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542 SEANCE DU 1er DECEMBRE 1960

J. Schaer. — De la possibilite (Tune theorie unitaire finslerienne
de V electromagnetisme et de la gravitation.

Procedes de la relativite generale.

Pour elaborer les procedes d'une theorie unitaire, il est necessaire
de oonnaitre d'abord ä fond ceux de la relativite generale.

Le noyau de cette theorie est forme des equations du champ
d'Einstein

r"b /.igift __

/ etant une constante universelle. Elles fournissent la relation entre la
distribution de la matiere et la geometrie de l'espace-temps a quatre
dimensions, T1'* etant le tenseur decrivant la matiere et Slk etant un
tenseur determine par la metrique. En relativite generale on a
Tlft ji uluh oil p. est la densite de masse et u' la quadrivitesse de

la matiere. Sih est forme ä partir du tenseur metrique gllt et de ses

derivees de faijon telle que sa divergence covariantc s'annule identi-
quement

VASih 0

Dans ces conditions, la conservation de la masse et les geodesiques

pour les lignes d'univers comme trajectoires de la matiere sont des

consequences immediates des equations du champ.
Une possibilite consisterait ä se donner la geometrie, c'est-ä-dire

le tenseur metrique glk, puis ä determiner ä Paide des equations du

champ la distribution de la matiere necessaire ä cette geometrie. Par

exemple on deduit sans autre que la densite de la masse vaut
\

a R oil R est la courbure invariante.
Z

Cependant on utilise ordinairement l'autre possibilite, ä savoir le

procede oü Ton se donne la distribution de la matiere dans un Systeme
de coordonnees abstrait et oil l'on determine la metrique (et avec eile
la signification des coordonnees) ä partir des equations du champ.

En relativite generale un röle considerable est assume par les

particules d'epreuves. Ce sont des particules microscopiques si petites
que leur influence sur la geometrie et par suite sur les autres corps,
c'est-ä-dire les corps de dimension finie ou corps macroscopiques, est

negligeable. Einstein avait d'abord estime devoir postuler que les

trajectoires des particules d'epreuve dans le champ des corps princi-
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paux sont des geodesiques. Depuis, on a demontre que le mouvement
le long des geodesiques est une consequence des equations du champ
(Infeld et Schild, Papapetrou)L

Theories unitaires finsleriennes.

Par theorie unitaire, on entend une seule et unique explication
unifiant les phenomenes qui, jusqu'ici, etaient restes les domaines de

deux theories distinctes, celle de la gravitation (dans la forme de la
relativite generale) et celle de l'electromagnetisme. On pourrait etre

tente de suivre la voie empruntee en relativite generale et d'inter-
preter geometriquement l'electromagnetisme comme la gravitation.
Mais pour cela la structure de la geometrie riemannienne ä quatre
dimensions ne sulTit plus. On a alors, entre autres, la possibility de la

remplacer par la geometrie de Finsler dont la structure est plus riche.
En effet, les trajectoires de la matiere chargee peuvent etre consi-

derees comme les geodesiques d'un espace de Finsler avec la fonction

metrique fondamentale

F (x, x) [/glk (x) xl xh + k <pt (x) xj

Ici les gik sont les potentiels de la gravitation et <p; le potentiel eleetro-

magnetique; k est soit le rapport
c^ar£e d'une particule, soit celui
masse

densite de charge ^ ^ ma^^re distribuee d'une maniere continue,
densite de masse

La geometrie differentielle des espaces de Finsler n'est pas deter-
minee univoqueinent 2. Rund considere les espaces de Finsler comme
localement minkowskiens. Pour introduire une derivee covariante il a

besoin d'un cbamp de directions donne. Ce n'est pas le cas dans la
theorie de Cartan, qui regarde l'espace de Finsler comme espace
d'elements de ligne. Ici par principe chaque tenseur depend, comme
la metrique, du lieu et de la direction 3. Cependant il est possible de

deduire la derivee covariante de Cartan par la methode de Rund 4.

Dans une theorie unitaire basee sur la geometrie de Finsler on
rendra le champ electromagnetique responsable de la deviation de la

1 Cf. M. A. Papapetrou, Ann. de l'Inst. H. Poincare (1957), 173.
2 II. Rund, The Differential Geometry of Finsler Spaces (Springer, Berlin,

Göttingen, Heidelberg, 1959).
3 E. Cartan, Les espaces de Finsler. Aclualites sc. et ind., 79 (Paris,

1934).
4 Voir l'Appendice.
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geometrie par rapport ä une geometrie riemannienne. A cet effet, on

pose d'une fa<jon plus ou moins arbitraire un rapport entre les quo-
1 dg-

tients differentiels Cijk rr mesurant le taux de la dependance
2 dx

de la metrique envers la direction et le champ electromagnetique ou

son potentiel. C'est ce qu'on fait divers auteurs dejä L
La critique principale qu'il faut adresser ä ces theories consiste en

ce qu'elles ne tiennent pas compte de la variabilite du rapport
k c*'arSe 4ussj ne disent-elles rien a l'egard du procede qui doit

masse ° 1 1

etre applique ä des problemes speciaux. Elles laissent ouverte la

question de la determination du tenseur metrique güi (x, x) en partant
de distributions donnees de la masse et de la charge, et aussi le
Probleme inverse de la determination de la distribution de la matiere

correspondant ä des champs donnes des potentiels gj/( et cp; (c'est-ä-
dire la metrique), les equations du champ n'etant valables que pour
le vide. En outre les equations du champ sont dispersees en plusieurs

groupes independants. D'ailleurs elles sont developpees ä l'aide d'un
champ d'elements de ligne qui reste indetermine.

Des corps lances dans les memes conditions mais affubles de

differents rapports k parcourent certainement des trajectoires diffe-
rentes. Or, dans un espace de Finsler, des conditions aux limites fixes

ne determinent qu'une seule geodesique ä la fois. La variabilite de k

exigerait done toute une famille d'espaces de Finsler, un pour chaque
champ de k On pourrait eventuellement eviter cette ambiguite tres
malcommode ä l'aide des equations du champ en attribuant ä chaque
point une densite de masse et une densite de charge et par consequent
une seule valeur de k et on definirait de cette fa<;on avec ce champ
unique de k un seul espace de Finsler.

Rien ne nous dit que k doive rester constant le long d'une ligne
d'univers; cependant, si ce n'etait pas le cas, cela reviendrait, du

point de vue physique, ä un transbordement de la charge. En posant
les equations du champ convenablement cela ne se produira pas.

Plus grave est le fait que dans cet espace il n'y aurait plus aueune
place pour des particules d'epreuve. Car une teile particule modifierait
sensiblement la distribution de la masse et de la charge ou mieux leur

1 J. I. Horvath, A. Moor, Z. /. Phys., 131 (1951), 44.
E. Schaffhalser-Graf, J. of Rat. Mech. and An., 2/4 (1953), 743.

Cf. aussi G. Stephenson, Ann. de l'Inst. H. Poincare (1957), 205.
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rapport k. Meme si cela n'arrive que le long d'une seule ligne d'univers,
de l'importance de cette modification dependrait la trajectoire, c'est-
ä-dire en fin de compte la geodesique correspondante, et l'espace
serait remplace par un autre. II n'est pas aise de renoncer ä la notion
de particule d'epreuve, parce que sans eile il ne serait plus possible,

comme il est usuel de le faire en relativite generale, de calculer les

diverses trajectoires possibles dans le champ de corps principaux
donnes, et on serait alors force de traiter chaque cas pour soi, dans un

espace de Finsler particulicr.

Equations du champ.

Etablir des equations du champ signifie dans notre cas poser une
relation entre des grandeurs geometriques et des grandeurs physiques.
En geometrie finslerienne on la mettra, comme en relativite generale,

sous forme covariante generale en egalant, ä un facteur universel

pres, un tenseur geometrique et un tenseur physique. Mais ici le

tenseur physique sera de nature bien plus complexe qu'en relativite
generale. En effet, il sera forme ä partir de la densite de masse, de la
densite de charge ou du potentiel electromagnetique et, le cas echeant,
de ses derivees, et des vitesses de la masse et de la charge, qui
coincident s'il n'y a pas de transbordement de charge. Le tenseur
geometrique lui-meme sera forme du tenseur metrique et eventuellement
d'un vecteur auxiliaire, ainsi que de leurs derivees.

II est clair que, lorsque les champs electromagnetiques s'annulent,
il faut retrouver la theorie de la relativite generale. II est done utile
d'accommoder les equations du champ aux equations d'Einstein
S1'1 / T!/i. En relativite generale c'est le tenseur materiel d'energie-
impulsion qui joue le röle de tenseur physique. Pour pouvoir deduire
la conservation de fenergie et de l'impulsion il suffit done de choisir
le tenseur geometrique tel que sa divergence s'annule. Au cas oü la

charge electrique suit les memes trajectoires que la masse, le rapport k
reste constant le long des trajectoires, et aveo la masse, la charge
reste aussi conservee.

Si dans le cas de masse pure on choisit sans difficulte comme tenseur

physique le tenseur materiel M,ft p u'uk (p p (x) etant la densite
de masse et ul la quadrivitesse) on n'est pas autorise, dans un espace
de Finsler, ä regarder comme independants ul et xl: M,,( (x, u)

p (x) u' uk. Sinon, la derivee de Cartan Dkul etant identiquement
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nulle, on trouve D/(Ti'< ul iik et il n'est possible d'en deduire

ni l'equation de continuity ni la loi des geodesiques. En revanche, on
les retrouve toutes deux si la vitesse est consideree comme champ de

vecteur ul (x) et alors Tlft (x, u (x)) T'ft (x) ne depend done que de

la position; et cela, que Ton utilise soit la derivee de Cartan soit celle
de Rund avec ul (x) comme champ de direction.

Dans le cas electromagnetique on considerera, par analogie avec
la relativite generale, la somme du tenseur d'energie-impulsion materiel

M,h et du tenseur electromagnetique comme tenseur physique.
On peut se demander alors pourquoi ne pas remplacer l'espace de

Finsler par l'espace riemannien osculateur le long des trajectoires de

ul (x), ce qui menerait ä la «theorie naive » de la gravitation et de

l'electromagnetisme. La raison en est que la derivee finslerienne d'un
tenseur qui ne depend que de la position par l'intermediaire d'un

champ vectoriel n'est pas identique ä la derivee riemannienne dans

l'espace osculateur correspondant.

Le probleme mathemalique.

II faut done trouver un tenseur conservatif convenable S'1' qui
soit determine par la metrique seulement. II serait desirable de trouver
ä cette question mathematique une reponse aussi complete qu'on
peut la donner dans le cas riemannien, oil tous les tenseurs conser-
vatifs qui ne dependent que du tenseur metrique et de ses derivees

jusqu'au deuxieme ordre et qui sont bnpaires en ces derivees

du deuxieme ordre ont la forme F>jU — h |Rift -- ^ gik (R — 2X)| oil

Rift est le tenseur contracte de la courbure, R gllt Rife la cour-
bure invariante, et h et X sont des constantes arbitraires. On cherche

done ä poser, outre la question principale concernant la divergence
nulle Dft Slft 0, des conditions telles que la classe des tenseurs
satisfaisant ä toutes les exigences soit restreinte et facile ä embrasser

d'un coup d'ceil, et e'est beaucoup. Et Ton serait dejä bien heureux
de connattre un seul tenseur conservatif susceptible de nous donner

quelque indice sur la fagon non seulement de remplir ces conditions
mais meme de les poser.

Le tenseur S1'' utilise en relativite generale est symetrique et il est
forme a partir du tenseur symetrique Un calcul elementaire mais

laborieux montre que le tenseur de courbure contracte correspondant
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Klk 1 de la geometrie de Finaler n'est pas symetrique si bien qu'on
peut former deux divergences differentes.

En relativite generale on demontre que le tenseur S'A est conser-

vatif ä l'aide des identites de Bianchi pour le tenseur de courbure de

Riemann-Christoffel R^. Le tenseur correspondant K(hft remplit
les identites analogues suivantes:

Mais ici les termes supplementaires dans la parenthese empechent

que la divergence du tenseur forme d'une fagon analogue ä S1''

s'annule. Le probleme se pose alors de representer le vecteur B, qu'est
cette divergence de quelque autre maniere en tant que divergence
d'un tenseur, disons B1 Dft Xth La fagon la plus simple serait la

representation de B, par le gradient d'un invariant: Bt D, I

Ainsi se pose la question de l'integrabilite dans les espaces de

Finsler: Dans quelles conditions un vecteur se laisse-t-il representer

par le gradient d'un invariant Dans la geometrie de Riemann

cette question mene ä un Systeme total d'equations differentielles

partielles dont on connait bien les conditions d'integrabilite: Le rota-
tionnel Vfe B; — vtBft doit etre identiquement nul. Dans l'espace de

Finsler considere comme espace d'elements de ligne la situation est

plus complexe, le Systeme correspondant de n equations differentielles

partielles pour une fonction I (x, x) de 2n variables n'etant pas
total. Aussi peut-on esperer que les conditions d'integrabilite ne sont

pas si strictes.

D, + Dh Vki + Dk +

(X!ft glftI).

1 Klft K[rk oü

l-3 w in
m Ox"

ITH

et ^Cf. Rund, l. c.)

Archives des Sciences. Vol. 13, fasc. 1960. 38
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Le probleme qui se pose alors serait de trouver d'abord ces conditions,

puis d'examiner si elles sont remplies par notre vecteur parti-
culier B,. De cette fa^on on construirait un tenseur conservatif qui
pourrait etre considere comme tenseur geometrique et utilise dans
des equations du champ. Le sens physique de ces equations est encore
incertain.

Je tiens ä remercier le professeur A. Mercier pour les suggestions
et le soutien que je lui dois.

.1 ppendice.

Etablissons la derivee covariante de Cartan dans les espaces de

Finsler par un precede simple.
Dans son livre: The Differential Geometry of Finsler Spaces

(Springer, 1959), Rund calcule la derivee partielle des vecteurs ne

dependant que du lieu (p. 55 ff). La meme methode conduit, avec une

legere generalisation aux vecteurs qui dependent »t du lieu et de la

direction (mais d'une autre maniere que celle envisagee par Rund,

p. 60) ä la derivee de Cartan.
La clef de notre methode reside dans le calcul des derivees du

second ordre des fonctions et de la transformation des coordonnees:

(*:-&)
qui fournit le resultat que voici:

VA!' (A)

(cf. Rund, I. c., formules (4.6) et (4.6 a)).
Soit X1 — X1 (x, x) un vecteur contravariant, se transformant

selon X1' A}' X1 lors d'une transformation generale de coordonnees

xl xl (x1' xn'), en abrege

xl — x' (x') et xl A|, x1'

En derivant

X1' (x', x) A|' (x (x'O X1 (x (x') xh Aj, (x') x"')

par rapport a x1', on trouve

^ - (vOAj.x- + A;' + go,AM-*')
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et, apres avoir substitue le resultat (A)

dx''
__ Ai-Ai /ax' i r*i x'i _ — r*'' xk' +

sx'' r'k'x1'
iJ1 ~ Ai A>' \ dJ T r"^x ai* " ^ + r''2"* •

Done

D^Xi S + ^Xft-Sr"^ (B)

est un tenseur, ä savoir exaetement la derivee de Cartan du vecteur
X1 (z, x), car

r''< rl — ph Tl - rfe rl - ÖGfe

1u x ~ rnx — 1UX ~
1

avec l'expression Gf' —y',illxhxl de Cartan.

H. Leutwyler. — La solution statique a symetrie spherique en

theorie penladimensionnelle.

1. Generalites.

En theorie unitaire pentadimensionnelle, on suppose que l'espace

\'ä est muni d'une metrique riemannienne da2 a(iv dx^dx" (p., v

1, 2, 3, 4, 5; x^ et) oü satisfait ä l'hypothese de cylindricite
^5 °Vv °- Les grandeurs a^v ne dependant que des quatre premieres
variables, cet espace peut etre projete en quatre dimensions par les

relations suivantes:

*55 — U2

(1) *i5 ßU2 <Pi (i, ft 1,2, 3,4)
«ifc J gih — ß2 U2 9i 9h

9i designe le potentiel electromagnetique, gih la metrique quadri-
dimensionnelle,

ß [l6 77 G £0 c~4]* 1,9 10-27 Cb sec2 kg-1 in-2

Cette interpretation est la plus generale de ce type, si on exige

que gih se transforme comme tenseur de V4 et que cp; satisfasse ä

l'invariance de jauge lors des transformations conservant la cylin-
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