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argiles vertes et rouges marquant la transgression tertiaire
inferieure.

Resume el conclusions.

Les poches decrites ä Mornex sont formees de gres mann a

ßryozoaires et d'argile residuelle dans un karst de 1'Urgonien.
Leur composition n'est pas celle de poches karstiques comblees

de sables eocenes siderolithiques m de filons clastiques et

karstiques barremiens decrites ä Saint-Maurice par R. Murat.
Ce sont des depots qui s'apparentent aux gres verts du Petit-
Saleve et qui leur sont probablement contemporains (Paleocene

inferieur), marquant la transgression tertiaire, prelude des

depots molassiques.
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Mauro di Fazio. — Forme des Operateurs de la mecanique

quantique dans les espaces courbes *.

Nous nous proposons dans cet article d'etendre aux espaces
courbes la formulation des Operateurs de la mecanique
quantique; c'est-a-dire d'etudier leur aspect quand on introduit une

metnque generalisee du type g (q, t). Nous supposerons qu'une

* Ce travail a ete effectue grace aux subsides du Fonds national
suisse de la Recherche scientiflque
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metrique naturelle est definie dans l'espace des q et choisirons
la normalisation des | q', t > selon la forme:

< q", t | q't t > S {q", q', l) (1)

oii:
J 8 (?", t) f (?') dtq' / (q") (2)

pour une fonction arbitraire / (q'); dt q est Telement invariant
de volume. Cette notation exprime le fait que la metrique, et

done la normalisation, peut varier avec le temps.
La forme explicite de dtq' est:

dtq' (q', t) dqn dq'" (3)

oil g (q'. t) est le determinant du tenseur metrique.
Cette formulation a dejä ete utilisee par DeWitt [1] afin

d'etendre la theorie dynamique aux espaces courbes. Nous

reprendrons le sujet, cherchant ä montrer que les Operateurs
de la mecanique quantique peuvent etre mis sous une forme

particulierement interessante, en analogie avec la forme de

derivation tensorielle.
Par ailleurs, nous avons:

8 (?", t) [q", t) S (q" — q') -= (4. A)

(?'. t) 8 (q" — q') (4. B)

S (q" — q') etant la fonction ordinaire ä n dimensions. De (4)

nous avons:
(q'n — q") 8 (?", q', t) o (5)

et

~r 8 (?", q\ t) — S (?", q', t) —
o q Oq

— 4 —t [Lng(q', t)] 8 (q",q\ t) (6)
z 0 q

1

En tenant compte de (5) nous aurons enfin:

(?'" — ?") 8 (q", q', t) — (q" — q") 8 (?", q', I)
d q ' ö q

1

- 8] 8 («?", q, t) 1 (7)

1 8® est le tenseur de kronerker.
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ou l'element de matrice de l'operateur ql:

< q", t\ ?l I t > qn 8 (q", q', t) — q"1 8 (q", q', t) (8)

Si nous prenons l'element de matrice de

[?'. P)i 1 sj

nous avons:

i h 8? 8 {q'\ q', t) (qL — qn) <q",t\Pi\ q\ t > (0)

et pour (5) et (7)

< 1t | p- | q',t> — i ft ~ 8 [q", q', t) +
o q '

+ Fj (?"> 0 s (?", t) (to)

oil les F (q", t) sont des fonctions de ql et t. L'addition de cette
fonction est justifiee par (5).

Une autre forme de (10) est:

< ?"> * i Pj I ?'> t >

f* (?", t) | — i ft ^ + a }(q", t) J 8 (q" — q') (11. A)

g-i {q, t) + G,. (?', d] S (?"-?') (11. B)

avec

G»-F»+i'6(^L"e) 1121

Une restriction finale sur F est imposee par la condition
hermitienne sur p\ et par les relations de commutation. En

prenant l'element de matrice

[Pv P,] 0

et en utilisant (11) nous avons:

0 J (< l\ Pi I >< ?'"> t\ P,\ l', t > —

~ < q", 11 Pj I q"\ t >< q'", t\px\q',t >) dt q'"

~ [ö?7* ^ ^ ~ dq^' F' '] 8 q'' ^ '13^
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done:

Fi ri (13>

pour une certaine fonction F de ql et t.

Nous devons avoir:

< ?"> * I Pi I g',t>* < q',t\pi \ q", t > (14)

En introduisant (10) dans (14) et en utilisant (6) nous obte-

nons la condition

F' F + i i h Lng (15)

La condition (15) nous dit que F a la forme:

F —- <I> —- j- i h Lng (16)

oil <I> est une certaine fonction reelle des q et de t.

L'element de matrice (1) peut etre lie ä la transformation
unitaire de phase:

Fi-e(17)di

ou en definissant les vecteurs de base selon:

\q\~t > e{l!tl)0 \q', t > (18)

considerons l'element de matrice des /q:

< 4*,~t I Pi I 1 > — 1 & < ?"> t | ~ -i-

+ 7-^7 [Lng (q, <)] \q',l > (19)
4 ö9l

et enfin:

< t I Pi q, t > —

— lb I -I- Lng (q", I S (q", q', t) (20)

La transformation (19) change seulement la phase du vee-

teur q', t\ mais cette phase est arbitraire et alors nous pouvons
ecrire l'element de matrice de pt sous la forme:
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< g". 11 Pi I ?',(> —

— + I f-0
dq"l 4 Lög_jh^ f [^;Lng(q",t) | 8(q\q\t). (21)

Considerons, maintenant, les representations suivantes:

y (g', t) < q', t | y > (22)

pour un etat arbitraire | y¥>. Pour un Operateur F (t) nous

aurons:

Fq, (f) y (g', t) < g', t' | F {«') I y > (23)

et en particulier:

P.„ <1 + i '] • (24)

Par une transformation ponctuelle, le determinant du ten-
seur metrique se transforme selon:

ou
dq

dq 2

r, g

represente le jacobien de q par rapport ä q.

(25)

Nous aurions, enfin, pour (Lng)n

Ö (f
* |L"sK'" (i# + FWI

^ *£
(26)

oil le A denote le Symbole de Christoffel de second ordre.

D'autre part, en appliquant l'operateur ~ ä n'importe quel

_
dq

Operateur A (lorsque celui-ci se transforme selon A A —I

et en prenant une moyenne symetrisee, nous aurons:
dq

— th 4.a4ua
[dg1 2 |U| 2

th

d
a1 dgJ

1

1 H V d?'

_d_ dq>_ dgJ A,
d ql d q} d ql

-• —f. A'
dq1 dq1 d ql 2 pij ö g1 ö g5

dA Ai ö?
I p, -4-. A1
X 1

dq>l dq'
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Nous pouvons, alors, decrire la loi de transformation pour
les moments:

1 / dq\
p> (27)

oil la notation represente i'anticommutateur. Grace ä (27),
le caractere hermitien est conserve.

Maintenant, une transformation ponctuolle infinitesimale
est donnee par la formule suivante:

U, 1 ~ itx-1 [Pl, 8 9*) (28)

et si Sq\ 8'qk sont deux systemes de differentielles, nous aurons

pour un Operateur U2

U2 1 — - ih" (ph, 8q')

La difference d U1 — d U2 nous donne:

d\Jl d U2 =- i'lTUl'lN
dqh d?>THH WW

I W, »?* »V

(29)

S ql 8'<f

(30)

oil est le tenseur de Riemann.
Mais RLfti ayant deux indices antisymetriques egaux,

s'annulc. On peut introduire une metrique generalisee dans

laquelle nous pouvons poser:

%lk &ik öjh (31)

c'est-a-dire decomposer le tenseur gih en une partie symetrique
et une partie antisymetrique. Dans ce cas, nous aurons:

ik ik ' ik (32)

oil r'ft, dans le cas d'un champ symetrique est, comme le

Symbole de Christoffel de second ordre.
Nous avons, au moyen de (28) et (29)

Pi uPi U_1 Pi + j (Pj (33)
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Si nous appelons Apt la difference pt — pv nous aurons:

APi Y Sql S'qk (34)

oil RJ ftl est le tenseur de Riemann compose par les glk.

(La suite de cet article paraitra ulterieurement.)
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Paul Rossier. — Sur les /aisceaux tangentiels coplanaires de

paraboles.

En coordonnees tangentielles, l'equation d'une parabole est

de la forme

1) P au2 + buv + cr2 + dutv + evw 0

La droite impropre du plan est caracterisee par u 0 et

v 0.

L'equation (1) contient cinq coefficients homogenes. Soient

Pj 0 les equations de cinq paraboles independantes et
invariables. Le premier membre de l'equation (1) peut etre obtenu

par une combinaison lineaire et homogene des cinq premiers
membres des equations P; 0 :

P S X3 Pj 0

Prenons les cinq coefficients X3 comme coordonnees homo-

genes d'un point de l'espace quadridimensionnel. Ainsi est

etablie une correspondance biunivoque entre les points de cet

hyperespace et les paraboles du plan, et aux proprietes des uns

correspondent des proprietes correlatives des autres. Par uns

exemple, un faisceau de paraboles est represente par les points
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