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Paul Rossier. — Une demonstration generale da theor'eme de

Vorthocentre d'un triangle.

1. Cos euclidien.

Dans un plan, soient une droite a, deux de ses points B et C,
h une perpendiculaire ä a et X un point variable de h. Menons les

droites BX et CX et, de C et B, abaissons les perpendieulaires sur
eiles; les deux faisceaux ainsi obtenus sont projectifs et meme pers-
spectifs puisque, si X est impropre, les deux perpendieulaires ci-
dessus sont confondues avec a. Le lieu de l'intersection Y de ces

deux droites est done une droite.
II existe deux triangles rectangles d'hypothenuse BC et dont le

sommet de Tangle droit appartient ä h. Choisissons X en Tun M de

ces points; le point Y correspondant est alors confondu avec M. La
droite lieu de Y a deux points sur h; elle est confondue avec eile.

Autrement dit, les trois hauteurs du triangle BCX sont concourantes.
La construction s'applique ä tout triangle en prenant pour h la
hauteur issue du troisieme sommet; le theoreme est general.

La demonstration precedente ne fait appel qu'ä une seule notion
metrique, la perpendicularity Elle est independante de la notion de

parallelisme.
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2. Cas cayleyen.

La remarque precedente suggere d'etendre les raisonnements
ci-dessus ä la geometrie cayleyenne.

En plus de la droite a et de ses deux points B et C, donnons-nous
la conique absolue p du plan cayleyen. Mener une perpendiculaire
ä une droite, c'est tracer une droite qui passe par le pole de la droite
donnee, relativement ä l'absolu.

Montrons tout d'abord l'existence de deux triangles cayleyenne-
ment rectangles, d'hypothenuse BC et dont les sommcts de Tangle
droit appartiennent ä une droite h. Pour cela, choisissons un point X
de h, joignons-le ä B et, de C abaissons la perpendiculaire cayleyenne
ä BX; cette droite coupe h en un point Z, lie projectivement ä X.
Cette projectivite homolocale possede deux points unis M et N; les

triangles MBC et XBC sont cayleyennement rectangles en M et N.
II existe bien deux triangles rectangles d'hypothenuse BC et dont le

sommet de Tangle droit appartient ä h.

Cela acquis, la demonstration de l'existence de l'orthocentre d'un
triangle est identique ä celle donnee plus haut. La droite h est choisie

perpendiculaire ä a et les perpendicualires issues de C et B ä BX et
CX engendrent une conique degeneree en les droites a et h.

3. Cas particuliers.

Si un sommet A d'un triangle est le pole du cote oppose, relativement

ä l'absolu, le triangle est birectangle et toute droite issue de A
est une hauteur. Le theoreme subsiste car le cote oppose ä A porte
les deux autres hauteurs du triangle. L'orthocentre est indetermine
sur ce cote.

Si le triangle est auto-conjugue par- rapport ä l'absolu, il est

trirectangle. Toute droite issue d'un sommet est une hauteur:
l'orthocentre est indetermine. En ce sens, le theoreme tombe et est

remplace par le suivant. Tout point du plan d'un triangle trirectangle
peut etre pris comme orthocentre de ce triangle.

Si un triangle est asvmptotique, c'est-ä-dire si ses trois sommets

appartiennent ä l'absolu ou si ses trois cötes sont tangents ä l'absolu,
le theoreme de la convergence des hauteurs est le cas particulier de

celui du Brianchon relatif aux triangles circonscrits ä une conique.
Le cas elliptique, oil l'absolu est imaginaire, n'appelle pas de

remarque. Au contraite, dans le cas hyperbolique, il peut arriver
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que l'orthocentre soit inaccessible. Le theoreme prend alors la forme

suivante, naturellement valable en geometrie lobatchevskienne. Si

deux hauteurs d'un triangle sont des droites secantes, la troisieme
hauteur passe par leur point de concours; si elles sont des non-
secantes, leur perpendiculaire commune est perpendiculaire ä la

troisieme hauteur ou les trois hauteurs d'un triangle possedent un

point commun ou une perpendiculaire commune.

4. Expression projective du theoreme.

En geometrie cayleyenne, mener les trois hauteurs d'un triangle,
c'est, de fapon appropriee, en joindre les sommets ä ceux du triangle
polaire du triangle donne par rapport ä l'absolu. En langage projectif,
le theoreme de l'orthocentre devient le suivant: si deux triangles
sont polaires l'un de l'autre par rapport ä une conique, ils sont

perspectifs.
II est facile de rediger la demonstration precedente en termes

projectifs; il suffit de remplacer la relation de perpendicularity par
celle de polarite relativement ä l'absolu.

Marcel Haegi. — Nouvelle methode de confinement dans les plasmas.
Examen du principe du jonctionnement.

Supposons possible de placer des ions positifs sur des orbites

passant toutes par une meme ligne (fig. 1).

Le nombre de particules par unite de volume pour p ->- 0 tendraient
vers l'infini, les collisions auraient quasiment toutes lieu dans cette

region, la vitesse y serait purement radiale avant le choc et apres,
la nouvelle trajectoire repasserait par le centre, y conservant ainsi
la forte densite qui permettrait ä la fusion d'avoir lieu.

§ 1. Choix du modele.

Nous supposerons:

B uniforme dans une region p >> R,
E 0, plasma neutre,
les particules dejä placees sur leur orbite.
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