

Zeitschrift: Archives des sciences [1948-1980]
Herausgeber: Société de Physique et d'Histoire Naturelle de Genève
Band: 13 (1960)
Heft: 9: Colloque Ampère

Artikel: Proton relaxation and hydration in aqueous solutions of Mn++ ions
Autor: Pfeifer, H.
DOI: <https://doi.org/10.5169/seals-738619>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 23.02.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

Proton Relaxation and Hydration in Aqueous Solutions of Mn^{++} Ions

par H. PFEIFER

We have measured the temperature dependence of the proton T_1 and T_2 in an aqueous solution containing $3 \times 10^{18} \text{ Mn}^{++}$ ions/cm³ at 4 and 16 Mc/sec (cp. [1]). At these frequencies the contribution of the exchange interaction to T_1 is negligible [2], so that the equations for T_1 contain only two unknown quantities, namely m/b^6 and τ . m is the number of the next neighbouring water molecules (first hydration sphere) of a Mn^{++} ion, b the distance between the Mn^{++} ion and the protons of these water molecules, and τ the correlation time for the fluctuating rotation of the Mn^{++} ion with its next neighbouring water molecules. We denote by b_0 the value of b , which follows from a geometrical point of view for the case that one assumes that the electrical dipoles of the water molecules are oriented in a radial direction, and that the radius of the Mn^{++} ion is equal to the value given by Goldschmidt [3]. The radius of the water molecule was taken from the results of X-ray diffraction at 0° C [4]. Then follows from the temperature dependence of T_1 at 4 and 16 Mc/sec that the quantity $m (b_0/b)^6$ decreases from 15.5 for 0° C down to 5.6 for 100° C with a maximal error smaller than 10%. Because of the fact, that the number m of the next neighbouring water molecules must lie between 8 and 3 (the upper value results from the ratio of the radii and the lower from the coordination number of water and the fact that Mn^{++} shows positive hydration [4]) this result corresponds to a constant $b = 0.9 b_0$ (if m decreases from 8 to 3), to an increase of b by the factor 1.19 (if m is constant) or to an increase of b by the factor 1.4 (if m increases from 3 to 8). The increase of the effective radius of the water molecule measured by X-ray diffraction [5] only corresponds to an increase by a factor 1.06, so that our results may be explained by a strong decrease of m , or more probably by a nonradial direction of the water molecules, which become more and more radial oriented with increasing temperature. The last explanation is supported by the fact that in all cases b is smaller than b_0 for temperatures smaller than about 40° C.

The second quantity, the temperature dependence of which could be investigated, was τ , the correlation time for the fluctuating rotation of the Mn^{++} ion with its next neighbouring water molecules. This quantity follows from a solution of the ordinary diffusion equation [6]. In the case of a sphere with a radius large compared with the radius of the water molecules, the diffusion constant is related to the temperature, to the viscosity and to the radius of the sphere by the well known equation of Stokes. With the measured correlation time for the Mn^{++} ion with its next neighbouring water molecules one can calculate by this equation an effective of Stokes radius, the ratio of which to the «real radius» is a measure of the influence of the structure of water. Of course the «real radius» is unknown, and we take instead of it the sum a_0 of the Mn^{++} radius after Goldschmidt [3] and the diameter of the water molecule calculated from the X-ray diffraction at 0° C [4]. Then one finds from the temperature dependence of T_1 at 4 and 16 Mc/sec, that the ratio a/a_0 increases from 0.65 for 0° C to 0.95 for 100° C with a maximal error smaller than 5%. This strong increase of a/a_0 cannot only be explained by an increase of the mean radius of the water molecules, but refers to the fact, that the water becomes a more homogeneous liquid (decreasing ice structure) with increasing temperature [4].

The measurements of T_2 give the temperature dependence of the quantity $m (A/h)^2 \tau_x$ at 4 and 16 Mc/sec. A/h is the coupling constant of the exchange interaction and τ_x the corresponding correlation time, which is equal either to the paramagnetic relaxation time of the Mn^{++} ion or to the mean lifetime of the protons in the hydration sphere. The results show that the ratio of $(A/h) \sqrt{\tau_x}$ at 16 Mc/sec and 4 Mc/sec is not independent of the temperature and equal to 1.72 for 0° C and 1 for 100° C. The quantity $m (A/h)^2 \tau_x$ itself at 4 Mc/sec shows a maximum near 50° C with such a strong increase from low temperatures, that it may not only be explained by the increase of the paramagnetic Mn^{++} relaxation time [7, 8].

1. BERNHEIM, R. A., T. H. BROWN, H. S. GUTOWSKY, D. E. WOESSNER, *J. Chem. Phys.*, 30, 950-956 (1959).
2. KING, J., N. DAVIDSON, *J. Chem. Phys.*, 29, 787-791 (1956).
3. LANDOLT-BÖRNSTEIN, I. BAND, 4. Teil, Berlin, 1955.
4. SAMOILOW, O. J., *The structure of aqueous electrolytic solutions and the hydration of ions* (russ.), Moscow, 1957.

5. MORGAN, J., B. E. WARREN, *J. Chem. Phys.*, **6**, 666 (1938).
6. BLOEMBERGEN, N., Thesis, Leiden, 1948.
7. CODRINGTON, R. S., N. BLOEMBERGEN, *J. Chem. Phys.*, **29**, 600-604 (1958).
8. TINKHAM, M., R. WEINSTEIN, A. F. KIP, *Phys. Rev.*, **84**, 848-849 (1951).
