Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 13 (1960)

Heft: 9: Colloque Ampère

Artikel: Applications d'un spectrographe à R.M.N. en champ faible. 1. Double

irradiation de l'ion ammoniac. 2. Effet Bloch-Siegert

Autor: Benoit, Henri / Ottavi, Henri

DOI: https://doi.org/10.5169/seals-738652

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Applications d'un spectrographe à R.M.N. en champ faible 1. Double irradiation de l'ion ammoniac 2. Effet Bloch-Siegert

par Henri Benoit et Henri Ottavi

Laboratoire d'Electronique et Radioélectricité de la Sorbonne Fontenay-aux-Roses (Seine)

1. Dispositif expérimental.

Le spectrographe est approximativement le même que celui décrit par Hennequin (référence 1): bobines de Bloch fonctionnant à 12 kHz (soit dans un champ statique $H_0 = 2.8$ G environ). Le liquide résonant est fortement polarisé par passage préalable dans le champ d'un petit électroaimant (H = 7500 G). Les raies d'absorption sont obtenues en balayant lentement le champ H_0 .

En plus des bobines d'émission normale B_1 qui fournissent le champ h_1 à la fréquence fixe $f_1 = 12$ kHz, le dispositif comprend des bobines B_2 qui fournissent un champ perturbateur h_2 de fréquence variable, parallèle à h_1 ; ce champ secondaire est employé dans les expériences de double résonance.

II. Double irradiation de l'ion ammonium (référence 2).

Le liquide est une solution concentrée de nitrate d'ammonium dans de l'eau additionnée d'acide nitrique. A cause du couplage indirect entre l'azote et les protons de NH₄, la raie des protons est remplacée par un triplet (fig. 1, a). A cause de la faiblesse du champ statique, le déplacement chimique est négligeable et la composante centrale du triplet se confond avec la raie unique des protons de l'eau de la solution. Ceci explique que la composante centrale apparaisse cinq fois plus grande environ que les composantes latérales.

On crée alors avec le deuxième jeu de bobines $\mathbf{B_2}$ un champ alternatif h_2 de fréquence

$$f_2 = f_{\scriptscriptstyle N} = f_1 \; (\gamma_{\scriptscriptstyle N}/\gamma_{\scriptscriptstyle P}) = 867 \; \mathrm{Hz}$$

 $(f_{N} \text{ est la fréquence de résonance de l'azote dans le champ } H_{0})$. En faisant croître l'amplitude de h_{2} on voit les composantes latérales disparaître progressivement (fig. 1, b et c).

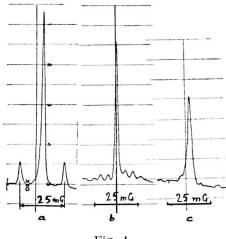


Fig 1.

Enregistrements représentant le spectre des protons en présence d'un champ rectiligne h_2 réglé à la fréquence de résonance f_N des noyaux et d'amplitude h_2 croissante.

a)
$$h_2 = 0$$

b) $h_2 = 2 \times 0.15 \text{ G}$
c) $h_2 = 2 \times 0.3 \text{ G}$

Nous avons aussi observé le resserrement des composantes latérales en employant un champ h_2 d'amplitude suffisante (amplitude 2×0 , 3 G), mais de fréquence f_2 légèrement différente de f_N , valeur nominale de résonance.

Ces résultats vérifient bien, dans l'ensemble, les prévisions de Bloom et Shoolery (réf. 4), faites pour les conditions de champ fort. Ici on observe de plus, un déplacement Bloch-Siegert de l'ensemble du spectre, déplacement considérable à cause de la faible valeur du champ H₀. Ce déplacement a été étudié plus en détail avec de l'eau pure.

III. Déplacement Bloch-Siegert (référence 3).

Pour cette étude le champ h_1 est maintenu à la fréquence fixe $f_1 = 12 \text{ kHz}$ (fréquence de détection); son amplitude est faible, de l'ordre du mG. On fait varier la fréquence du champ perturbateur h_2 depuis 0 jusqu'à 12,2 kHz, l'amplitude de h_2 étant de quelques dizaines à quelques centaines de mG.

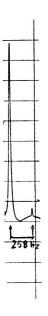


Fig. 2.

Effet Bloch-Siegert montrant l'apparition de deux raies pour un champ h_2 réglé à une fréquence $f_2 = 11,8$ kHz inférieure de 200 Hz à la fréquence de détection f_1 . Chaque composante circulaire du champ h_2 vaut 36 mG (soit 155 Hz).

Soit H_0 la valeur du champ statique correspondant à la résonance des protons à 12 kHz, dans les conditions normales, c'est-à-dire si h_2 était nul. Pour chaque valeur de l'amplitude de h_2 , on mesure la variation ΔH qu'il faut faire subir à H_0 pour retrouver la raie, en présence de h_2 . On peut diviser les mesures effectuées en deux groupes, correspondant à deux types

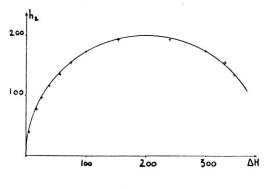


Fig. 3.

Déplacement Bloch-Siegert ΔH pour un champ h_2 de fréquence $f_2=11.8$ kHz. Sur l'axe des ordonnées on a porté l'amplitude d'une des deux composantes tournantes du champ h_2 . Les valeurs des champs sont exprimés en Hz par la formule: $f=(\gamma/2\pi)H$. Les croix représentent les résultats expérimentaux et le cercle, la courbe théorique calculée d'après la référence 6.

de conditions, pour la théorie que l'on fait en considérant les diverses excitations dans un trièdre tournant à la fréquence f_2 .

1º La fréquence f_2 est éloignée de f_1 et varie de 1 à 11,6 kHz.

Dans ces conditions l'angle θ entre le champ magnétique directeur et le champ magnétique efficace dans le trièdre tournant à la vitesse angulaire ω_2 est faible. Nous pouvons alors calculer le déplacement Bloch-Siegert grâce aux formules établies par J. Seiden (réf. 5) en tenant compte des deux composantes circulaires. La mesure des déplacements ΔH , de l'ordre de 20 à 30 mG, a concordé avec les valeurs calculées dans la limite de précision des mesures (quelques pour-cents) (tableau).

Tableau.

Mesure de l'effet Bloch-Siegert pour f₂ loin de f₁.

Dans la deuxième colonne on a porté la valeur de chacune des deux composantes circulaires du champ (sauf pour la dernière ligne, champ continu). Les amplitudes des champs sont exprimées en Hz, par la formule $f = (\gamma/2\pi)$ H.

Fréquence f ₂ du champ h ₂ (kHz)	Composante de h ₂ (Hz)	Effet Bloch-Siegert calculn (Hz)	Effet mesuré	Ecart (%)
1	1160	113	115	+ 2
2	1160	115	118,5	+ 3
3	1160	119	120	+ 1
4	1160	126	130	+3
4 5	1160	135	140	+ 4
6	770	68	71	+ 4
7	770	77	78	+ 1
8	770	91	92	+1
9	770	115	117	+ 2
10	770	171	176	$+\frac{3}{3}$
11	445	108	105	 3
11,25	386	110	106	4
11,4	315	113	112	— 1
11,6	282	117	120	+ 3
0	1830	139,4	138	1

2º La fréquence f_2 est proche de $f_1 \mid f_1 - f_2 \mid \leq 0.2 \text{ kHz}$.

L'angle devient notable. La résonance se produit pour deux valeurs du champ comme l'a montré W. A. Anderson (fig. 2) (référence 6). La figure 3 montre les résultats des mesures obtenues en gardant la fréquence f_2 fixe $f_2 = 11.8$ kHz et en faisant varier l'amplitude de h_2 . Pour chaque

valeur de h_2 , il y a deux valeurs du déplacement ΔH et les points expérimentaux se placent avec précision sur le cercle théorique: $x^2+y^2-2Rx=0$, $x=\Delta H,\ y=h_2$.

RÉFÉRENCES

- 1. Hennequin, J., Colloque Ampère 1960, communication 333.
- 2. Benoit, H. et H. Ottavi, C. R., 250, 2708 (1960).
- 3. Beboit, H. et H. Ottavi, C. R., 250, 2886 (1960).
- 4. Bloom, A. L. et N. J. Shoolery, Phys. Rev., 97, 1261 (1955).
- 5. Seiden, J., C. R., 240, 2228 (1955).
- 6. Anderson, W. A., Phys. Rev., 102, 151 (1956).