¢, étant une constante,
l'on a

a' h;
ria 4 h,
alors
(13) hy = —4nly u, hy h,

(ne, constante).

Rappelant que des définitions du nombre d’étoiles s par unité de volume

ue

N, = 4zh,a® [ u?g,(u)du = 4nh,a* A,.[g,]
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et de la densité d’énergie cinétique des étoiles s

ue

T, = 2nmh,a® | u* g, (u)du

I'on tire les relations
N, h, a’
= — 4 3 -
N, i a
T\ h; a’
e 5 e
g M a

dont la premiere donne le taux d’évaporation de la population s, nous
vérifions que

(14 a) A, = (14+3q)pu, = ——lf—v—é
B dnl' hy N,

1 a’ 3.

(14 b) qz Hy = — m; = 5

ayant tenu compte de (5).
Il reste finalement I'équation différentielle homogene suivante pour

1 d dg m 3 .
(L3} —— {Bu[g 2+ (_ZAu[gl] _5;”1 U3>92 } +4,9, =0

15
u? du du m,

avec les conditions 1nitiales

g,(0) = 1, (5132-) -0

du /,-,
et la condition supplémentaire
g (2) =0
qui déterminera A, pour une valeur donnée, pas trop grande, du
rapport my/m;.

4. La résolution numérique de I'équation (15) a été effectuce a I'aide
de la calculatrice Ferranti « Mercury» du C.E.R.N.; en adoptant
pour g, (u) la solution de (10) tabulée a cinq décimales par King dans [2]
et en donnant au rapport

m,

Ho=
m
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les valeurs successives 0.0 0.1 0.2 ... 1.5. Etant donné que,
d’apres (11 a) et (14 a), nous avons

N3N, 2
(16) ALTUE N

N[N, 4y

la figure 1 qui représente (courbe en trait plein) la variation avec u des
valeurs propres 2, nous apprend que le taux d’évasion est fonction
monotone décroissante de la masse.

" Spitzer et
“ Hoérm 1958

Taux d’évasion
en fonction du
rapport de masse

e

Cette courbe des 2, = X, (1) vient se placer entre des courbes ana-
logues (en pointillé) obtenues, en traitant le probléme un peu différem-
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ment, d'un cdté par Spitzer et Hirm [4] et de 'autre par Hénon [1];
elle nous fournit en particulier un taux d’évasion des étoiles de masse
nulle environ 15 fois supérieur a celui des masses m,.

Lorsque w. s’éleve a 1.5, le taux d’évasion devient pratiquement nul;
d’ailleurs A, (1.5) est alors d’un ordre comparable (107°) a celui des
erreurs sur les valeurs données pour g; (u).

Les fonctions propres g, (¢) sont toujours, pour u variant de 0 a u,,
des fonctions monotones décroissantes de 1 a 0, la carence des étoiles
rapides étant d’autant plus marquée que leur masse est grande (fig. 2).
Au voisinage de u = 0, on a sensiblement

g, () = e™ "

de sorte que la distribution des vitesses des étoiles lentes est a peu pres
maxwellienne.

0.5 A

courbes g, (u)
pour divers y

T T

(0] | u 2

Fig. 2

Comparons les pentes des courbes de la figure 2 pour la valeur
critique © = u, en intégrant les deux membres de (6) ou (7) sur les
vitesses de 0 a v,; nous trouvons

, of.
=— NS — (47[)2rl @v(’[fl] (;’-‘fv—) s = 1,2
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soit, en invoquant les transformations (8) et (12),

hoh,

: dg,
Ns = (47[)2 Fl 12 Bue[glj ( )
a du u=ue

d’ou le taux relatif d’évasion des étoiles s

N;; hlBue[gl:l (dgs)

= 4n Iy —+
N, et A g,] \du

Tenant compte de (16) nous obtenons pour le rapport des pentes
a u = u,,

(dQZ/du)u=ue - Aue[gz:l )‘__2
(dgl/du)u=ue Aue[glj qu1

égalité dont le second membre est effectivement supérieur & l'unité

(17)

si my < my, inférieur a un si my, > m,.

En rapportant les fonctions g, (#) = g (u; ) aux répartitions gaus-
siennes correspondantes v (123 w) = e~ ***. nous sommes conduits 4 nne
famille de courbes représentant le produit g (u; w) e**. Pour toute
valeur donnée de u nous avons,

0 d
—g<0 et l<0

i au
de plus, 1ci
a(g/y)
o

<0

comme chez Hénon [1] mais contrairement & Spitzer et Harm [4].
La variation relative dg/g de g pour un accroissement dp a u fixe est
inférieure & —u?dp (fig. 3).

5. Faisons ici trois remarques:

a) Au cas ou la population majoritaire 1 constitue un réservoir
invariable en équilibre maxwellien, servant uniquement a échanger de
Iénergie par interactions de choc avec les étoiles de la population 2
minoritaire, nous serons amenés a poser &, ({) = ¢y, ¢; étant une cons-
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tante. Il en résulte, par (9) et (11 @), A, = 0 et la relation (14 a) s’integre
immédiatement, si I est regardé comme constant, en donnant une
baisse exponentielle de la concentration des étoiles 2:

NZ (r) — N2 (0) 8_4'! rlclf..gl

courbes g (u;p) '
pour divers 0

5 § 3 & i 5 — 242 Wi
Comme la distribution f, est ici proportionnelle a e 77" ou 7 est un
1
parametre constant, nous aurons en conséquence
/n

a() = — g = =0 (4)
J 2

ol © (u) est la fonction des erreurs. On vérifie alors facilement que

‘n ,
Au[gl] = lci.—((P—“(P )

/;(p—ucp’
B,[9.] = \TT

de sorte que I'équation (15) se réduit a celle dont se sont servis Spitzer
et Harm [4], soit
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1 d (¢o—up' [dg m -
(18) s 2+2~2ugz + /459, =0
u” du u du m,
" 8 |
avec /.2 — _.../.2
V&L

h) Lorsque le rapport m,/m, devient assez élevé, la masse totale M,
de la population minoritaire n’est plus forcément négligeable et 1’on
devra tenir compte du terme en Z, de (4), ce qui nous rameéne au pro-
bleme général décrit par les équations (1) et (2). La séparation des
variables ¢, u n’est plus possible; si nous soumettons en effet le
systeme (1), (2) aux transformations (8) et (12), nous verrons qu’en plus
des relations

a’ h a’ h s

— = e — = -
a 0 h, a & h,

nous devrons nécessairement imposer la condition

41 = 4>

Par suite,

]_Y_Z_ _ hZ ‘4109[92]
Ny hlAue[gl]

d’ou résultent la constance dans le temps des coefficients £, £, en (4)

= const.

et I'égalité des taux d’évasion

o ;

Ny N,

N, Ny
laquelle nous assure que la composition du mélange des deux popula-
tions ne change pas. Cette situation est certainement irréelle mais

souligne bien les limites des possibilités des transformations (8) et (12)
de type homologique.

¢) En intégrant sur les vitesses de 0 a v, chacune des équations (1)
et (2), nous relions les taux d’évasion aux pentes des distributions f;, f,
pour v = v, & tout instant, obtenant notamment

NPZ/N2 - "dve[fl] (afZ/av)r):ve
N,I/Nl 'dve[f‘?] (6f1/av)v=vc
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et, avec s =1, 2; N = N,+N,,
Ns/Ns‘ _ 'Mve[fl +f2] (afs/av)v:ve
N/N "Q{ve [fs] (a (fl +f2)/av)u=vc

relations vraies quelle que soit la proportion du mélange des deux
populations.

6. Les considérations vues plus haut permettent d’aborder le pro-
bléme d’un amas & deux populations dont les masses des étoiles respec-
tives m,;, m, different trés peu.

Nous écrivons donc

m,
_— = —&
m,
, e e e , my
ou € est un nombre positif trés inférieur a 1, par conséquent, — = 1-+-¢

m,
et d’apres (3) I'y, = I, (1 —2¢) en négligeant les termes en &2
Les équations (1) et (2) deviennent alors

of,  4nly G ) o,
(19) EYRR a_v{d[f1+f2]f1+~2[f1+fz]E}“"Eﬂ[fz]ﬂ}
of, 4nly 8 8
(20) C{Z = 712 «_—{"d[fl +21fa+ B fi 41, é
ot vt Ov ov

3
e (w[f,m P2 1o+ 2 BLf 1]

)}

2
v

d’ou par addition et soustraction

o1 a(fla—:fz) _ 41; r ;% {d[f, 11 +1)
+ B[ f,+/2] w +e(...) }

(22 AR ;f;{x[fl 11—
+ B[ f, +15] ﬂ%}——@ + &(...) }
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(21) est, au terme en ¢ prés de la forme (6); posons donc
(23) fi+fo =f+ep
ou f satisfait 'équation

of 4Ly

7/ af
-t {wse a2

équivalente a (6) et admettant en particulier (n° 2) une solution du type

(24 a) S = h()g )
(24 b) v =a(tu

En substituant (23) dans I'une des équations (19, (20), (22) nous obte-
nous, a des termes en e pres, des équations de la forme (7) pour
f1s fy i —f5- Essayons pour f; —f, I'’expression

(25) fi=f = n(@0W)+ey

alors les distributions f; auront, a cause de (23), (24 a), (25) la forme

h(t)g () £n (1) {(u) +e(p £¢)

La transformation (25) permet la séparation des variables ¢, u dans
I'équation (22) sous des conditions déja rencontrées au n° 3:; { (u)
satisfera une équation analogue a (15), & partir d’'une valeur { (0) arbi-
traire positive tandis que la dépendance temporelle de f; —f, est donnée
par une relation de la forme

(26) n' = —4nl, hvy

ou les signes de 7 (t) et de la constante v ne sont pas déterminés.
Cependant, si la population minoritaire s’évapore plus rapidement
que la population majoritaire, » varie de facon monotone et conserve
un signe constant si v < O; aprés un temps assez long, la population
minoritaire tendra & ne plus constituer qu'une faible fraction des étoiles
de I'amas et nous nous retrouverons dans les conditions du n° 2. De
toute maniére, on se gardera de tirer des conclusions sur I’évolution a

partir de (26) puisque I'influence de la structure de I'amas a été négligée
dés le début.
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7. Revenons a un amas a une seule population de masse totale M,
o la structure est encore définie par un potentiel constant a U'intérieur;
st cet amas est soumis a une action extérieure, il faudra tenir compte
d'un potentiel extérieur variable avec la distance au centre afin de
pouvoir définir la distance moyenne (dite ravon de stabilité r; de 'amas),
ou 'action extérieure I'emporte sur le champ produit par I'amas. *

Désignons par /7 la distance de I'amas au centre galactique et par J/,
la masse totale de la Galaxie; nous savons [5] que le ravon de stabilité
est donné en moyenne par

A/l 1/3
oM,

(27) r, =

‘autre part si v, (r) est la vitesse d’évasion depuis une distance » du
D’autre part e () est la vitesse d S lep e distance r d
centre de 'amas jusqu’a I'infini et si vy est la vitesse minimum a commu-
niquer a une étoile placée au centre pour qu’elle s’éloigne a une distance r,
nous aurons:
2 2 2
v,(0) = v, (ry) + v;
ou
5 M
v,(ry) = 26 —
Fy

done, en invoquant (27),

(28) vi(r) = KM?¥3 K, const.

Cette relation, vraie a un instant ¢, ne le sera généralement plus a
un instant ultérieur ¢ si nous lui appliquons la transformation homolo-
gique du type (24 a), (24 &), car tout se passe comme s1 l'amas était
étendu jusqu'au rayon r = r de sorte que le potentiel n’est plus constant
partout a I'intérieur.

Tontefois, dans le cas spécial ou I'évaporation est négligeable,
he(ty = h(ty), a(t) = a(t) et la relation (28) est invariante par le
changement d’échelle v = au. Cela reste approximativement vrai si
'amas est formé de deux populations dont I'une, soit la population 1,
prépondérante et déterminant pratiquement a elle seule la masse
totale M/, ne s’évapore pas: A (1) = const. La distribution des vitesses
de la population minoritaire 2 est alors régie par I'équation (18); intro-

* Dans ce n° 7, I'indice s se référe a la stabilité et ne saurait étre confondu
avec l'indice s = 1,2 rencontré plus haut.
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duisant ici la vitesse v au lieu de v,, les valeurs propres de (18) qui
dépendront des deux parametres my/m, et R/, seront déterminées par

_ AR
la condition g, (1) =0 ou wu, = \/6 (1 — —-)

rs

Ce travail s’inscrit dans un programme subventionné par le Fonds
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Observatoire de Genéve, février 1962,
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