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GEOMETRIE AFFINE
ET GEOMETRIE PASCALIENNE

PAR

Paul ROSSIER

REsuME

On peut considérer la géométrie affine comme la science obtenue
en ajoutant le parallélisme aux relations de la géométrie projective.
Elle constitue une partie de la géométrie métrique classique, pas tres
¢tendue, cependant plus qu'il ne le parait a premiére vue; plusieurs
théorémes, fréquemment exposés sous forme métrique, sont de nature
affine: somme des angles d’un triangle, les propriétés des polygones
des vecteurs et funiculaires, théoremes de Ménélaiis, de Ceva, de
Newton, Mac-Laurin et Carnot sur les courbes algébriques.

Grace a un ensemble de constructions isomorphe au calcul algé-
brique, il est possible de baser la géométrie affine sur un ensemble
d’axiomes ne portant pas surla notion de continuité. Dans ce domaine,
le role joué par une proposition de Pascal relative au parallélisme
deux a deux des cotés d’un hexagone inscrit dans un angle a fait
attribuer le nom de géométrie pascalienne a cette discipline.

Nous nous proposons de donner un apercu d’ensemble de la géomé-
trie affine basé sur la géométrie projective et inspiré des méthodes
de Desargues, puis de montrer I’enssentiel de la base de départ de la
géométrie pascalienne.

I. INTRODUCTION
1. DEFINITIONS.

Depuis les travaux de Hilbert, I'habitude est de classer les axiomes
de la géométrie en cinq groupes: appartenance (ou incidence), ordre,
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congruence, parallélisme et continuité. En ne faisant appel qu’a
Pappartenance, I'ordre et la continuité, on constitue la géométrie
projective. En modifiant ou supprimant le parallélisme, on est
comduit aux deux géométries lobatchevskienne et riemannienne.
Que se passe-t-il si, des cinq groupes d’axiomes, on supprime la seule
congruence ? La géométrie ainsi obtenue est dite affine.

Un exposé de géométrie affine semble pouvoir étre réalisé en
supprimant, dans un trait¢ de géométrie élémentaire, toutes les pro-
positions pour I'étude desquelles il a été fait usage de la congruence;
cette facon d’opérer ne serait correcte que si, dans I'élaboration d’une
géométrie ¢lémentaire, les auteurs ne faisaient appel a la notion de
congruence qu’'en cas d’absolue nécessité. Or, par souci de brieveté,
il est fréequent que des théorémes qui, en toute rigueur, sont de
caractere affin soient énoncés ou démontrés (ou tous les deux) en
langage de congruence. Un exemple immédiat est le «coeflicient
angulaire » de la géométrie analytique de la droite; ce nom appelle
évidemment la notion d’angle telle qu’elle est lice a la géométrie
métrique par la trigonométrie. Or, en géométrie analytique afline,
deux droites paralléles sont représentées par deux é¢quations linéaires
de méme « coeflicient angulaire ». Pour bien faire, il faudrait employer
une autre expression, rappelant le parallélisme sans allusion a la
grandeur d’un angle; on pourrait dire « coefficient directionnel ».

En géométrie projective de I'espace et du plan, la proposition de
Desargues sur les triangles perspectifs est un théoreme. Si I'on désire
construire une géométrie projective plane, cette proposition doit étre
admise comme un postulat. Autant dire que la géométrie projective
est tridimensionnelle et contient la géométrie plane comme cas
particulier. S1 on considéere la géométrie affine comme un cas parti-
culier de la géométrie projective, on lui confere en méme temps ce
caractere tridimensionnel.

Est-il possible de construire une géométrie affine plane, sans
recours a I'espace et quels sont les axiomes nécessaires pour cela ?
Les études de Hilbert et de son école ont conduit a un résultat impor-
tant: la possibilité de construire une géométrie afline plane indépen-
dante de la notion de continuité, a condition de poser comme axiome
non pas seulement la proposition de Desargues, mais une autre, due
a Pascal dans le cas des coniques: si les sommets d’un hexagone sont
alignés trois a trois et si deux paires de cotés opposés sont paralléles,
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il en est de méme de la troisitme paire. Ce résultat est trés remar-
quable, car il conduit & une autre définition de la géométrie affine
plane: la science basée sur les axiomes plans d’incidence, deux
axiomes de parallélisme et les axiomes de 'ordre, exprimés dans le
langage affin, lui-méme caractérisé par le parallélisme. La géométrie
affine constitue ainsi une discipline indépendante de la géométrie
projective puisqu’elle substitue un axiome d’incidence et de parallé-
lisme a I’axiome de continuiteé.

Dans une premicre partie de I'exposé qui suit, nous nous propo-
sons de montrer en quoi la géométrie afline se distingue de la géométrie
projective, tout en nous appuyant sur elle. Pour la clarté des idées,
il sera utile de rappeler quelques propositions de géométrie projective.
Par souci de briéveté nous nous limiterons a la géométrie plane.

Dans une seconde partie nous exposerons l’essentiel de I’axio-
matique de la géométrie afline plane basée sur la proposition de
Pascal, géométrie dite pascalienne.

2. RAPPELS DE GEOMETRIE PROJECTIVE.

La géométrie projective plane étudie les formes de deux especes:
les ponctuelles et les faisceaux de droites sont celles de premiére,
les plans ponctuels et réglés, celles de seconde.

Comme deux points déterminent une droite, deux droites se
coupent toujours et leur intersection détermine un point.

Passant par D'espace, les relations d’incidence conduisent au
théoreme de Desargues relatif aux triangles perspectifs: si les som-
mets homologues de deux triangles déterminent trois droites concou-
rantes, les cotés homologues se coupent en trois points alignés. Ce
théoreme conduit & la notion de groupe harmonique de quatre élé-
ments d’une forme de premiere espece.

En se basant sur la relation d’ordre, on obtient la notion de
segment projectif: sur une forme de premiére espéce, deux éléments
déterminent deux segments.

Les éléments de deux formes de premiere espéce peuvent étre
liés par une suite de projections ou de sections en nombre fini; on
dit alors qu’il y a projectivité entre ces deux formes. L’axiome de
continuité permet de démontrer le théoreme fondamental suivant:
trois paires d’éléments correspcndants déterminent une projectivité
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entre deux formes de premiére espéce. Il est alors possible de cons-
truire la théorie des coniques, lieu des éléments correspondants de
deux formes projectives de méme nature.

La relation de projectivité peut étre étendue aux plans: corres-
pondance entre deux plans telle qu’a toute forme de premiere espéce
de T'un correspond une forme de premiére espéce de l'autre, ces
deux formes étant projectives. Deux plans projectifs sont dits colli-
néaires si la correspondance est ponctuelle; il y a corrélation si aux
points de I'un correspondent les droites de I'autre.

En ne faisant usage que de la regle, il est possible de construire
un systéeme de coordonnées basé exclusivement sur les axiomes pro-
jectifs et cela sur les ponctuelles, les faisceaux et les plans.

En coordonnées projectives homogenes, I’équation d’une droite
est linéaire et homogene.

Le birapport des quatre abscisses projectives de quatre é¢léments
d’'une forme de premicre espece est indépendant du systeme de
coordonnées choisi 1. Le birapport est conservé par projecticn et
section. Le birapport des ¢léments d’un groupe harmonique est — 1.

La géométrie projective satisfait a la dualité: a toute proposition
relative 4 des points et a des droites correspond une proposition
analogue relative a des droites et des points.

Dans la théorie projective des coniques, on démontre le théoréme
suivant, dit de Pascal: si un hexagone est inscrit dans une conique,
les trois intersections des paires de cotés opposés sont alignées. Le
théoréme subsiste si la conique dégénére en deux droites. En géo-
métrie affine & base projective, cette derniére proposition prend la
forme particuliére suivante: si les sommets d’'un hexagone sont
alignés trois & trois et si deux paires de cotés opposés sont paralleles,
il en est de méme de la troisitme paire. Nous avons déja exposé plus
haut le role que jouera cette proposition dans I'axiomatique de la
géométrie affine plane.

1 Le birapport des quatre éléments A, B, C et D, d’abscisses projectives

a, b, c et d est (ABCD) — a—c. a—d )
b—c¢ b—d
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Premiére Partie

GEOMETRIE AFFINE A BASE PROJECTIVE

II. AXIOMES ET NOTIONS FONDAMENTALES
3. CONSIDERATIONS INTUITIVES.

Solent deux droites paralléles de la géométrie élémentaire. Cons-
truisons-en les perspectives sur un plan qui les coupe, le tableau;
ces deux perspectives convergent en leur point de fuite, intersection
du tableau avec la paralléle aux droites données passant par le centre
de la perspective. Dans le langage de la géométrie élémentaire, le
point de fuite n’est la perspective d’aucun point des droites données.
En outre les intersections de ces droites avee le plan (dit évanouissant)
parallele au tableau et passant par le centre de la perspective ne
posseédent pas de perspective. Ainsi, la biunivocité entre les points
d’une droite et leurs perspectives a des exceptions: sauf le point
évanouissant, tout point d’une droite posséde une perspective et,
sauf le point de fuite, tout point de la perspective d’une droite est la
perspective d’'un point de celle-ci. Ces exceptions sont trés génantes;
elles obligent a une é¢tude longue et souvent peu intéressante de cas
particuliers nombreux.

Pour éliminer ces inconvénients, posons que le point de fuite de
la perspective d’une droite est la perspective d’un point spécial de
celle-ci, appelé point impropre. Si nous voulons conserver la biunivo-
cité entre les pcints d’'une droite et leurs perspectives, comme les
perspectives de deux droites paralléles ont méme point de fuite, il
nous faut poser que deux droites paralléles ont méme point impropre.

L’unicité de la paralléle & une droite donnée passant par un point
donné implique I'unicité du point impropre d’une droite quelconque.

Deux droites coplanaires non paralléles se coupent; leurs points
impropres sont donc différents. Ainsi, dans le plan, il existe une
infinité de points impropres.

Imposons aux points impropres les propriétés générales des points;
deux points impropres distincts A et B déterminent une droite.
Cette droite fait exception: elle possede au moins deux points
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impropres et elle est simultanément paralléle & au moins deux droites
a et b du plan ayant I'une A et 'autre B comme points impropres;
enfin, par 'intersection de a et b, il passe deux droites paralléles a AB.

Soit C un point impropre distinct de A et B; supposons-le exté-
rieur & la droite AB. Tracons la droite joignant C & un point propre
quelconque N du plan. Les droites AB et CN se coupent en un point
M. Puisque A et C sont impropres et distincts, les droites MA et MC
sont distinctes et paralleles & AC; 'unicité du parallélisme n’existe
plus. Ces difficultés disparaissent si nous imposons a C d’appartenir
a AB. Cela revient a poser ’hypotheése suivante: les points impropres
du plan appartiennent @ une droite, la droite impropre du plan. La
droite impropre a un point commun avec toutes les droites du plan;
elle est donc parallele a chacune d’elles.

Considérons enccre la perspective d’un plan et sa droite de fuite,
lieu des points de fuite des perspectives des droites de ce plan. Si
les points impropres de celui-ci n’étaient pas alignés, ou bien ce lieu
ne serait pas une droite ou bien l'intersection de deux plans pourrait
ne pas étre une droite.

4. AXIOME FONDAMENTAL.

Tout plan posséde une droite privilégiée, dite droite impropre,
telle que deux droites sont paralléles si leur intersection est un point
de la droite impropre.

Rien d’analogue n’est supposé pour les points. Un faisccau ne
possede donc pas de rayon privilégié. De ce fait, la dualité est absente
de la géométrie affine. Les propriétés affines appartiennent done a
des figures dans lesquelles apparaissent des points impropres.

III. GEOMETRIE AFFINE ELEMENTAIRE

5. COTES D'UNE DROITE, SEGMENT, DEMI-DROITE,
MILIEU D'UN SEGMENT.

En géométrie projective, les axiomes de l'ordre permettent de
montrer que deux droites partagent le plan en deux régions. Par
conséquent, une droite et la droite impropre déterminent deux
régions sur le plan, chacune dite un demi-plan ou un cété de la droite
considérée.
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Soient A et B deux points propres. Sur la droite d qui passe par
eux, ils déterminent deux segments projectifs; 'un d’eux ne contient
pas le point impropre de d; il est le segment affin d’extrémités A et B.
Dans la suite, sauf cas de nécessité, nous laisserons tomber 1'adjec-
tif affin. Deux points propres déterminent un unique segment.

Soit A un point propre d’une droite d. Avec le point impropre, il
détermine deux segments projectifs portés par d. Distinguons 1'un
d’eux par exemple en en marquant un point quelconque. Un tel
segment est appelé une demi-droite. Le point A en est origine.

Le conjugué harmonique du point impropre de la droite support
d’un segment par rapport aux extrémités de celui-ci est appelé le
milien de ce segment. Tout segment posséde un milieu et un seul.

Le milieu d’une demi-droite est le point impropre de son support;
sa considération est sans intérét.

6. CONGRUENCE AFFINE DE SEGMENTS.

Soient AB et CD deux segments de supports paralleles mais
distinets. Supposons paralléles les deux droites AC et BD. On dit
que les deux segments AB et CD sont affinement congruents ou en
congruence affine.

La congruence afline de deux segments est une relation transitive.
En effet, soient AB et EF deux segments respectivement congruents !
a un segment CD; AC et BD sont paralléles ainsi que CE et DF.
Dans les deux triangles ACE et BDF, les sommets homologues A
et B, Cet D, E et F sont alignés sur le point impropre de la droite
AB; ces deux triangles sont perspectifs; I’axe de perspectivité est la
droite impropre puisque AC et BD d'une part, CE et DF d’autre
part sont paralléles. Le théoréme de Desargues montre que AE et
BF sont paralleles. Ainsi AB et EF sont congruents.

La congruence de segments de supports différents est évidemment
symeétrique.

Dans la figure précédente, supposons confondus les supports
de AB et EF. La congruence affine et sa symétrie sont ainsi étendues
au cas de la superposition des supports. Si les extrémités A et K sont
confondues, on obtient la réflexivité de la congruence. Soient K et L

1 Plus exactement «affinement congruents»; sauf cas de nécessité
nous laissons tomber I’adverbe affinement.
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les intersections de BD et CE d’une part, de AC et DF d’autre part.
L’une des diagonales du quadrangle CDKL est la droite impropre;
sur cette diagonale, les points impropres de AC et de CE sont conju-
gués par rapport a ceux des cotés KL et CD. Projetons sur AB ce
groupe harmonique de points a partir de K et L. La projection du
point impropre de CD est le point impropre de AB et celle du point
impropre de KL, le milieu du segment AL et celui du segment BE.
Ainsi, st deux segments de méme support AB et EF sont congruents,
ils déterminent deux segments BI et AF, Uun contenu dans [autre et
qur ont méme milieu. Ce théoreme est dit parfois du milieu commun.

7. EQUIPOLLENCE.

Dans un segment AB distinguons les deux extrémités en appelant

—_—

origine la premiere citée. La figure est appelée le cecteur AB, d’ori-
gine A, d’extrémité B et de sens AB.
Soit CD un segment congruent a \B et supposons paralléles les

droites AC et BD. Les deux vecteurs AB et CD sont dits équipol-

T —

lents. Les deux vecteurs AB et DC sont opposés.

Les propriétés de la congruence montrent immédiatement que
I'équipollence est une relation réflexive, symétrique et transitive,
mais pas l'opposition. Deux vecteurs opposés & un troisieme sont
équipollents.

Un vecteur détermine une demi-droite qui le porie et qui a méme
origine que lui. Deux demi-droites ainsi déterminées par deux vee-
teurs équipollents sont dites équipollentes. On définit de méme deux
demi-droites opposées,

Le théoréme du milieu commun peut étre mis sous la forme sui-
vante: si deux vecteurs équipollents ont méme support, les deux
segments déterminés par l'origine de I'un et l'extrémité de I'autre
ont méme milieu et si deux vecteurs opposés ont méme support, les
deux segments déterminés par leurs origines et leurs extrémités ont
méme milieu.

8. TRAPEZE.

Dans un quadrangle ABCD, supposons paralleles les cotés AB
et CD. La figure formée par les quatre segments AB, BC, CD et DA
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est le trapéze ABCD. Les bases sont AB et CD. Si les segments BC et
DA n’ont pas de point commun, le trapeze est convexe; il est concave
dans le cas contraire.

Dans le quadrangle ABCD, les sommets du triangle diagonal
sont I'intersection K des supports des cotés BC et DA, I'intersection
L des diagonales AC et BD du trapeze et le point impropre commun
des deux bases. La droite KL est conjuguée de la parallele aux bases
par K. Done, dans un trapéze, la droite qui joint Uintersection des
diagonales & celle des deux cités distincts des bases coupe les bases en
leurs milieux. Ce théoreme est appelé parfois le lemme de Steiner,
car ce géometre lui fait jouer un grand role dans sa théorie des cons-
tructions géométriques.

9. PARALLELOGRAMME.

Dans le trapeze ABCD, de bases AB et CD, supposons paralleles
les cotés BC et DA. La figure est le parallélogramme ABCD.

Les cotés opposés d’un parallélogramme sont congruents et déter-
minent une paire de vecteurs équipollents.

I’intersection des deux diagonales d’un parallélogramme en est
appelé, le centre. Les paralléles aux cotés passant par le centre d’un
parallélogramme en sont les axes. Le lemme de Steiner montre que
les axes d’un parallélogramme en coupent les c6tés en leurs milieux
(intersections propres). A partir du sommet A, sur la diagonale BD,
projetons les points impropres des axes et ceux des deux diagonales
du parallélogramme; nous obtenons les deux sommets B et D, le
centre et le point impropre de la diagonale BD; donc le centre d’un
parallélogramme est le milieuw de chacune de ses diagonales.

De la proposition précédente résulte le fait que si deux vecteurs
sont équipollents, les segments déterminés par Uorigine de Uun et
Uextrémité de 'autre ont méme milieu, que les deux vecteurs aient
méme support ou pas.

10. CONGRUENCE DE TRIANGLES.

Par les trois sommets A, B et C d’un triangle, menons les trois
paralleles AA’, BB’ et CC’ et, sur elles, construisons les deux para-
llélogrammes ABB’ C’ et BCC’ B’. Les droites AC et A’ C’ sont
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paralleles. En effet, les deux triangles ABC et A’ B’ C’ sont perspec-
tifs et leur axe de perspectivité est impropre. La figure ACC" A’ est
donc un parallélogramme et les cotés homologues des deux triangles
ABC et A" B’ C' sont congruents; on dit alors que les deux triangles
sont congruents par translation.

Soit un parallélogramme ABCD. La diagonale AC le partage en
deux triangles ABC et ACD. Dans ces deux triangles, les cotés AB et
CD d’une part, BC et AD d’autre part sont congruents et AC est
commun. Construisons un triangle A’ B"C’ congruent a ABC par
translation. Les deux triangles ACD et A’ B’ C’, ne sont pas congruents
par translation mais leurs cotés sont congruents deux a deux. Les
centres des paralléclogrammes AA" G’ C et ADC' B” sont tous deux
les milieu de AC’ et le centre du parallélogramme CDA’ B’ est
le milieu de B" D. Donc ces trois parallélogrammes ont méme
centre.

Par ce centre S, menons la parallele m a AC; elle est un axe du
parallélogramme ACC’ A’; elle coupe en leurs milieux les trois seg-
ments AA’, CC’ et DB’. Les deux triangles ACD et A" B’ C’ sont dits
symétriques par rapport a I'axe m. Ces deux triangles sont perspectifs;
leurs cotés homologues se coupent donc en trois points alignés. La
droite ainsi déterminée est 1’axe m. Pour le voir, construisons le
parallélogramme DEB’ F dont D et B’ sont deux sommets et dont
les cotés DE et B” F sont paralleles a CD et les cotés DF et B” E paral-
leles & AD; ses deux sommets E et F déterminent une diagonale qui
passe par le centre S de ce dernier parallélogramme; cette diagonale
est 'axe de perspectivité précédent. L’axe m coupe donc les trois
segments AA’, DB" et CC’ en leurs milieux.

Par convention, les deux triangles ACD et A’ B’ C’ sont dits
congruents par symétrie (ou mieux aflinement congruents par symé-
trie). De ce qui précede, il résulte que si deux triangles sont affine-
ment congruents par symétrie, deux de leurs cotés homologues sont
paralleéles a I'axe de svmétrie et les paires de cotés non homologues
se coupent sur cet axe; enfin, les sommets homologues déterminent
trois segments de méme milieu; ce milieu est un point de 'axe. On
dit que ces trois sommets sont symétriques par rapport a un centre.
Ainsi, la congruence affine par symétrie implique la symétrie des
sommets par rapport & un centre et la symétrie des cotés par rapport
a un axe parallele a 'un des cotés.
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L’ensemble des trois vecteurs AB, BC et CA portés par les trois
cotés d’un triangle est dit de résultante nulle. Tout triangle porte
deux systémes de vecteurs de résultante nulle; on passe de I'un a
I’autre par permutation des origines et des extrémités.

Soient ABC et A’ B’ C’ deux triangles congruents par transla-
tion. Sur deux cotés homologues, construisons deux vecteurs équi-
pollents et, & partir de ces vecteurs, sur chacun des triangles, cons-
truisons un systéme de vecteurs de résultante nulle; les vecteurs
homologues des deux triangles sont équipollents.

Soient ACD et C’ A’ B” deux triangles congruents par symétrie
ou les paires de sommets homologues sont A et C’', C et A", D et B'.
Le vecteur homologue au vecteur AC est C" A’; ils ne sont pas équi-
pollents; il en est de méme pour les autres vecteurs. Ainsi la con-
gruence des triangles par symétrie ne conduit pas a des systemes de
vecteurs équipollents. On exprime souvent les deux derniéres pro-
priétés en disant que la congruence par translation est directe, qu’elle
conserve le sens des figures tandis que la congruence par symétrie est
inverse, qu’elle inverse le sens des figures.

11. ANGLES.

La figure formée par deux demi-droites de méme origine est
appelée un angle. Les deux demi-droites en sont les cotés et 'origine
commune, le sommet.

Joignons deux points appartenant chacun a un cété d’un angle;
le segment ainsi déterminé est dit appartenir a I'intérieur de 1'angle.
Cet intérieur est 'ensemble des points par lesquels il est possible de
mener un segment intérieur a I'angle. L’intérieur d’'un angle est dit
constituer un angle convexe; le reste du plan appartient a I’angle
concave correspondant.

Un angle dont les deux cotés sont confondus est dit null ou
complet suivant qu’on le considére comme convexe ou concave. Un
angle dont les deux cotés sont opposés est dit plat.

Dans la suite, nous ne considérons que des angles convexes.
Deux angles de cotés respectivement équipollents sont dits congruents
ou directement congruents. Deux angles dont les cétés sont opposés

1 On ne doit voir dans ce mot aucune notion métrique, pas plus qu’un
Jugement nul n’appelle d’idée de grandeur mesurée.
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sont tneersement congruents. En particulier, sur deux droites qui se
coupent, on peut former deux angles opposés par le sommet et cela
de deux facons. Deux angles opposés par le sommet sont inversement
congruents.

Une droite @ et une demi-droite b dont l'origine est un point de
a forment deux angles dits supplémentaires et adjacents. Deux angles
tels que deux de leurs cotés sont équipollents et leurs seconds cotés
opposés sont supplémentaires.

Dans la figure formée par deux paralleles coupées par une sécante,
les définitions précédentes montrent la congruence directe des angles
correspondants, la congruence inverse des angles alternes-internes et
alternes-externes et le fait que les angles internes ou externes situés
d’un méme coté de la sécante sont supplémentaires.

De méme, dans un parallélogramme les angles opposés sont
inversement congruents. Les angles homologues de deux triangles
directement congruents sont directement congruents et les angles
homologues de deux triangles inversement congruents sont inverse-
ment congruents.

Comme on passe du segment au vecteur en distinguant un ordre
dans les deux extrémités, on est conduit a la notion d’angle dirigé
ou ayant un sens en distinguant un premier et un second cété d’un
angle.

12. SOMMES D ANGLES.

Soient ab, b" ¢, ¢’ d, ... k' Il n angles tels que le second coté b, e, d, ... k
des n — 1 premiers soit équipollent au premier coté b, ¢, ... k' des
n — 1 derniers. Construisons un angle ayant pour cétés deux demi-
droites a, et !, équipollentes a a et [. L’angle @, l; ainsi obtenu est
la somme des angles donnés.

Dans cette définition, chaque angle, sauf le premier, a un précé-
dent et, sauf le dernier, chacun a un suivant. Le systéme posséde un
ordre et une propriété commutative n’a de sens qu’en inversant
I'ordre de tout le systéme.

13. SOMME DES ANGLES D'UN TRIANGLE.

Par un point, menons la paralléle & un cété d’un triangle et, par
un des points de cette parallele, menons des demi-droites équipol-
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lentes aux deux demi-droites déterminées par les deux sommets du
triangle pris sur le coté choisi comme origines et qui contiennent le
troisitme sommet. Ainsi sont formés trois angles dont deux sont
directement congruents 4 deux angles du triangle et le troisieme,
inversement congruent au troisieme angle. La somme de ces trois
angles est un angle plat. On exprime souvent cette proprié¢té en disant
que la somme des angles d’un triangle est un angle plat.

Nous ne nous attarderons pas a étendre le théoréme aux poly-
gones par décomposition de ceux-ci en triangles par des diagonales.

Il est bien connu que les géométries métriques qui nient 'unicité
de la parallele, les géométries non-euclidiennes, conduisent a des
théoremes niant la propriété précédente de la somme des angles
d’un triangle. Ainsi, ce théoréme a un caractére fondamental en
géométrie affine.

14. ECHELLE UNIFORME, RAPPORT DE DEUX SEGMENTS.

Construisons une échelle projective en choisissant le point impropre
comme point infini. Pour cela, menons deux paralleles k& et [ au sup-
port de I’échelle; sur celle-ci, choisissons les deux points origine (0)
et unité (1); joignons-les & un point P de [; déterminons les inter-
sections 0" et 1" de k& avec PO et P1, tracons 10" qui coupe [ en ( et,
a partir de (), projetons 1’ en 2 sur I’échelle; menons P2 qui coupe &
en 2" et Q2" qui détermine 3 sur I’échelle et ainsi de suite, dans les
deux sens. Ainsi est obtenue I'échelle uniforme et entiére.

Le quadrangle PQO" 1" montre que 1 est le milieu du segment 02;
les deux segments 01 et 12 sont donc congruents. En général, le
point n de P'échelle est le milieu du segment (n — 1) (n + 1). et les
divers segments n (n + 1) sont congruents entre eux.

Des constructions projectives permettent de passer a I'échelle
projective uniforme rationnelle par la construction des points qui
correspondent a des nombres rationnels. Par exemple, pour cons-

truire les points correspondants a %, ou n est un entier, points com-
pris entre les points 1 et 2 de l'échelle, tracons les droites 10 et
23" et, a partir de leur intersection, projetons les points 1" et 2’ sur
I'échelle. Les points obtenus correspondent a % et —30- La théorie de
I'échelle projective montre que ces points sont indépendants du choix
fait de 0" et 3’; on aurait pu prendre £’ et (k + 3)". Répétant cette
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opération avec tous les dénominateurs entiers, on obtient I'échelle
uniforme rationnelle. Un passage & la limite montre que tout point
du support de I'échelle est lié a un nombre réel, son abscisse et réci-
proquement, a tout nombre réel correspond un point de I'échelle.

Soient A, B et C trois points d’une droite portant une échelle
uniforme et a, b et ¢ leurs abscisses. Formons le birapport de ces
trois points et du point impropre:

(ABCI) =

a—cC

H=—=

Ce quotient est appelé le rapport des deux segments AC et BC;

on le note =—— .
BC

Remplacons un ou deux de ces segments par des segments con-
gruents. Par convention, le rapport conserve sa valeur. Ainsi deux

segments de supports paralleles ou confondus possédent un rapport.

15. TuEorREME DE THALES.

Coupons la figure formée par deux droites concourantes par
deux paralléles; le rapport de deux segments compris entre I'inter-
section des deux droites et les deux intersections avec les paralleles
est le méme sur les deux droites et ce rapport est égal a celui des
deux segments coupés sur les deux paralléles .,

Soient I I'intersection des deux droites m et n, a et b les deux
paralleles, A et A’ les intersections de @ avec m et n, B et B” celles
de b. La projection conserve les birapports; en particulier, a partir
du point impropre commun de a et b, la projection sur n de I, A, B
et du point impropre de m donne

A1y
IB IB”

Pour montrer la seconde partie du théoréme, menons la paralléle

a n par Aj; elle coupe BB" en C. 1l vient

BA _ BC
BI ~ BB
Mais BB’ est égal a la somme de BC et CB’, d’ou le théoréme.
1 La proposition est dite « de Thalés » par commodité; elle doit proba-
blement étre attribuée a I’école pythagoricienne. Cependant, Thalés a fait

faire de tels progrés a la théorie de la similitude que le rappel de son nom
n’est pas injustifié.



GEOMETRIE AFFINE ET GEOMETRIE PASCALIENNE 341

16. TRIANGLES SEMBLABLES.

Deux triangles dont les angles homologues sont congruents sont
dits semblables. La congruence de deux paires d’angles homologues
suffit pour affirmer la similitude car cette congruence, qu’elle soit
directe ou inverse, implique le parallélisme des cotés homologues.

D’aprés le théoreme de Desargues, les trois paires de sommets
homologues de deux triangles semblables déterminent trois droites
concourantes. Ainsi, en géométrie affine, si deux triangles sont sem-
blables, ils sont homologiques et 1'axe d’homologie est impropre.
On exprime cela en disant que les deux triangles sont homothétigues.

Le théoreme de Thalés montre que le rapport de deux cotés
homologue appartenant & deux triangles semblables est indépendant
du choix du segment considéré.

17. MEDIANES D'UN TRIANGLE.

Les droites AA’, BB’ et CC’ joignant les sommets d’un triangle
ABC aux milieux A’, B” et C’ des cOtés opposés en sont les médianes.

Par le milieu A" de BC, menons la parallele & AB. D’apres le
théoreme de Thalés, elle coupe AC en son milieu B’. La figure ABA” B’
est un trapeze dont les deux diagonales sont les médianes AA’ et
BB’ du triangle; le point C est I'intersection de deux cdtés non paral-
leles du trapéze. La droite passant par C et 'intersection G des deux
médianes précédentes coupe la base AB en son milieu; elle est donc
la médiane issue de C et les médianes d’un triangle sont concourantes.

Le théoréme de Thalés montre que le rapport de AB a A’ B est 2.
Appliquant ce méme théoreme aux droites AA" et BB" coupées par
les paralléles AB et A" B’, on voit que le point de concours des médianes
divise chacune d’elles en deux segments dont U'un est le double de U'autre.

18. TuftorEmMeEs pE CEvA ET DE MENELAUS.

Par les trois sommets d’un triangle, menons trois droites concou-
rantes. Joignons leur point de concours P au point de concours G
des médianes. La droite PG coupe les trois cotés BC, CA et AB du
triangle en A’, B" et C'. Appliquons & la droite PG la propriété asso-
ciative du birapport:

(A’B’PG) (B'C’PG) (C’A’PG) = 1
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Appelons M, M, et M_ les milieux des cotés et P, P, et P, les
projections de P a partir des sommets du triangle sur les c6tés opposés.
Il vient
' Tos _ mEERry . . DEE
(A’B'PG) = (BAPMe) = — 3° -

Les deux autres birapports donnent des expressions analogues et
leur produit est

CPa APy BP.
BPa ’ PC() ' .'-\Pc h

Dans un triangle coupé par trois sécantes concouranles issues des
sommets, le produit des rapports des segments obtenus sur les trois cotés
est égal a — 1.

Considérons un triangle ABC coupé par une sécante s. Appelons
A’, B et 7 les intersections de s avec les cotés BC, CA et AB du
triangle. Par les sommets, menons les droites a, b et ¢ paralléles a la
sécante s et appelons ¢ la droite impropre. Appliquons la propriéteé
associative du birapport en formant

(abst) (best) (cast) = 1 .

La section du quaterne de rayons absi par le coté AB donne

r

(abs?) = %% Opérant de méme sur les deux autres birapports, il

vient
AC” BA” CB’

BCCAAB

Le produit des rapports des segments coupés sur les trois cotés d’un
triangle par une sécante est égal & l'unité 2.

On considere parfois les deux théorémes de Ceva et de Ménélaiis
comme plus ou moins corrélatifs I'un de 'autre. La proposition corré-
lative d’un théoréme portant sur des segments ne peut pas concerner
des segments mais des angles. En réalité, les démonstrations de ces
théorémes sont basées sur deux propriétés corrélatives, le théoreme
associatif du birapport appliqué une fois a des points alignés, une autre
fois a des rayons d’un faisceau.

1 Souvent, on écrit le théoréeme sous la forme de 1’égalité de deux
produits de trois segments portés par les cotés du triangle. Cette notion
de produit de segments de supports non paralleles n’est pas affine, mais
bien celle du produit de trois rapports de segments de méme support.

? La méme remarque peut étre faite que pour le théoréme de Ceva.
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19. GEOMETRIE DU TRIANGLE.

Sous le nom de géométrie du triangle, quelques auteurs ont publié,
a la fin du siecle dernier, de nombreuses propriétés nouvelles; d’au-
cunes sont de caractere affin. Indiquons-les sommairement.

Soient un triangle ABC et les milieux A’, B" et C' des cotés BC,
CA et AB. Les deux triangles ABC et A" B’ C' sont homothétiques;
le centre d’homothétie est le point de concours G des médianes. Dans
cette homothétie, construisons le correspondant M’ d’un point M du
plan du triangle ABC. Le point M’ est dit le complémentaire de M
et M, I'anticomplémentaire de M’. Appelons M” I'anticomplémentaire
de M et calculons le birapport (M"” GM’ M). On constate que les quatre
points ci-dessus constituent un groupe harmonique.

Soient un triangle ABC et un point M. Appelons M, M, et M,
les intersections des droites AM, BM et CM avee les cOtés du triangle
et construisons les conjugués harmoniques N, N, et N de ces inter-
sections par rapport aux sommets du triangle. Nous avons trois rela-

tions analogues a
MgB  NgB

M.C NG

Appliquons le théoreme de Ceva aux rapports figurant au premier
membre: 11 vient

_\— a 13 .\ b(‘a \ (';\

.\.ac ’ .\'b:\ ' .\(B

= 1.

D’apres le théoréme de Ménélaiis, les trois points N, N, et N_sont
alignés. Soit m la droite par eux. Les deux triangles ABC et N, N, N,
sont homologiques. La droite m est appelée la polaire trilinéaire de M
relativement au triangle ABC; on la dit aussi harmoniquement asso-
ciée au point M. Ce point est le péle trilinéaire de m relativement au
triangle ou harmoniquement associ¢ a m. En particulier, le point
d’intersection des médianes d’un triangle est le pdle trilinéaire de la
droite impropre.

Soient AB et CD deux segments de méme support et de méme
milieu. Les points C et D sont dits isotomiques relativement a A
et B.

Dans la figure précédente relative au triangle ABC, construisons
les isotomiques P,, P, et P_ des points M,, M, et M_. Cela signifie
que BM, = P, C, CM, = P, B et deux paires de relations analogues

ARCHIVES DES ScIENcEs., Vol. 13, fasc. 3, 1960. 24
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sur les deux autres cotés. Appliquons le théoréme de Ceva en y rem-
placant les segments tels BM, par leurs valeurs ci-dessus. Il en résulte
que les droites AP,, BP, et, CP sont concourantes. Donc les isoto-
miques des intersections des cotés d’un triangle avec trois droites
concourantes déterminent avec les sommets opposés trois droites
concourantes.

En appliquant le théoréme de Ménélaiis, on obtient de méme la
proposition suivante: les isotomiques des intersections des cotés d’un
triangle avec une transversale sont alignés.

20. CENTRE D'UNE INVOLUTION.

Supposons liés par une involution les points d’une ponctuelle.
Le correspondant du point impropre est appelé le centre de I'involu-
tion. Prenons ce centre comme origine d’une échelle uniforme et
exprimons analytiquement I'involution:

are’ + bz + a') +e¢= 0.

A x = 0 correspond 2" = >0, donc b = 0. L’équation de I'invo-
lution peut donc étre mise sous la forme zz’ = constante. Si 'invo-
lution est hyperbolique et si I'on prend un de ses points unis comme
point unité, il vient xa’ = 1.

Supposons que I'un des points unis est impropre. Cela implique
a = 0. Le centre est lui aussi impropre et si I'on choisit le point uni
propre comme origine, il vient  + 2" = 0. Une telle involution est
une symeétrie.

21. PRropuIiT DE SEGMENTS.

Solent un nombre fini 7 de segments A; B; de supports paralleles.
Choisissons un segment u de support parallele aux segments précé-
dents et déterminons le rapport r; (1) de chacun des segments donnés
au segment u. Le produit des nombres 7; (1) est appelé le produut des
segments donnés relatif a I'unité u.

Remplacons le segment unité par un autre u’, de méme direction,
tel que Au = u’. Le produit est multiplié par la puissance n¢ du
rapport A des unités.

La notion de produit de segments n’a de sens que pour des supports
paralléles.
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Dans ce qui précéde, on pourrait faire intervenir des vecteurs au
lieu de segments. Les rapports r; (1) possederaient alors un signe.

22. DES AIRES.

Soient deux parallélogrammes de cdtés respectivement paralleles.
Par définition, le rapport des aires des deux parallélogrammes est égal
au produit des rapports des cotés paralleles.

Parallelement a chacune des deux directions des cotés des parallé-
logrammes donnés, choisissons un segment unité. Le rapport des aires
des deux parallélogrammes donnés est égal au rapport des produits
des segments portés par des directions paralleles sur les deux
parallélogrammes.

Par définition, deux triangles congruents ont méme aire, ainsi
que toute paire de figures décomposables en triangles congruents.

Soient deux parallélogrammes ayant un ¢oté commun et dont les
cotés paralléles & ce ¢6té commun ont méme support. Ils comportent
un trapeze commun et deux triangles congruents. Les deux parallé-
logrammes ont donc méme aire. Donc deux parallélogrammes dont
deux coOtés opposés ont méme support et sont congruents ont méme
aire. Cette égalité d’aire subsiste si I'un des parallélogrammes est
remplacé par un autre qui lui est congruent.

PPar décomposition en parallélogrammes élémentaires, la notion
d’aire peut étre ¢tendue a des figures autres que les parallélogrammes
en s’appuyant sur le fait que I'aire de deux figures adjacentes est égale
a la somme des aires des figures composantes.

23. AFFINITES.

Les collinéations dans lesquelles la droite impropre est unie sont
appelées des affinites 1.

[affinité conserve le rapport des segments alignés. Cela résulte
de la conservation du birapport et de caracteére impropre des points
impropres.

Les propriétés générales des collinéations montrent qu'une affinité
a trois points unis ou une infinité. La droite impropre étant unie,
elle porte deux points unis ou tous ses points sont unis. Ainsi une

I Dans les éléments on appelle parfois affinité le cas particulier que
nous rencontrerons dans un instant sous le nom d’affinité perspective.
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affinité possede un unique point propre uni ou une infinité. Une
affinité qui possede deux points propres unis possede la droite déter-
minée par eux comme droite de points unis; en effet, cette droite
posséde en plus des deux points unis donnés un troisiéme point uni
en son point impropre. Ayant trois points unis, tous ses points sont
unis. Une telle affinité est dite perspective; une affinité perspective
possede une direction, celle déterminée par le point impropre uni
distinct du point impropre de la droite des points unis.

Une affinité dans laquelle la droite impropre est unie point par
point posséde en général un point uni propre sur lequel sont alignés
deux points correspondants. Nous retrouvons ’homothétie examinée
plus haut (§ 16).

Une homothétie de centre impropre est une translation.

I’affinité transforme deux parallélogrammes de cotés respective-
ment paralléles en une paire de parallélogrammes analogues; puis-
qu’elle conserve les rapports de segments, D'affinité conserve les
rapports d’aires.

Dans une affinité perspective, soit r le rapport des segments déter-
minés sur une paralléle a la direction d’affinité par I'intersection de
cette droite avec 'axe et deux points correspondants. Deux parallé-
logrammes correspondants dont les cotés sont respectivement paral-
leles a 'axe et a la direction d’affinité ont des aires dans le rapport 72,
En particulier, si I'intersection avec 'axe est le milieu du segment
limité par les points correspondants, ce rapport est 'unité. L’affinité
est une symétrie et la symétrie conserve les aires.

De méme, le rapport des aires de deux figures homothétiques est
égal au carré du rapport des segments déterminés par le centre et
deux points correspondants.

IV. GEOMETRIE ANALYTIQUE

24. COORDONNEES AFFINES DANS LE PLAN.

Soient deux droites concourantes x et ¥, les axes. Choisissons un
point du plan et projetons-le sur les axes parallélement a4 eux en U,
et U,. Sur chacun des deux axes, construisons une échelle uniforme
en choisissant leur intersection O comme origine et les deux points
précédents comme points unités.
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De méme, parallelement aux axes, projetons sur eux un point
quelconque M du plan en M, et M,. Les abscisses de ces derniers
points sont les coordonnées affines dans le systéme de coordonnées
choisi. Elles sont le cas particulier des coordonnées projectives ou
les points impropres des axes ont été choisis comme points infinis.
Comme en coordonnées projectives, 'équation d’une droite est linéaire.

En géométrie affine, on peut souvent exclure la droite impropre
des figures étudiées ou ne la considérer qu’en cas de nécessité. Cela
diminue l'intérét des coordonnées homogenes et I'emploi des coor-
données inhomogeénes permet souvent d’alléger I'écriture. Mais si la
droite impropre intervient dans une figure, les coordonnées homo-
genes conservent leurs avantages.

Soit ¥y = max + b 1'équation d’une droite; celle de toute droite
qui lui est paralléle peut étre mise sous la forme y = mx + b'. Le
coefficient m détermine la direction de la droite; il détermine 1’angle
de celle-ci avec un axe mais pas la mesure de cet angle puisque cette
notion n’a pas de sens ici.

En coordonnées homogenes, les équations d’une collinéation sont
:v; = Za; x, avec jet k=1, 2 et 3. En coordonnées affines, dans
les ¢quations d’une affinité, x; et 2’y sont simultanément nulles. Cela
implique ay; = ag, = 0. Nous retrouvons un fait qui diminue I'intérét
des coordonnées homogenes. Les transformations linéaires non homo-
génes jouent ainsi un role important en géométrie affine.

Les équations précédentes sont aussi celles du changement de
systeme de coordonnées.

25. ASYMPTOTES DES COURBES.

Supposons qu'une branche de courbe soit telle que la différence
d’ordonnée entre un de ses points et un point d’une droite a ait une
limite nulle lorsque I’abscisse devient infinie; cette droite a est une
asymptote de la courbe 1. Si la courbe posséde des points impropres
en lesquels il existe une tangente a la courbe, chacune de ces tangentes
est une asymptote.

Une branche de courbe tangente a la droite impropre est dite
parabolique.

1 Par un changement de coordonnées on peut toujours éliminer le cas.
ou I’axe des ordonnées est une asymptote.
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Soit I’équation homogeéne d’une courbe algébrique
Up + Upy 3+ e+ Uy 2 4+ .+ uy" = 0.

Les u; sont des formes d’ordre j en x et y. Supposons é¢gal & I'unité
le coefficient de y". Les directions des asymptotes sont déterminées
par les racines m; de u, = 0. On a évidemment

un = 1I (y — mjz), (j=1an).

Soit y + myz + p;z = 0 T'équation d’une asymptote. Celle-ci
est tangente a la courbe sur la droite impropre. Le systéeme d’équa-
tions formé par I'équation de la courbe et celle de la tangente doit
avoir une racine double z = 0. Cela est réalisé si les p; sont choisis
de facon a mettre I'équation de la courbe sous la forme

Il (y — mjx + p3) — 32 (v,y,3) = 0.

ou ¢ est une forme d’ordre n — 2 en x, y et z.
[’équation de la courbe constituée par les asymptotes est obtenue

en égalant a zéro le premier terme.

26. CLASSIFICATION AFFINE DES COURBES ALGEBRIQUES.

La classification affine des courbes repose sur les propriétés de
leurs points impropres. Elle est bien connue pour les coniques:
I’hyperbole posséde deux asymptotes réelles, la parabole est tangente
a la droite impropre et I'ellipse ne posséde pas de point impropre réel.

Les cubiques avec ou sans point double peuvent présenter les
relations suivantes avec la droite impropre:

trcis points impropres réels distincts, done trois asymptotes,
une branche parabolique réelle et une asymptote,

un point d’inflexion impropre,

un seul point impropre réel ( et une seule asymptote).

Une cubique a point double peut voir ce point étre impropre; elle
peut en outre avoir un autre point impropre ou avoir une branche tan-
gente a la droite impropre en son point double. Le point singulier
d’une cubique a rebroussement peut étre propre ou impropre et dans
ce dernier cas, la tangente de rebroussement peut étre propre ou

impropre.
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Cette énumération montre combien est touffue la classification
affine des courbes.

27. CENTRE DES MOYENNES DISTANCES.

Sur une droite soient n points d’abscisses affines x;. On appelle
centre des moyennes distances de ces points le point dont I’abscisse
est la moyenne arithmétique de celles des points donnés.

La distance d’un point quelconque au centre des moyennes dis-
tances d’'un systeme de points donnés est égale a la moyenne des
distances de ce point aux points du systéme.

28. DIAMETRES DES COURBES ALGEBRIQUES.

Soit une courbe algébrique et un faisceau de paralléles n’ayant
pas pour sommet 'un des points impropres de la courbe. Rapportons
la courbe & un systéme d’axes ou I’axe des x est paralléle a la direction
choisie et, dans I’équation de la courbe

fz,y) = azn + b (y) an—1 + ¢ (z,y) = 0,

le coeflicient @ n’est pas nul, & (y) est une fonction linéaire de y et
c(x, y) est d'ordre n — 2 en z. Les sections de la courbe avec un
parallele & la direction choisie d’ordonnée m ont pour abscisses les
racines de I'équation f(x, m) = 0. La somme de ces abscisses est

b . v ;
— M Cette expression est linéaire en m. Donc le lieu des centres

des moyennes distances des tntersections d’une courbe algébrique avec
les droites d’un faisceau de paralléles est une droite, le diamétre corres-
pondant a la direction choisie.

Comparons I'équation de la courbe avec celle de la courbe consti-
tuée par les asymptotes de la courbe donnée. Nous avons vu que ces
deux équations ont méme termes de degrés n et n — 1 en x. Done
le centre des moyennes distances des intersections d’une courbe avec une
drotte et celui des intersections de cette droite avec les asymptotes de la
courbe considérée sont confondus.

Comme nous venons d’examiner la notion de diamétre, lice aux
termes de degrés supérieurs, on peut de méme, en faisant intervenir
la somme des produits deux a deux des segments pris sur un faisceau
de paralléles étudier des coniques diamétrales des courbes algébriques
ou encore des courbes diamétrales d’ordre plus élevé,
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29. TurorEMEs DE Mac-LauriN, pE NEwToN ET DE CARNOT.

Soit une courbe algébrique d’ordre n d’équation
f('r)y) Ea’(xry) + b(l',y) =0,

ou a (x,y) représente I'ensemble des termes d’ordre n en x et y.
Choisissons deux points A et B n’appartenant pas a la courbe et de
coordonnées z, et y, pour A, x, + h et y, + k pour B. Les coordon-
nées d’'un point quelconque M de la droite AB sont z, + M et y, + M

le parameétre A est le rapport % Les intersections de la droite AB
avec la courbe sont caractérisées par les valeurs de A racines de I’équa-
tion obtenue en introduisant les coordonnées de M dans I'équation
de la courbe. Le terme connu de cette équation est f (z,, y,) et le

coeflicient de 1", a (%, k). Le produit des n racines }; est

TIAM;
ABn

n 1(o,90)
e a(h,k)

Par A, menons une seconde sécante AC et formons le méme quo-
tient que ci-dessus.
HA"N? — (_1)nf(x0$y0) .
ACn alhy,ky)

Par un point A’, menons les deux vecteurs A'B” et A'C’ équi-
pollents & AB et AC et effectuons les mémes opérations que ci-dessus.
Les produits AB" et A'B" sont égaux. Donc

ITAM;  flxe,ye)  TIAN;

AN~ f{@ey’s)  TANG

L’égalité ci-dessus conduit au théoréme de Mac-Laurin. S¢ par
deux points, on méne des paralléles a deux directions et sur elles des
segments unités équipollents, le rapport des produits des segments
compris entre ces points et les intersections avec une courbe algébrique
est indépendant de la direction des sécantes ; il dépend du choix des points
choisis.

Dans la proportion entre les quatre produits précédente, permu-
tons les moyens; nous obtenons le théoreme de Newton: le quotient
des produits des distances d’un point aux intersections de deux droites
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passant par lut avec une courbe algébrique est indépendant de ce point,
st U'on remplace les sécantes par des transversales qui leur sont
paralléles.

Sur la figure précédente, tracons un polygone ABC... et sur chaque
coté, appliquons le théoréme de Mac-Laurin successivement aux deux
sommets qu’il porte et formons le rapport des expressions trouvées.
Appelons z, et y, les coordonnées de A et de méme pour les autres
sommets, (AB) le produit des segments issus de A et portés par AB
et (BA) celui des segments portés par la méme droite et issus de B.

Il vient
(AB) _ flzaya)
(BA)  f(zB,yB)

Opérons de méme sur les autres cotés et formons le produit de
ces quotients. Au second membre, chaque facteur apparait au numé-
rateur et au dénominateur. Le produit est égal a 1. Donc le produit
des rapports des segments compris entre les intersections d'une courbe
algébrigue et un polygone aux sommets de celui-ci est égal @ un.

V. GEOMETRIE VECTORIELLE.

30. INTRODUCTION.

La géométrie vectorielle linéaire est de nature affine; une de ses
applications les plus importantes est la statique. Sans insister sur la
notion de force, nous allons en exposer I'essentiel.

31. RESULTANTE D'UN SYSTEME DE VECTEURS
DE MEME ORIGINE.

Par convention la résultante ou la somme d’un systéme de vecteurs
de méme origine est donnée par le polygone des vecteurs. Chaque coté
de ce polygone est équipollent & un vecteur du systéme; I'origine du
ke c6té du polygone est confondue avec I'extrémité du (& — 1)e. Le
premier vecteur du polygone est le premier du systéme et son origine
est 'origine de la somme; I'extrémité de la somme est 'extrémité du
dernier c¢oté du polygone.
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L’unicité du parallélogramme construit sur deux vecteurs donnés
conduit a la propriété commutative de la construction de la résultante.

32. SYSTEMES DE VECTEURS GLISSANTS.

Un vecteur est dit glissant si son origine est indéterminée sur le
support de ce vecteur.

Soient Ez}n vecteurs glissants. Leur composition deux a deux
conduit généralement a un vecteur glissant, résultante du sys-
téme. La longueur et la direction de cette résultante peuvent étre
déterminées en composant le polygone des vecteurs, comme il
s’agissait de vecteurs de méme origine. Supposons construit ce poly-
gone AgA,, ..., Al, d’origine A, et ou A; est I'extrémité du coté

équipollent & a;. Choisissons un point P qui n’appartient pas a la

—_—

droite A, A,. Déterminons la résultante des \ecteurs AP, PA,, A P

PA,, ... A, P et PA . Cette résultante est celle de A P et de Pﬂsn,
elle est 1dent1que a celle du polygone des vecteurs. Sur le support

5
de @, choisissons un point S;; par lui; menons les droites u, paralleles
E—— —

a AjP et u, parallele & A;P. Déterminons l'intersection S, de u, avec

le support de a, et continuons de méme. Finalement, par S,, menons
. . —> ”
la parallele u, & A, P. Tout vecteur a; est la résultante de deux vec-

teurs équipollents & A; | P et & PA; et passant tous deux par S,
La résultante de ce systeme de vecteurs est équipollente & la résul-

— _ — e

tante des deux vecteurs u,, équipollent a AP et u, équipollent & PA, .
Autrement dit, la résultante du systeme passe par I'intersection des
droites u, et u,. Cette figure est appelée un polygone funiculaire
du systéme.

Ce qui précede suppose distincts les points Ay et A, . S’ils sont
confondus, la résultante du systéme de vecteurs est nulle. Sur le
polygone funiculaire, deux cas se présentent alors: les deux droites u,
et u, sont distinctes ou elles sont superposées. Si elles sont distinctes,
le systéme est dit constituer un couple. La composition des vecteurs
en place conduit finalement & deux vecteurs opposés et de supports
distincts.

Si enfin les deux droites ci-dessus sont confondues, le systéme est
dit de résultante et de couple résultant nul.
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33. CENTRE D'UN SYSTEME DE VECTEURS LIES PARALLELES.

On entend par vecteur lié un vecteur invariable.

Un systéme de vecteurs liés paralleles étant donné, construisons
le polygone des vecteurs et le polygone funiculaire. Supposons non
nulle la résultante. La construction donne la longueur de la résultante
et son support.

Examinons le cas de deux vecteurs; la comparaison du polygone
des vecteurs et du polygone funiculaire montre que la résuitante
coupe la droite passant par les origines des deux vecteurs en un point
qui la partage inversement proportionnellement aux longueurs des
deux vecteurs.

Par 'origine de chacun des deux vecteurs, menons deux droites
paralléles et opérons de méme en leurs extrémités mais en choisissant
une direction différente de la premiere; nous construisons ainsi deux
triangles semblables dont deux cotés homologues sont les deux vec-
teurs donnés. Les deux cotés de ces triangles différents des vecteurs
donnés mais passant par leur origine déterminent deux nouveaux
vecteurs de méme origine que les vecteurs proposés. On dit que les
deux vecteurs ont subi une rotation. La construction indiquée ci-dessus
pour le support de la résultante conduit a faire passer celle-ci par le
méme point de la droite déterminée par les origines. Ainsi le support
de la résultante d’un systeme de deux vecteurs liés passe par un point
fixe lorsque ces vecteurs subissent une rotation. Ce point est le centre du
systeme.

Dans un systeme de vecteurs paralleles liés, remplacons les deux
premiers vecteurs par leur résultante en choisissant leur centre
comme origine. Composons cette résultante avec le troisieme vecteur
et déterminons le centre et ainsi de suite. On étend ainsi le théoréme
de I'existence du centre au cas d'un nombre quelconque de vecteurs.

34. COORDONNEES BARYCENTRIQUES.

Soient A, B et C trois points non alignés du plan. Construisons
trois vecteurs paralleles ayant ces points comme origines et de lon-
gueurs respectivement proportionnelles a trois nombres a, b et c.
Déterminons leur centre M. Ces trois nombres sont les coordonnées
barycentriques du point M relativement au triangle ABC.
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Ces coordonnées sont identiques aux coordonnées projectives si
I'on prend comme point unité le point d’intersection des médianes
du triangle.

Actuellement, I'intérét des coordonnées barycentriques est surtout
historique car elles furent les premiéres coordonnées homogenes dont
il fut fait usage.

35. MOMENT D'UN VECTEUR.
—_—

Soient un vecteur AB et un point P. L’aire du parallélogramme

—_—

de cotés AB et AP est appelée le moment du vecteur AB relatif au
centre P.

—_

A la figure, ajoutons un second vecteur CD. A partir de P, pro-
jetons le prem1er vecteur sur le second. Sl la projection est de méme

—

sens que CD les moments de AB et de CD par rapport a P sont de
méme sens; sinon, ils sont opposés. Dans la suite, I'expression
«somme de moments» doit étre comprise comme une somme
algébrique.

Le moment d’un vecteur glissant relativement & un point fixe est
indépendant de l'origine de ce vecteur.

—_— e

Soient OA et OB deux vecteurs de méme origine et OR leur

résultante et P un point tel que les deux moments de OT& et OB
soient de méme sens. Construisons les deux parallélogrammes OPCA
et GPDDB. A OPDB, faisons subir une translation qui ameéne O en A
et soit ACER le parallélogramme obtenu. Les triangles OAR et PCE
sont congruents. On voit ainsi que la somme des moments de deux
vecteurs concourants est égale au moment de leur résultante.

On étend le théoreme au cas ou les deux moments sont opposés
et, par itération, au cas d’un systéme quelconque de vecteurs. En
particulier, on constate que la somme des moments des deux compo-
santes d'un couple est indépendante du choix du point de référence.
Cette somme est appelée le moment du couple.
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Seconde Partie

GEOMETRIE PASCALIENNE

VI. AXIOMES

36. INTRODUCTION.

L’exposé précédent considere la géométrie afline comme un cas
particulier de géométrie projective: il repose donc entre autres sur
les axiomes d’incidence de I'espace, car le théoreme de Desargues sur
les triangles perspectifs ne peut pas étre démontré en n’ayant recours
qu’aux axiomes plans de I'incidence; en outre, la démonstration du
théoréeme fondamental sur la détermination d’une projectivité par
trois paires d’¢léments correspondants repose sur un axiome de
continuite.

I1 est possible de construire la géomeétrie affine plane en renongant
a tout recours a la continuité. Il est alors nécessaire de poser comme
axiome une proposition appropriée. On a essayé de choisir la proposi-
tion de Desargues; cette base axiomatique est insuffisante pour la
démonstration du théoreme de Pascal. Ce théoreme est le suivant:
si un hexagone a ses six sommets alignés trois a trois et si deux paires
de sommets opposés sont paralléles, il en est de méme pour la troisiéme
paire.

Au contraire, si 'on admet cette proposition comme axiome, 1l
est possible de démontrer le théoréme de Desargues et de construire
une géométrie affine plane basée sur les relations d’incidence, d’ordre
et de parallélisme. C'est 1'essentiel de cette élaboration que nous nous
proposons d’exposer en nous limitant aux propriétés fondamentales.

37. ORDRE AFFIN.

En géométrie affine, les axiomes de ’ordre concernent les points
d’une droite. Ils sont ceux de la géométrie euclidienne:

St A, B et C sont trois points d’une droite et st B est entre A et C,
il est aussi entre C et A.
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St A et C sont deux points d’une droite, tl y a sur celle-ct au moins
un point B3 qui est entre A et C et un point D tel que C est entre A et D.

De trois points d’une droite, un et un seul est entre les deux autres.

La relation d’ordre conduit aux notions de segment, ensemble des
points d’une droite situés entre deux points de celle-ci, de vecteur,
de demi-droite et de demi-plan. La demi-droite d’origine A et ne
contenant pas B est I'ensemble des points de la droite AB pour
lesquels A est entre eux et B. Dans un plan contenant la droite d, le
demi-plan limité par ¢ qui contient le point A est I'ensemble des
points B tels qu’aucun point de d n’est entre A et B.

38. AXIOMES DE PARALLELISME.

Par tout point du plan, il passe une unique droite qui ne coupe pas
une droite donnée de ce plan; cette non-sécante est appelée la paralléle
a la droite donnée passant par le point considéré.

St les sommets d’un hexagone sont alignés trois a trois sur deux droites
et st deux paires de cités opposés sont paralléles, il en est de méme de la
troisiéme paire.

La réciproque est la proposition suivante: si trois sommets d'un
hexagone sont alignés et si les trois paires de c6tés opposés sont paral-
léles, les trois derniers sommets sont alignés. On démontre ce théo-
réme par réduction a 'absurde.

Le parallélisme conduit a la notion de parallélogramme.

39. THEOREME DE DESARGUES.

Soient A et B,, A, et By, A, et By trois paires de points alignés
deux a deux sur un point H et tels que A;A, et A,A5 sont respective-
ment paralleles & B;B, et a B,B,.

Par A;, menons la paralléle a A,B,; elle coupe HAj; en M et BB,
en L. Tracons LB, qui coupe A;A, en N et menons NM et HN.

Dans I'hexagone NHB,B,LA;, A|N et B,B, sont paralleles ainsi
que A;L et HB,. Les sommets N, B, et L sont alignés ainsi que H, B,
et A;. Donc les droites HN et B,B; sont paralléles ainsi que HN et
AA,

De méme, dans 'hexagone NHA,A;A M| les sommets N, A, et
A, sont alignés ainsi que HA4 et M. Les parallélismes de HN et A Aq
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d’une part, de HA, et A/M d’autre part, impliquent celui de NM
avec AyA,.

Considérons enfin I’hexagone NHB,B,LM; HN est parallele a
B,L, HB, I'est & LM; les sommets N, B, et L sont alignés ainsi que
H, B; et M; donc B,B; est paralléle a MN et a A,A,.

Done, st les sommets homologues de deux triangles sont alignés sur un
point et st deux paires de cités homologues sont paralléles, les cotés de la
troisiéme paire le sont aussi.

Réciproquement, si deux triangles ont leurs cotés homologues
paralleles deux & deux, les trois droites déterminées par les paires de
sommets homologues sont concourantes ou paralleles. On démontre
cette réciproque par I'absurde.

40. HOMOTHETIE.

Soient un point H, deux points A et A" alignés sur H et un point B.
Menons HB et AB et, par A’, la parallele & AB; elle coupe HB en un
point B” dit le transformé de B dans I’homothétie de centre H et on
A et A’ sont deux points correspondants.

Soient C un troisiéme point et son correspondant C’. Les deux
triangles ABC et A’B’C’ ont leurs sommets homologues alignés
sur H et deux paires de cotés paralleles; les troisiemes cotés sont aussi
paralleles.

L’homothétie transforme done toute droite en une droite parallele
a la proposée.

VII. CALCUL SEGMENTAIRE

41. COORDONNEES SEGMENTAIRES.

Soient x et y deux droites, les axes, qui se coupent en un point O;
par un point quelconque M, menons les paralleles & cex axes; elles
les coupent en deux points M, et M. Les deux segments OM_ et OM,,
sont les coordonnées-segments x et y de M.

Sur la figure, choisissons une direction non paralléle & un axe;
appelons paralléle-unité toute parallele a cette direction. Par un
point A, de I’axe des x, menons la parallele-unité; elle coupe 'axe
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des y en un point A,. Les deux points A, et A sont dits associés ainsi
que les deux segments OA_ et OA,.

42. ADDITION SEGMENTAIRE.

Sur I’axe des z, soient deux segments OA, = a et OB, = b. Cons-
truisons Passocié B, de B, et le point P de coordonnées OA et OB,.
Par P, menons la paralléle-unité; elle coupe I'axe des x en un point C.
Le segment OC = c est dit la somme a + b = ¢ de a et b.

Construisons la somme b 4 @ au moyen de I'associé A, de A et
du point Q de coordonnées OB et OA, et de la parallele-unité par Q.
Nous allons montrer la propriété commutative de I’opération ci-dessus.
Pour cela, construisons les deux points A, de coordonnées OA_ et OA
et B, de coordonnées OB, et OB,. Les deux triangles AA A et BB B,
sont homothétiques, puisque leurs cotés sont paralléles; leur centre
d’homothétie est I'origine O; done O, A et B sont alignés. Les deux
triangles OA A, et BPQ ont leurs sommets homologues alignés
sur A; deux paires de cotés sont respectivement paralleles aux axes;
done les troisiemes cotés sont paralleles entre eux; I'un est une paral-
lele-unité, I'autre aussi et les paralléles-unités par P et () sont
confondues.

Soient OA, = a, OB, = b et OC, = ¢ trois segments. Construi-
sons les points dont les coordonnées sont celles du tableau ci-dessous:

T y
D ¢ a -+ b
E b+ ¢ G
F c a
G b c
H a b

La somme (a -+b) + ¢ est donnée par la parallele-unité passant
par D et la somme a + (b + ¢) par celle passant par E. Ces deux
droites sont confondues. Pour le montrer, remarquons que les segments
suivants sont respectivement cotés opposés de parallélogrammes:
FE, C, (b + ¢),, C,G et OB, d’'une part, FD, A, (a + b),, A H et
OB,. Les deux parallélogrammes OFDB, et OFEB, montrent que
les trois droites OF, B E et B,D sont paralléles. Ainsi DE est une
parallele unité et (a + b) + ¢ et a + (b + ¢) sont confondus.

La construction de la somme segmentaire jouit des propriétés de
’addition, d’on le nom d’addition segmentaire qu’on lui donne.

L’opération opposée est la soustraction segmentaire.
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43. MULTIPLICATION SEGMENTAIRE.

Sur I’axe des 2, choisissons un point 1, dit point-unité; construi-
sons son associé¢ 1,. Les segments O1 et O1, sont dits les segments-
unités des axes.

Soient deux segments a et b. Menons la droite A 1, et sa paralléle
par B,. L’intersection de cette derniere droite avec I'axe des z déter-
mine le produit ab des segments a et b relatif a I'unité choisie.

Dans la constraction du produit de deux segments, on peut per-
muter les roles des deux axes. Pour le montrer, sur la figure précé-
dente, ajoutons les droites A 1, et la parallele par B, ; elle coupe
’axe des y en un point M. Appelons A l'intersection de A 1, avec
Al et B celle de B, (ab) avec B,M. Les deux triangles 1,1 A et
B.B,B ont leurs c6tés paralleles deux a deux; deux sommets homo-
logues sont alignés sur l'origine, donc aussi les deux derniers et AB
passe par O. Les deux triangles AA A et B (ab) M ont leurs sommets
alignés sur l'origine et deux paires de cotés paralleles. La troisiéme
paire possede une paralléle-unité, done (ab) et M sont associés.

Soient OA, OB, et OC, trois segments de I'axe des x. Construisons
ab et be puis le point D = [(ab) c] en menant 1, (ab), et sa parallele
par C, et E = [a (be)], par la parallele a 1 A, passant par (bc),.
Appelons K Pintersection de 1, (ab), avec la parallele-unité par B,
et L celle de C,D avec la parallele-unité par (be),. Ces deux points
sont alignés sur I'origine car ils sont deux sommets homologues de
deux triangles ayant leurs cotés paralleles deux a deux. Les deux
triangles tracés ayant respectivement K et L comme sommets et les
troisitmes cotés portés par B (ab), et (be),E ont leurs troisiemes
cotés paralléles et les deux points correspondants a a(bc) et (ab)c sont
confondus. Le produit segmentaire jouit de la propriété associative,

Sur la figure portant les trois segments précédents, formons ac,
be et (@ + b) c. Cela conduit & mener par Cy les paralleles a trois
droites issues de 1, et passant respectivement par A, B et (¢ + b),.
Introduisons une homothétie de centre O dans laquelle au point 1,
correspond Cy; aux points A, B et (a 4 b), correspondent (ac),,
(be), et [(@ + b) c],.. A la parallele a 'axe des y passant par A, corres-
pond la méme paralléle par (ac),. De méme, a la parallele a 'axe des x
par B,, correspond la parallele par (bc),. A la paralléle-unité passant
par le point de coordonnées a et b, correspond la parallele-unité
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passant par le point de coordonnées ac et be; I'intersection de cette
droite avec 'axe des x est le correspondant de [(abd) c].. Or a ce point
correspond aussi le point ac + be. Ainsi, la propriété distributive du
produit segmentaire est démontrée dans le cas ou le premier facteur
est une somme.

Pour montrer la commutativité, nous allons faire usage de I’axiome
de Pascal. Deux segments a et b étant donnés, construisons ba en
menant 1, B, et sa paralléle par A et le produit ab au moyen de 1, A
et sa parallele par B,. Avec les paralleles-unités relatives a a et b, ces
droites constituent un hexagone dont les cotés sont paralleles deux
4 deux, dont trois sommets appartiennent a 'axe des y et deux a
celul des z, done aussi le dernier. Ainsi, les points (ab), et (ba), sont
identiques.

La commutativité étant démontrée, il est inutile de compléter la
propriété distributive au cas ou la somme est le second facteur.

44. (QUOTIENT SEGMENTAIRE.

Les constructions relatives a la multiplication, effectuées dans un
ordre approprié, conduisent a b a partir de a et ab. La division est
donc possible.

45, SEGMENTS NUL ET INFINI.

Si un segment a son extrémité confondue avee 'origine, il est dit
nl. La construction de la somine moutre que I'addition du segment
nul 4 un segment ne modifie pas celui-ci: a + O = a. Le produit
d’un segment par le segment nul donne le segment nul ¢ . O = 0.
Le segment nul jouit donc des propriétés du zéro de I'arithmétique.

Une demi-droite d’origine O et portée par un axe est dite segment
infini ( »). La construction montre que

a+ow =0 eta o= ow
Les constructions 0 - o0 ,2-et oo — o ne possedent pas de
résultat déterminé. Nous les excluons.

46. CALCUL SEGMENTAIRE ET CALCUL ALGEBRIQUE

Il y a isomorphisme entre les opérations du calcul segmentaire et
celles du calcul algébrique des nombres réels. Cependant, I'infini du
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calcul segmentaire est un infini actuel qui ne nécessite pas le recours
au passage a la limite. Comme cet infini obéit aux mémes régles que
celui de I'algébre, cette disparité ne trouble pas I'isomorphisme.

Il est remarquable que la distinction entre le commensurable et
I'incommensurable qui, en algébre, impose I’emploi d'un axiome de
continuité, n’apparait pas dans le calcul segmentaire.

47. KEQUATION DE LA DROITE.

Soit une droite d passant par I'origine; appelons = et y les coor-
données d'un de ses points. Dans le parallélogramme porté par les
axes et dont M est un sommet, d est une diagonale. Le théoréme de
Desargues montre que la seconde diagonale a une direction fixe.
L’une des coordonnées est donc égale au produit de I'autre par une
constante; I’équation d’une droite passant par l'origine est linéaire
et homogene.

Supposons que d ne passe pas par l'origine. Par son intersection
avec 'axe des y, menons la paralléle-unité d’ et soient M et M" deux
points de d et d" ayant méme ordonnée. Appelons z et 2’ leurs abscisses
et p 'ordonnée & I'origine. Nous avons p = y + «’. Appelons N et N’
les intersections de 'axe des x avec les paralléles a 'axe des y par M
et M" et D’ celle avec d’. Les deux triangles MM'P et NN’N; ont leurs
sommets placés deux a deux sur trois paralléles a I'axe des y et deux
paires de cotés paralleles; la droite NN’ est donc paralléle & det »
est le produit de 2" par une constante. Ainsi, I'équation d’une droite
est toujours linéaire.

48. CONCLUSION.

Le calcul segmentaire nous fournit tous les éléments nécessaires
a I'élaboration d’'une géométrie ol les constructions sont liées par un
isomorphisme aux caleuls de la géométrie analytique affine. La géo-
métrie pascalienne est donc identique a la géométrie affine plane et
il est possible de construire cette géométrie en excluant tout axiome
de continuité mais en introduisant deux axiomes de parallélisme.
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