Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 14 (1961)

Heft: 1

Artikel: Théorie du spectre d'absorption optique des sels de gadolinium

Autor: Lacroix, Roger

DOI: https://doi.org/10.5169/seals-739564

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Roger Lacroix. — Théorie du spectre d'absorption optique des sels de gadolinium ¹.

La partie observée à l'heure actuelle du spectre d'absorption de l'ion Gd³⁺ comporte trois bandes dans l'ultra-violet, aux environs de 32.000, 36.000 et 40.000 cm⁻¹. Ces bandes présentent une structure fine que nous nous proposons de discuter dans cette note.

La configuration fondamentale 4f⁷ de l'ion Gd³⁺ constituant une couche demi-pleine, ses états n'ont pas d'éléments diagonaux de l'interaction spin-orbite. Les effets de premier ordre de cette interaction sont donc nuls et la structure fine n'apparaît qu'aux ordres supérieurs pairs comme déviation du couplage Russel-Saunders.

L'évaluation de la structure fine nécessitant la connaissance de la position des niveaux intervenant dans le calcul de perturbation, nous avons calculé cette position pour les sextuplets et les quadruplets de la configuration. Pour ce faire, nous avons utilisé la méthode et les tables de Racah [2]. Nous avons de plus admis entre les paramètres de Slater F_2 , F_4 et F_6 les relations

$$\frac{F_4}{F_2} = \frac{41}{297} = 0.138$$
, $\frac{F_6}{F_2} = \frac{175}{11583} = 0.0151$

valables pour des fonctions d'onde hydrogénoïdes et dont Judd [3] a montré qu'elles conduisent à un bon accord avec l'expérience,

Les trois bandes d'absorption précitées correspondent aux transitions de l'état 8S aux états 6P , 6I et 6D . Il nous est donc loisible de comparer la position théorique de ces niveaux avec celle résultant de l'expérience. C'est ce que nous faisons dans le tableau ci-dessous en utilisant les valeurs mesurées par Jørgensen [4] corrigées de l'effet de la structure fine calculée plus loin. Le meilleur accord est assuré en donnant à F_2 la valeur $F_2 = 410$ cm⁻¹.

¹ Une étude théorique du spectre d'absorption optique de l'ion Gd⁺³ a déjà été réalisée par W. A. Runciman [1]. Cet auteur a utilisé le calcul de perturbation au deuxième ordre là où nous avons préféré la diagonalisation directe en raison de la lenteur de la convergence. Ses résultats sont assez différents des nôtres, voire, pour certains, incompatibles avec eux.

	Expérience	Théorie
⁸ S— ⁶ P	33.500	34.100
⁸ S— ⁶ I	36.400	35.700
⁸ S— ⁶ D	39.950	39.800

Comme on peut le voir, l'accord est satisfaisant. Il subsiste néanmoins un écart de l'ordre de 2% qui peut résulter des deux causes suivantes: nous avons admis entre les paramètres F_k des relations qui ne sont qu'approximatives et, surtout, nous avons négligé l'interaction de configuration.

Il nous reste maintenant à établir la structure fine des multiplets ${}^6P,\, {}^6I$ et ${}^6D,\, {}^c$ est-à-dire à calculer l'effet de l'interaction spinorbite $\zeta \sum_i \vec{l}_i \cdot \vec{s}_i$.

Nous avons pris pour ζ la valeur $\zeta=1540~{\rm cm}^{-1}$ obtenue par interpolation des valeurs tirées de l'expérience par Judd [3] pour les ions ${\rm Eu}^{+3}$ et ${\rm Tb}^{+3}$. Nous avons d'autre part calculé les éléments de matrice de l'opérateur $\sum_i \vec{l}_i \cdot \vec{s}_i$ directement à partir des fonctions d'onde.

Comme les doublets sont presque tous des niveaux d'énergie élevée, nous les avons négligés par raison de simplicité. Quant aux autres niveaux, nous avons tenu compte de leur effet de la manière suivante: nous avons procédé à la diagonalisation directe entre tous les états qui contribuent au déplacement de structure fine d'un niveau donné pour 50 cm⁻¹ ou plus et nous avons calculé l'effet des autres au moyen du calcul de perturbation au deuxième et au quatrième ordre.

Pour les déplacements ΔE_J des niveaux de 6P , nous avons obtenu les valeurs suivantes, dont nous pouvons comparer les différences avec les valeurs expérimentales mesurées par Cook et Dieke [5] dans le sel $\mathrm{Gd}_2(\mathrm{SO}_4)_3$ 8 $\mathrm{H}_2\mathrm{O}$.

J	ΔE_J	Différence	Expérience
7/2 5/2 3/2	—2345 —1870 —1290	475 580	595 575

L'ordre de grandeur des séparations de niveaux est bien le bon. Cependant l'écart théorique ${}^6P_{7/2}$ — ${}^6P_{5/2}$ est trop petit de 120 cm $^{-1}$. La raison la plus probable de ce désaccord est que nous avons négligé les doublets, dont un niveau 2F se situe assez près de 6P et peut agir au quatrième ordre de perturbation. On peut voir qu'il n'exerce aucune action sur ${}^6P_{3/2}$ et qu'il a un effet répulsif quinze fois plus élevé sur ${}^6P_{7/2}$ que sur ${}^6P_{5/2}$. Cependant le choix des paramètres F_k et l'interaction de configuration y ont certainement aussi contribué.

Le calcul des déplacements ΔE_J des composantes du multiplet 6I nous donne:

$$J = 7/2$$
 9/2 11/2 13/2 15/2 17/2
 $\Delta E_J = -1572$ -1248 -949 -744 -745 -1020 cm⁻¹

d'où il résulte, en prenant ${}^6I_{7/2}$ pour origine, les énergies relatives suivantes que nous comparons avec les valeurs expérimentales données par Jørgensen [4] pour l'ion Gd^{3+} en solution aqueuse.

j 	$E_{ m th\acute{e}orique}$	$E_{ m exp\'erimental}$
7/2	0	{—20 20
9/2	324	330
17/2	552	$\left\{\begin{array}{l} 390 \\ 400 \\ 430 \end{array}\right.$
11/2	623	{ 610 { 660
15/2 13/2	827	$\begin{cases} 720 \\ 740 \\ 760 \\ 800 \end{cases}$
	,	

La démultiplication supplémentaire des raies expérimentales est due à l'effet du champ des molécules d'eau de l'ion hydraté. Remarquons que la corrélation entre J et les niveaux expérimentaux est

hypothétique, à part le cas J = 7/2, qui a été identifié par Dieke et Leopold [6] dans le spectre de GdCl₃ 6 H₂O.

Ici encore il faut vraisemblablement attribuer les écarts subsistant entre théorie et expérience à l'effet négligé des doublets, au choix des paramètres F_k et à l'interaction de configuration.

Nous avons enfin calculé la structure fine du multiplet 6D avec les résultats suivants:

$$J = 1/2$$
 3/2 5/2 7/2 9/2
 $\Delta E_J = -495$ -160 -5 -270 -1305

ce qui rend très probable l'identification des deux raies observées par Jørgensen [4] à 39.650 et 40.630 cm⁻¹ avec les transitions ${}^8S_{7/2}$ — ${}^6D_{9/2}$ et ${}^8S_{7/2}$ — ${}^6D_{1/2}$.

Une étude plus détaillée est en préparation et sera publiée prochainement.

Nous tenons à remercier MM. J. C. Holy, C. Weber et B. Hauck pour la part qu'ils ont prise aux calculs algébriques et numériques de ce travail.

BIBLIOGRAPHIE

- 1. Runciman, W. A., J. Chem. Phys., 30, 1632 (1959).
- 2. RACAH, G., Phys. Rev., 76, 1352 (1949).
- 3. Judd, B. R., Proc. Roy. Soc., 69, 157 (1956).
- 4. Jørgensen, C. K., Mat. Fys. Medd. Dan. Vid. Selsk., 30, no 22 (1956).
- 5. Cook, S. P. et G. H. Dieke, J. Chem. Phys., 27, 1213 (1957).
- 6. DIEKE, G. H. et L. LEOPOLD, J. Opt. Soc. Am., 47, 944 (1957).

Jacques Martini. — Note préliminaire sur les éléments-traces de quelques lignites régionaux.

Dans le cadre des recherches du laboratoire de géochronologie de l'Université de Genève, nous avons effectué un certain nombre d'analyses sommaires de cendres de lignites ¹.

Nous nous sommes fixé un but purement géochimique, c'est-àdire d'étudier la répartition des éléments dans l'espace et dans le temps, sans chercher spécialement une application stratigraphique.

De nombreuses études ont été effectuées sur le sujet que nous traitons (notamment par Goldschmidt) et nous y renvoyons le lecteur qui voudrait faire des comparaisons.

¹ Ces recherches ont été effectuées avec l'appui de la Commission pour la science atomique (requête M. Gysin et M. Vuagnat n° A 84).