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argiles vertes et rouges marquant la transgression tertiaire
inférieure.

Résumé et conclusions.

Les poches décrites & Mornex sont formées de grés marin a
Bryozoaires et d’argile résiduelle dans un karst de I'Urgonien.
Leur composition n’est pas celle de poches karstiques comblées
de sables éocénes sidérolithiques ni de filons clastiques et
karstiques barrémiens décrites 4 Saint-Maurice par R. MuRAT.
Ce sont des dépdts qui s’apparentent aux gres verts du Petit-
Saléve et qui leur sont probablement contemporains (Paléocéne
inférieur), marquant la transgression tertiaire, prélude des
dépots molassiques.
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Université de Genéype.
Laboratoire de Géologie.

Mauro di Fazio.

Forme des opérateurs de la mécanique
quantique dans les espaces courbes *.

Nous nous proposons dans cet article d’étendre aux espaces
courbes la formulation des opérateurs de la mécanique quan-
tique; c’est-a-dire d’étudier leur aspect quand on introduit une
métrique généralisée du type g (¢, t). Nous supposerons qu'une

* Ce travail a été effectué grace aux subsides du Fonds national
suisse de la Recherche scientifique.
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métrique naturelle est définie dans I'espace des ¢ et choisirons
la normalisation des | q’, t > selon la forme:
<qgtlg,t>=28(",q,1 (1)
ou:
IS (@" ¢, 0 f(g') dyq" = [1q") (2)

pour une fonction arbitraire f (¢'); d, ¢’ est 'élément invariant
de volume. Cette notation exprime le fait que la métrique, et
donc la normalisation, peut varier avec le temps.

La forme explicite de d, ¢’ est:

d,q’ = g% (¢, 0)dq’* ... dg' " (3)

ou g (¢, t) est le déterminant du tenseur métrique.

Cette formulation a déja été utilisée par DeWitt [1] afin
d’étendre la théorie dynamique aux espaces courbes. Nous
reprendrons le sujet, cherchant a montrer que les opérateurs
de la mécanique quantique peuvent étre mis sous une forme
particulierement intéressante, en analogie avec la forme de
dérivation tensorielle.

Par ailleurs, nous avons:

Sh g 0 =gt 08 —a) = (A
gt 08 — ) (4. B

3 (¢" — ¢q') étant la fonction ordinaire & n dimensions. De (4)
nous avons:

(" —q")8(q" ¢ 1) =0 (5)
et
0 0
> 8 ”’ ,,t P > 8 II’ l’t ori
g (¢, ¢, 1) o7 (¢ 4’ 1)
1 O ’ ” /’
— 5 ——; [Lnglg 0] (" ', 1) . (6)
Oq
En tenant compte de (5) nous aurons enfin:
. D ; )
”l — 4 - 8 ”’ I’ t P 7”1 - 1 e oy 8( II’ /’ t -
(g q)aq”J (", ¢, 1) (q q )Oq,] 7", q' 1)

— i ” 2
— 8

~
—_

1 §' esi le tenseur de Iironecker.
i
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ou I'élément de matrice de 'opérateur ¢':
<gtlglg,t>=q¢"8(¢ ¢, ) —q"8( ¢, 0. (8)
Si nous prenons l’élément de matrice de
[¢', p;] = ih 3]
nous avons:
ihd 8¢, ¢, ) =" —¢ i< tipld.t> (9

et pour (5) et (7)

” ’ ¥ a ” ’
< htlp gt > = —ih = B 1)
dq”

+ Filg", 08¢ ¢, ) (10)

ou les F (g”, t) sont des fonctions de ¢ et ¢t. L’addition de cette
fonction est justifiée par (5).
Une autre forme de (10) est:

<q¢,tlpjlg,t> =

-1 2 a ” ” ’
=g ®(¢", 1) [—zh ”i+(}j(g,t)]8(q —¢) = (11. A)
0q

o
]

[ &1

WWEH
avec

1. 0

Une restriction finale sur F est imposée par la condition
p
hermitienne sur p; et par les relations de commutation. En
P;
prenant 1’élément de matrice

[Py Pl =0
et en utilisant (11) nous avons:

0= [(< g, tlplg”t><q”tlp|g,t>—

4

—<q,tlplg”, t>< ¢ tIpilg t>)d g =

. () ” O 174 " !
= —1h [Oq”é F] (g% 8} — Oq”j Fi (g s t)] 8(9 ) t) (13)
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done:
oF
0 q'
pour une certaine fonction F de ¢' et ¢.
Nous devons avoir:
<qgtlplgt>*=<qg,t|plgt>. (14

En introduisant (10) dans (14) et en utilisant (6) nous obte-
nons la condition

1

F' = F + —ihLng. (15)

b3

La condition (15) nous dit que F a la forme:

F=——fI)—-;ithg (16)
4

ou @ est une certaine fonction réelle des ¢ et de ¢.
[’élément de matrice (1) peut étre lié a la transformation
unitaire de phase:

; od _
PI C’(”‘h)(p — pl + —— (1/)

PR 1 ‘
0q'

Pi

ou en définissant les vecteurs de base selon:
;q” t > — e(i.ffh.)(blql’ t > (18)

considérons I’élément de matrice des p;:

T o T I
<q,tlpilg,t>=—1 <q1t|6?1“
, 10 )
+ - — [Lnglg, 0]1q¢t > (19)
10(11
et enfin:

<q”:tlpi!ql’t>:_

. 6 6 ” " ’ 5
= — Lh{oq”i + [oqﬂ. Lng (q ,t)] } 5(¢", ¢, 1) . (20)

La transformation (19) change seulement la phase du vec-
teur ¢’, t; mais cette phase est arbitraire et alors nous pouvons
écrire I’élément de matrice de p; sous la forme:
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. tlp;lg,t>=—

9 1 0 .
= —th o Lng (¢, 0) | 8(¢".q,0). (21
{ngrl 4 [Gg’”’ g(q )J q q ) ( )

Considérons, maintenant, les représentations suivantes:

gt =<qg,t|¥ > (22)

pour un état arbitraire |‘P'>. Pour un opérateur F (¢) nous
aurons:

Fo ()W (g, 0) = < g, ¢ |F ()| ¥ > (23)

et en particulier:

N T S
Py = — ih [aq'i + 7 (Lng), L] . (24)

Par une transformation ponctuelle, le déterminant du ten-
seur métrique se transforme selon:

- 0
0 = L 25
8 dq 4 (25)
ou gf:l représente le jacobien de ¢ par rapport a gq.
q

Nous aurions, enfin, pour (Lng),;

1, — [dg" N og
? (Lng),i = (ﬁ)w -t {Jl}a_él (26)

i
ou le {ji} dénote le symbole de Christoffel de second ordre.
D’autre part, en appliquant I'opérateur o—a_- a n’importe quel
opérateur A (lorsque celui-ci se transforme selon A = A ‘ 9_@‘ )

9q
et en prenant une moyenne symétrisée, nous aurons:

S L Nt | U N, LW i
2 dq dg

1

[« <N
o

.

XY
g 2, °q lagdag ir’f.
S A N S T RN TS

1
T T e
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Nous pouvons, alors, déerire la loi de transformation pour
les moments:

\

- 1 d g’
. == — . —_ 97
PJ 2 (pl,7 ()(;J) (“/)

ou la notation ( ) représente 'anticommutateur. Grace a (27),
le caractere hermitien est conserve.

Maintenant, une transformation ponctuelle infinitésimale
est donnée par la formule suivante:

1 e < 4 .
U, = 1——?tT11(pi.bql) (28)
et si 8¢', 8¢" sont deux systemes de différentielles, nous aurons
pour un opérateur U,

U2=1—~%ih‘1 (pr» 84" (29)
La différence d U; — d U, nous donne:

T - M 1A P

1 o
=5 Rl 3¢° 8 ¢" (30)

9|

LY P j
_JalS R']r){l
s'annule. On peut introduire une métrique généralisée dans

est le tenseur de Riemann.
ayant deux indices antisymétriques égaux,

laquelle nous pouvons poser:
i = &in T Sin (31)

c¢'est-a-dire décomposer le tenseur g;, en une partie symétrique
et une partie antisymétrique. Dans ce cas, nous aurons:
I _ 7 !
Fip = Tip + Ty (32)
ou I, dans le cas d’'un champ symétrique est, comme {,}, le

symbole de Christoffel de second ordre.
Nous avons, au moyen de (28) et (29)

s . 1 .
pi="Up, U™ =p; + 5 (p;, 8¢ S



-
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Si nous appelons Ap, la différence p, — p;, nous aurons:

i o )
i = 5 Vi 8q' 8'¢q" (34)

ou R?

iri est le tenseur de Riemann composé par les g;,.

(La suite de cet article paraitra ultérieurement.)
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Paul Rossier.
paraboles.

Sur les faisceaux tangentiels coplanaires de

En coordonnées tangentielles, I'équation d’une parabole est
de la forme

1) P = au® + buv + cv? + duw + evow = 0 .

La droite impropre du plan est caractérisée par u = 0 et
v = 0.

L’équation (1) contient cinq coefficients homogeénes. Soient
P, = 0 les équations de cinq paraboles indépendantes et inva-
riables. L.e premier membre de 'équation (1) peut étre obtenu
par une combinaison linéaire et homogene des cinq premiers

membres des équations P, = 0 :

Prenons les cinq coefficients A; comme coordonnées homo-
géenes d'un point de l'espace quadridimensionnel. Ainsi est
établie une correspondance biunivoque entre les points de cet
hyperespace et les paraboles du plan, et aux propriétés des uns
correspondent des propriétés corrélatives des autres. Par uns
exemple, un faisceau de paraboles est représenté par les points
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