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542 SEANCE DU 1€T pEceMBRE 1960

J. Schaer. De la possibilité d’une théorie unitaire finslérienne
de Uélectromagnétisme et de la gravitation.

Procédés de la relativité générale.

Pour élaborer les procédés d’une théorie unitaire, 1l est nécessaire
de connaitre d’abord & fond ceux de la relativité générale.
Le noyau de cette théorie est formé des équations du champ
d’Einstein
Qik ZTik ,

7 étant une constante universelle. Elles fournissent la relation entre la
distribution de la matiere et la géométrie de 'espace-temps a quatre
dimensions, T" étant le tenseur décrivant la matiére et S étant un
tenseur déterminé par la métrique. En relativité générale on a
T* = wu'u" | ol w est la densité de masse et u' la quadrivitesse de
la matiere. S* est formé a partir du tenseur métrique g'* et de ses
dérivées de facon telle que sa divergence covariante s’annule identi-
quement
VSt =0.

Dans ces conditions, la conservation de la masse et les géodésiques
pour les lignes d’univers comme trajectoires de la matiere sont des
conséquences immeédiates des équations du champ.

Une possibilité consisterait a se donner la géométrie, c’est-a-dire
le tenseur métrique g;,, puis & déterminer & 'aide des équations du
champ la distribution de la matiere nécessaire a cette géométrie. Par
exemple on déduit sans autre que la densité de la masse vaut

o= 17 R, ou R est la courbure invariante.

Ceper{dant on utilise ordinairement 'autre possibilité, a savoir le
procédé ou I'on se donne la distribution de la matiere dans un systeme
de coordonnées abstrait et o I'on détermine la métrique (et avec elle
la signification des coordonnées) a partir des équations du champ.

En relativité générale un réle considérable est assumé par les
particules d’épreuves. Ce sont des particules microscopiques si petites
que leur influence sur la géométrie et par suite sur les autres corps,
c¢’est-a-dire les corps de dimension finie ou corps macroscopiques, est
négligeable. Einstein avait d’abord estimé devoir postuler que les
trajectoires des particules d’épreuve dans le champ des corps prinei-
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paux sont des géodésiques. Depuis, on a démontré que le mouvement
le long des géodésiques est une conséquence des équations du champ
(Infeld et Schild, Papapetrou) 1.

Théories unitaires finslériennes.

Par théorie unitaire, on entend une seule et unique explication
unifiant les phénomeénes qui, jusqu’ici, étaient restés les domaines de
deux théories distinctes, celle de la gravitation (dans la forme de la
relativité générale) et celle de I'électromagnétisme. On pourrait étre
tenté de suivre la voie empruntée en relativité générale et d’inter-
préter géométriquement I'électromagnétisme comme la gravitation.
Mais pour cela la structure de la géométrie riemannienne a quatre
dimensions ne suffit plus. On a alors, entre autres, la possibilité de la
remplacer par la géométrie de Finsler dont la structure est plus riche.

En effet, les trajectoires de la matiere chargée peuvent étre consi-
dérées comme les géodésiques d'un espace de Finsler avec la fonction
métrique fondamentale

F oz, b)) =V gy @) a2 + ko (2) & .

Lciles g;, sont les potentiels de la gravitation et ¢, le potentiel électro-
charge
masse

magnétique; £ est soit le rapport d’une particule, soit celui

densité de charge
densité de masse
La géométrie différentielle des espaces de Finsler n'est pas déter-

minée univoquement 2. Rund considére les espaces de Finsler comme

de la matiere distribuée d’une maniére continue.

localement minkowskiens. Pour introduire une dérivée covariante 1l a
besoin d’un champ de directions donné. Ce n’est pas le cas dans la
théorie de Cartan, qui regarde I'espace de Finsler comme espace
d’éléments de ligne. Ici par principe chaque tenseur dépend, comme
la métrique, du lieu et de la direction 3. Cependant il est possible de
déduire la dérivée covariante de Cartan par la méthode de Rund *.

Dans une théorie unitaire basée sur la géométrie de Finsler on
rendra le champ électromagnétique responsable de la déviation de la

1 Cf. M. A. ParareTrou, Ann. de U'Inst. H. Poincaré (1957), 173.

* H. Runp, The Differential Geometry of Finsler Spaces (Springer, Ber-
lin, Gottingen, Heidelberg, 1959).

3 E. Cartan, Les espaces de Finsler. Actualités sc. et ind., 79 (Paris,
1934).

4 Voir ’Appendice.
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géomeétrie par rapport 4 une géométrie riemannienne. A cet effet, on
pose d'une facon plus ou moins arbitraire un rapport entre les quo-

g
tients différentiels C;;, = 3 6—.;: mesurant le taux de la dépendance
4 T

de la métrique envers la direction et le champ électromagnétique ou
son potentiel. C’est ce qu’on fait divers auteurs déja 1.
La critique principale qu’il faut adresser a ces théories consiste en

ce qu'elles ne tiennent pas compte de la variabilité du rapport
_ charge
~ masse
étre appliqué a des problémes spéciaux. Elles laissent ouverte la

. Aussi ne disent-elles rien a I'égard du procédé qui doit

question de la détermination du tenseur métrique g, (x, z) en partant
de distributions données de la masse et de la charge, et aussi le pro-
bléme inverse de la détermination de la distribution de la matiére
correspondant a des champs donnés des potentiels g;, et @, (c’est-a-
dire la métrique), les équations du champ n’étant valables que pour
le vide. En outre les équations du champ sont dispersées en plusieurs
groupes indépendants. D’ailleurs elles sont développées a I'aide d’un
champ d’éléments de ligne qui reste indéterminé.

Des corps lancés dans les mémes conditions mais affublés de
différents rapports & parcourent certainement des trajectoires diffé-
rentes. Or, dans un espace de Finsler, des conditions aux limites fixes
ne déterminent qu'une seule géodésique a la fois. La variabilité de &
exigerait donc toute une famille d’espaces de Finsler, un pour chaque
champ de k. On pourrait éventuellement éviter cette ambiguité tres
malcommode a l'aide des équations du champ en attribuant a chaque
point une densité de masse et une densité de charge et par conséquent
une seule valeur de &k et on définirait de cette facon avec ce champ
unique de k& un seul espace de Finsler.

Rien ne nous dit que /& doive rester constant le long d’une ligne
d’univers; cependant, si ce n’'était pas le cas, cela reviendrait, du
point de vue physique, & un transbordement de la charge. En posant
les équations du champ convenablement cela ne se produira pas.

Plus grave est le fait que dans cet espace il n'y aurait plus aucune
place pour des particules d’épreuve. Car une telle particule modifierait
sensiblement la distribution de la masse et de la charge ou mieux leur

1 J. I. HorvATH, A. MooRr, Z. f. Phys., 131 (1951), 44.

E. ScHAFFHAUSER-GRAF, J. of Rat. Mech. and An., 2/4 (1953), 743.
CI. aussi G. STepHENSON, Ann. de I'Inst. H. Poincaré (1957), 205.
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rapport k. Méme si cela n’arrive que le long d’une seule ligne d’univers,
de I'importance de cette modification dépendrait la trajectoire, c’est-
a-dire en fin de compte la géodésique correspondante, et I'espace
serait remplacé par un autre. Il n’est pas aisé de renoncer a la notion
de particule d’épreuve, parce que sans elle i1l ne serait plus possible,
comme 1l est usuel de le faire en relativité générale, de calculer les
diverses trajectoires possibles dans le champ de corps principaux
donnés, et on serait alors forcé de traiter chaque cas pour soi, dans un
espace de Finsler particulier.

Equations du champ.

Etablir des équations du champ signifie dans notre cas poser une
relation entre des grandeurs géométriques et des grandeurs physiques.
<n géométrie finslérienne on la mettra, comme en relativité générale,
sous forme covariante générale en égalant, & un facteur universel
pres, un tenseur géométrique et un tenseur physique. Mais ici le
tenseur physique sera de nature bien plus complexe qu’en relativité
générale. En effet, il sera formé a partir de la densité de masse, de la
densité de charge ou du potentiel électromagnétique et, le cas échéant,
de ses dérivées, et des vitesses de la masse et de la charge, qui coin-
cident s’il n'y a pas de transbordement de charge. Le tenseur géo-
métrique lul-méme sera formé du tenseur métrique et éventuellement
d’un vecteur auxiliaire, ainsi que de leurs dérivées.

I1 est clair que, lorsque les champs électromagnétiques s’annulent,
il faut retrouver la théorie de la relativité générale. Il est donc utile
d’accommoder les équations du champ aux équations d’Einstein
S" = 5 T*. En relativité générale c’est le tenseur matériel d’énergie-
impulsion qui joue le réole de tenseur physique. Pour pouvoir déduire
la conservation de I'énergie et de I'impulsion il suffit donc de choisir
le tenseur géométrique tel que sa divergence s’annule. Au cas ou la
charge électrique suit les mémes trajectoires que la masse, le rapport k&
reste constant le long des trajectoires, et avec la masse, la charge
reste aussi conservée.

Sidans le cas de masse pure on choisit sans difficulté comme tenseur
physique le tenseur matériel M* = y u'u”" (u = . (z) étant la densité
de masse et u' la quadrivitesse) on n’est pas autorisé, dans un espace
de Finsler, a regarder comme indépendants u' et 2': MY (x, u)
= u () u' u*. Sinon, la dérivée de Cartan D,u' étant identiquement
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nulle, on trouve D, T" = a—p; utu
ox

ni I'équation de continuité ni la loi des géodésiques. En revanche, on

les retrouve toutes deux si la vitesse est considérée comme champ de

vecteur u' (z) et alors T (z, u (x)) = T" (x) ne dépend donc que de

la position; et cela, que 'on utilise soit la dérivée de Cartan soit celle

de Rund avec u' (x) comme champ de direction.

Dans le cas électromagnétique on considérera, par analogie avec
la relativité générale, la somme du tenseur d’énergie-impulsion maté-
riel M* et du tenseur électromagnétique t** comme tenseur physique.
On peut se demander alors pourquoi ne pas remplacer I'espace de
Finsler par ’espace riemannien osculateur le long des trajectoires de
w' (x), ce qui meénerait a la « théorie naive » de la gravitation et de
I'électromagnétisme. La raison en est que la dérivée finslérienne d'un
tenseur qui ne dépend que de la position par I'intermédiaire d'un
champ vectoriel n’est pas identique & la dérivée riemannienne dans

" et il n’est possible d’en déduire

I'espace osculateur correspondant.

Le probléme mathématique.

Il faut donc trouver un tenseur conservatif convenable S qui
soit déterminé par la métrique seulement. Il serait désirable de trouver
a cette question mathématique une réponse aussi complete qu’on
peut la donner dans le cas riemannien, ou tous les tenseurs conser-
vatifs qui ne dépendent que du tenseur métrique et de ses dérivées
jusqu’au deuxieme ordre et qui sont linéaires en ces dérivées

- ’ 1 :
du deuxieme ordre ont la forme S;, = & [Rik — =g (R— 27\)] ., ou

2
R,, est le tenseur contracté de la courbure, R = g R, la cour-
bure invariante, et i et X sont des constantes arbitraires. On cherche
donc a poser, outre la question principale concernant la divergence
nulle D, S* = 0, des conditions telles que la classe des tenseurs
satisfaisant a toutes les exigences soit restreinte et facile a embrasser
d’un coup d’ceil, et ¢’est beaucoup. Et I'on serait déja bien heureux
de connaitre un seul tenseur conservatif susceptible de nous donner
quelque indice sur la fagcon non seulement de remplir ces conditions
mais méme de les poser.
Le tenseur S™ utilisé en relativité générale est symétrique et il est
formé a partir du tenseur symétrique R;,. Un calcul élémentaire mais
laborieux montre que le tenseur de courbure contracté correspondant
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K,, ! de la géométrie de Finsler n’est pas symétrique si bien qu’on
peut former deux divergences différentes.

En relativité générale on démontre que le tenseur S est conser-
vatif a 'aide des identités de Bianchi pour le tenseur de courbure de
Riemann-Christoffel Rl,,. Le tenseur correspondant KI,, remplit
les identités analogues suivantes:

D, Kj,, + D, K}, + D, K}, +

1 e S o S v S
(—bf Ko + 3 Kan + o h;hk)xb = .

Mais ici les termes supplémentaires dans la parenthése empéchent
que la divergence du tenseur formé d’une fagon analogue a S¥
s’annule. Le probléme se pose alors de représenter le vecteur B, qu’est
cette divergence de quelque autre maniére en tant que divergence
d’un tenseur, disons B' = D, X'* . La facon la plus simple serait, la
représentation de B; par le gradient d’un invariant: B; = D; 1
(Xih e gikl).

Ainsi se pose la question de I'intégrabilité dans les espaces de
Finsler: Dans quelles conditions un vecteur se laisse-t-il représenter
par le gradient d’un invariant ? Dans la géométrie de Riemann
cette question meéne a un systéme total d’équations différentielles
partielles dont on connait bien les conditions d’intégrabilité: Le rota-
tionnel v, B; — v, B, doit étre identiquement nul. Dans I'espace de
Finsler considéré comme espace d’éléments de ligne la situation est
plus complexe, le systéme correspondant de n équations différen-
tielles partielles pour une fonction I (z, z) de 2n variables n’étant pas
total. Aussi peut-on espérer que les conditions d’intégrabilité ne sont
pas si strictes.

1 K. =K' :
K, = Kip » ou

AT} AT 6!
dzk il dak

‘)"ch D.it afch mh ~ ik

'j o *J' ‘m -
K = + Egn L

. 1 ..[08k 81 08kl ...
et Gl = = gl ( DxJ’ + bx; o bxf) o (Cf. Rund, L ¢.)

ARCHIVES DES ScIENcEs. Vol. 13, fase. 4, 1960. 38
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Le probléme qui se pose alors serait de trouver d’abord ces condi-
tions, puis d’examiner si elles sont remplies par notre vecteur parti-
culier B;. De cette fagon on construirait un tenseur conservatif qui
pourrait étre considéré comme tenseur géométrique et utilisé dans
des équations du champ. Le sens physique de ces équations est encore
incertain.

Je tiens a remercier le professeur A. Mercier pour les suggestions
et le soutien que je lui dois.

Appendice.

Etablissons la dérivée covariante de Cartan dans les espaces de
Finsler par un procédé simple.

Dans son livre: The Differential Geometry of Finsler Spaces
(Springer, 1959), Rund calcule la dérivée partielle des vecteurs ne
dépendant que du lieu (p. 55 ff). La méme méthode conduit, avec une
légére généralisation aux vecteurs qui dépendent et du lieu et de la
direction (mais d’une autre maniere que celle envisagée par Rund,
p- 60) & la dérivée de Cartan.

La clef de notre méthode réside dans le calcul des dérivées du
second ordre des fonctions et de la transformation des coordonnées:

- 3 . gl
Al Al At —
Dl’ A!r = 5?;\1-/ (‘\i’ e bxl’)

qui fournit le résultat que voici:
DAl = AL T — ALAL TS (A

(cef. Rund, L c., formules (4.6) et (4.6 a)).
Soit X' = X' (z, ) un vecteur contravariant, se transformant
selon X' = A X' lors d’une transformation générale de coordon-

nées ' = a* (!, ..., 2"V'), en abrégé
o=z, et ozt = ALz,
En dérivant
il 4o, "t i’ -1 ’, : ; n k'
X (2, 2) = Al (z (2) X} (2 (), 2* = A}, (z) )

par rapport a ', on trouve

ij' —_— (D) .A: ).A;u X '+‘ .‘\l (DJ] AJI + b_xh(le AR’)'T /
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et, apres avoir substitué le résultat (A)

OXY g (OX vigh _ X! ep oy ekt OXY e o
Donc
> 1 Dxi * yk in .k £y
D, X! = = P Ty X — o Iy« (B)

est un tenseur, a savoir exactement la dérivée de Cartan du vecteur
X! (x, x), car

: : : oGk
"Rl kol phil
I‘U x = Pﬂx = I‘U:c - —
oz
. 1 o3 2
avec I'expression G* = r_z—yf,‘!, a" 2! de Cartan.
H. Leutwyler. — La solution statique a symétrie sphérique en

théorie pentadimensionnelle.

1. Généralités.

En théorie unitaire pentadimensionnelle, on suppose que I’espace
V; est muni d’une métrique riemannienne do® = «,, dz*dx’ (u,¢ =
1, 2, 3, 4, 5; 2* = ct) ou «, satisfait & ’hypothése de cylindricité
d5 &, = 0. Les grandeurs a,, ne dependant que des quatre premiéres
variables, cet espace peut étre projeté en quatre dimensions par les
relations suivantes:

a5 = — U?
(1) a5 = — BU? ¢; (t, k =1, 2,3, 4)
xip = J gin — B UPoiqp.
w; désigne le potentiel électromagnétique, g, la métrique quadri-
dimensionnelle,
B=[16 xGegec ™t =1,9.1027 Cbsec? kg ! m™?

Cette interprétation est la plus générale de ce type, si on exige
que g;, se transforme comme tenseur de V, et que ¢; satisfasse a
I'invariance de jauge lors des transformations conservant la cylin-
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