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452 SEANCE DU 2 JUILLET 1959

mesure possible de doses élevées, un document permanent, un
prix moindre que les chambres d’ionisation ou dosimeétres de
poche. Ils sont de plus robustes et résistent aux chocs.

Institut du Radium, Genéve.

b) Autres communications

Sandor Fliszar. — Etude théorique des équilibres chimiques
1V.

I. Conservation de I’homogénéité d’un systéme a 'équilibre.

Considérons un systéme homogéne & selon Gibbs!; par
homogene, Gibbs entend que le systeme considéré est uniforme
dans toute son étendue, aussi bien du point de vue de sa com-
position chimique que de son état physique.

En appelant DU, DS, DV, DM, ete. respectivement I’énergie,
I'entropie, le volume, la masse, etc. de chaque parcelle infini-
ment petite, il est:

dDU = TdDS — pdDV + y, dDM, + ... + w, dDM,, . (G1)

Par une intégration étendue a toutes les parties de la masse,
1l résulte:

dU = TdS — pdV + p dM, + w dM, + ... + w, dM,, . (G2)

Pour la validité de cette derniére équation, il n’est pas
nécessaire que les changements de nature et d’'état de la masse
a laquelle se rapporte l'équation soient de nature a ne pas
altérer son homogénéité, pourvu qu’en tous les points de la
masse, ces changements soient infiniment petits. Si cette der-
niére condition est remplie, une équation semblable a 1'équa-
tion G2 est certainement exacte pour chaque parcelle infiniment
petite de la masse initialement homogene: cette équation est
précisément I’équation G1.

1 J. WiLLarD-GiBBS, Fquilibre des systémes chimiques, trad.
H. Le Chatelier. Ed. G. Carré & C. Naud, Paris (1899).
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Soit maintenant & divisé en différentes parties, chacune
d’elles étant homogeéne. En distinguant par des accents les
lettres se rapportant a chacune des parties du systeme &, il est
pour I'équilibre (Gibbs), en ce qui concerne les masses:

dM, + dM; + ... =0 |
(G:3)
dM, + dM, + .. =0 |

Ces équations expriment que dans le systéme total (&), il
ne se produit pas de variation de la quantité totale de chacune
des substances présentes. Il convient toutefois de remarquer
que ces équations ne sont pas censées exprimer les phénomeénes
se déroulant en & pendant un temps nul; elles concernent, bien
au contraire, les phénomeénes se déroulant pendant une certaine
durée d’observation. A ce point de vue les équations G3
expriment donc une moyenne pour 'état de & prise sur le temps.

On peut en effet concevoir & cette échelle 'existence d’une
perturbation qui se propage en &. Si S est bien un systéme tel
que nous puissions le déclarer a I'équilibre d’apres les définitions
classiques en chimie, 1l est évident que ces perturbations seront
trés petites par rapport a I'ensemble des phénomeénes et, en
plus, n’iront pas toujours dans le méme sens, car elles ne dépla-
ceront pas, dans le temps, 'état d’équilibre & observé pour .
Vu I'ordre de grandeur de ces perturbations qui les rend insigni-
fiantes au sein d’'un grand systéeme § a I'équilibre &, et étant
donné que ces perturbations finissent par se compenser,
celles-ci deviennent en définitive, a I’échelle de &, inobservables
méme pendant l'examen le plus rapide que nous puissions
réaliser et ne figurent ainsi pas dans les équations G3.

Plus haut, on a vu que les équations G3 se rapportent au
systeme total &. En postulant maintenant la conservation de
I’homogénéité de &, on demande que dans une quelconque
parcelle de volume V 1l ne se produise pas de variation de la
quantité totale de chacune des substances présentes. Alors —
pour que & soit en équilibre — il faut que I'équation d’état
pour cette parcelle soit vérifiée pour chacune de toutes les
autres parcelles de & de volume V. Si, pour le grand systéme &,
on pouvait a la rigueur omettre de dire que son état d’équi-
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libre & représente une moyenne prise sur le temps, il convient,
par contre, de bien préciser que ceci est le cas pour I'équilibre &,
d’un petit systéme de volume V.

Les équations G3 ne comprennent pas de restriction quant
a la grandeur du systeme auquel elles se réferent. On peut donc
considérer les équations G3 comme n'étant pas étendues au
systeme & entier, mais & une partie de celui-ci, de volume V.
Si I'on suppose V assez petit, on n’a qu'a exprimer les équa-
tions G3 en adoptant les notations employées dans 1'équation
G1, qui se réféerent & des parties de systéeme infiniment petites;
on en viendrait ainsi & considérer V comme un ensemble de
parties infiniment petites (de volume DV).

Les équations G3 ainsi comprises représentent notre condi-
tion de conservation d’homogénéité?, avec toutefois la diffé-
rence que nous ne nous bornons pas seulement a dire que la
composition moyenne d'un tel petit systeme ne varie pas dans
le temps, mais que la somme des échanges de ce systéme avec
les systémes qui I'environnent est nulle. Cette derniére condi-
tion est tout aussi bien remplie si I'on considére le petit systéme
de volume V comme étant muni d’'une enveloppe rigide (systeme
limité) — cette enveloppe ayant comme unique propriété celle
d’empécher les échanges de molécules entre V et son entourage
(sans aucune autre influence sur V et son contenu) en réfléchis-
sant les molécules qui pourraient sortir de V — que si l'on
considére V dépourvu d’une telle enveloppe en admettant que
chaque molécule quittant V est remplacée par une molécule
identique provenant de 'entourage de V (systéme réel). Comme
nous le verrons plus bas, le calcul montre une différence essen-
tielle entre ces deux types de systemes, limité et réel; dans
I'expression d'une loi générale d’équilibre, nous retenons pré-
cisément cette derniere alternative, qui n’impose pas de res-
trictions quant au libre déplacement des molécules a I'intérieur
de &.

Notons encore que notre condition de conservation d’homo-
généité ne concerne pas cette conservation point par point du
systéme, mais se référe & des parties de & finies, de volume V;

2 Exprimée dans le travail précédent ® par les équations 1,1 et
4, 6bis.
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on demande donc seulement que la composition (moyenne prise
sur le temps) de chacune de ces parties ne varie pas dans le
temps, mais on admet qu’a I'intérieur de V les molécules peuvent
se trouver en tout instant en n’importe quel point, chaque
point étant également probable; en plus chaque particule est
libre de se déplacer dans n'importe quelle direction, chaque
direction étant également probable.

1. Systémes s limités.

Considérons un élément de surface dS d'un systeme s
suppos¢ sphérique. Le nombre de molécules contenues dans un
cylindre de longueur ¢ At — ¢ étant la vitesse moyenne des
molécules — est (fig. 1):

nyc¢ AtdS cos 0,

ot n_ est le nombre de molécules, par unité de volume, de
espéce dont on veut déterminer le flux @, 3et, par la suite, @ .

Fig. 1.

En rapportant les vitesses des molécules & un systeme de
coordonnées polaires (fig. 2) dont l'origine est la partie dS de
la paroi de s, on trouve % que le nombre de molécules se dépla-

8 S, FriszAr, Arch. Seci., 11, 457 (1958) et ibid., 483.

4 Voir: W. J. Moore, Chimie physique (Trad. H. Aberdam),
Ed. Dunod, Paris (1957), p. 208-210; Laxpauv & LirsuHiTZ, Statis-
tical Physies, Oxford University Press (1938), p. 60-61.
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cant dans la direction (0, @) frappant I'élément de surface dS

dans l'unité de temps est égal a:

ga_é dS cos 0d Q .

i

En intégrant cette expression pour trouver le nombre total
de molécules qui heurtent dS suivant toutes les directions de

I’hémisphere, par unité de temps, on trouve:

[}

Snge d
-‘! Dfnt

et. pour toute la surface de s °:

2}

cos 0 sin 0 dopdb ,

Sy i A

Oy = njew R2.

(6, 2)

Calculons maintenant @ 3, ce qui permet d’obtenir
O, = ®, — ®;. L'équation 6,1 donne la contribution de
I'élément de surface dS au flux pénétrant dans s sous un angle
déterminé (6 o). Il est done, par unité de surface et par unité

de temps:

5 S. GrasstoNE, Textbook of physical chemistry, 2¢ éd (1948),

p. 278.
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1}

% cos 0 sin 0 do df |,
ce qui représente le flux, par surface de s unitaire, et qui pénétre
suivant un angle déterminé. Les molécules de cet ensemble
parcourront, tant qu’elles ne subissent pas de collision 8, le
chemin A, ainsi qu’il résulte de la figure 2. D’aprés ’hypothése
citée précédemment 3, la fraction de ces molécules qui quittera
s sans avoir subi de collision est:
TaC T o5 6 sin 0 dop do . (6, 3)
br
Cette grandeur représente la contribution au ®; total des
molécules possédant une direction déterminée suivant A
(suivant 0, @), pour un élément de surface unitaire.
La contribution d’une surface unitaire au @, total pour
tous les angles d’incidence possibles est donc:

¢ *RTRCos® 15 6 sin 6 dp d . (6, &)

o |
a ¢

o=—rala

11 résulte ainsi pour @, en tenant compte de toute la surface
de s:

D

J 'Z_D_ ¢ RTRC0SO (66 0 sin 0 dg d6 .
s

=4
=

I

oS

b= |

ou)

[ ]
S 2l
oy 12

En résolvant cette intégrale on obtient, a 'aide des équa-
tions 6, 2 et @, = @) + O::

a0
(I)‘ = V . n n *+‘ 2 .
R = 2ng¢ ©hT'R3. 2 :1/__10( 2kI'R) TEEl (6, 5)
*
* *

Introduisons maintenant cette derniere valeur dans I’équa-
tion 4, 6bis — qui est une forme de I'équation 1,13 — expri-

¢ Les molécules qui subissent une collision sont déduites de cet
ensemble.
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mant la conservation de I'homogénéité de &, ainst que les

3 ; . 1 : : . .

équations 4,9 et E, = = V[AB], 1l résulte finalement pour
1

Péquilibre de s (n_ = [A]):

[A][B] m

>\ 8
AB] — moek| ©&°

Cette derniere équation est du méme type que la loi d’action
des masses de Guldberg et Waage. Notons encore que ¢ repré-
sente la vitesse moyenne des molécules de 'espece dont on
considere ®,; l'équation est néanmoins svmétrique, étant
donné que £ doit certainement contenir un facteur correctif
se rapportant aux vitesses relatives des molécules. Les autres
facteurs intervenant dans A (section ellicace de collision) étant
¢gaux dans 'un et l'autre cas, il est indifférent de se référer
dans le calcul de cette équation a @, plutot qu'a ® . le produit
ch restant le méme dans les deux cas.

On pourrait étre surpris du fait, qu'apres avoir jusqu’ici
trouvé pour I'équilibre d'un systéme tel que nous I'étudions ici
des équations différentes de celle de Guldberg et Waage, on
retrouve maintenant avec l'équation 6,6 une équation du
type «classique », c’est-a-dire [A][B]:[AB] = constante (iso-
therme). Plus bas nous allons étudier quelle est la condition
physique qui nous fournit ce résultat au lieu de notre équa-
tion 4, 15 précédemment calculée 3,

Pour montrer que I'équation 6, 6 représente 1'état d’équi-
libre d’un systeme s limité, il suflit de considérer comme étant
des molécules pénétrant en s (@) les molécules qui, en prove-
nant de l'intérieur de s, heurtent la paroi et reviennent de
celle-ci vers I'intérieur de s. On suppose en outre que la paroi
n’a aucun autre effet que celui de réfléchir les molécules, que
les choes sont élastiques et, qu’en moyenne, 'angle de réflection
est égal a 'angle d’'incidence. En appliquant le calcul que nous
venons de décrire a ce modele qui, bien entendu, est une pure
création de l'esprit, on trouve donc une équation du type
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« classique » (éq. 6, 6) qui représente I’équilibre (compris comme
résultant d’une moyenne prise sur le temps) d’'un systeme s
limité.

Reprenons les considérations faites au début de ce para-
graphe et observons la figure 1. On voit que le nombre de molé-
cules arrivant en dS dans 'unité de temps n’est pas le méme
suivant les différentes directions possibles (éq. 6,1). On vien-
drait ainsi & dire que les molécules qui constituent @, au mo-
ment de pénétrer en s, n’ont pas une probabilité égale de se
déplacer dans n'importe quelle direction, le maximum de pro-
babilité étant donné pour la direction normale a dS (cos 6 = 1),
tandis que la probabilité d’un déplacement dans le plan tangent
en dS est nulle (cos 6 = 0).

Donc, pour les systemes limités, on ne postule pas pour les
molécules formant I'ensemble @, une égale liberté de mouve-
ment dans toutes les directions. C'est ainsi que l'on obtient
I'équation du type «classique » que nous avons décrite, mais
on verra plus loin que la validité d’une telle équation (pour un
systeme limité) est également liée a une condition concernant
le volume de la partie de & a laquelle nous nous adressons.

IT1.  Systémes réels.

S’1l était possible d’observer une molécule se trouvant a
la périphérie d’un systeme s non limité (donc a la distance R
du centre de s supposé sphérique) on ne saurait a priori dire
si cette molécule appartient 4 s ou & un systéme s’ voisin (état
de transition); en plus, 'observation instantanée, qui per-
mettrait d’en définir la position, ne révélerait pas suivant quelle
direction est parvenue cette molécule, ni, par conséquent, dans
quelle direction celle-ci va poursuivre son chemin.

Considérons un élément de volume dSdR a la périphérie
d’un systeme s, dR étant edi. Le nombre (ou mieux: la proba-
bilité de présence) de molécules dans ce volume est:

n.dSdR .
) \ N “ p &
D’apres ce que nous venons de dire, ne pouvant déterminer

si cet élément de volume appartient au systéme s ou au systéme
voisin s, on attribuera la moiti¢ de ces molécules a chacun
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des systemes voisins s et s. Donc le nombre de molécules qui
peuvent entrer en s dans le temps dt est:

nydScdt |

soit les molécules attribuées a s'.

Il n'y a pas de raison de considérer 1’élément de volume
dSdR observé d’une facon différente des autres éléments de
volume dSdR de & (homogénéité de ). Ne pouvant attribuer
une direction privilégiée suivant laquelle les molécules en
provenance de «l'extérieur» pénétrent dans un quelconque
dSdR, nous ne pourrons donc attribuer — pour I’élément de
volume considéré — une direction privilégiée, suivant laquelle

les % n dSdR molécules quitteraient cet élément de volume

dans le temps dt. Ainsi, toutes les directions étant également
probables, il n’y aura finalement que la moiti¢ de ce nombre
qui pénétre en s, soit, dans I'unité de temps:

Tnaeds
I'autre moitié se déplacant du cé6té de s’, auquel du reste ces
molécules appartenaient déja.

Il en résulte que la contribution de dS au flux @, est

1 = ; ; 4 s
7 N c dS; par conséquent, la contribution de chaque élément

de surface étant égale, 1l est pour toute la surface de s:

(DQ:

n-c . 4nR?.

|-

Observons que ce résultat est identique a celui précédem-
ment trouvé (éq. 6, 2) 7, avec la différence toutefois, qu'avec
le modele que nous avons adopté ici, les molécules de I'en-
semble @, possédent individuellement une égale liberté de
translation dans toutes les directions au moment ou elles
pénetrent dans le systéeme s considéré, a 'encontre de ce que
I'on avait vu pour les systémes limités.

“ Voir a ce sujet: note 2 dans 10.
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En appliquant a cet ensemble @, 'hypothése @] = P, e*!™

et les calculs déja décrits 3 on trouve 7:

[AI[B]  &m .
[AB]  3c¢ckm, Vo = KT

L (4,15; 4,12 bis)

c'est-a-dire l'équation démontrée au cours de nos travaux
précédents *8

IV. Le volume V de s.

Ainsi que nous l'avons vu, I'’équation (comprise en tant
que représentant une moyenne dans le temps) décrivant I’équi-
libre des systémes limités est du type « classique ». On pourrait
donc envisager de considérer un systeme &, tel que nous le
réalisons en pratique, comme un seul systéme limité, ou le
récipient renfermant les substances en équilibre a la fonction
de limites. On en concluerait que I’équation du type «clas-
sique » devrait étre valable pour nos systémes macroscopiques,
ainsi que la loi de Guldberg et Waage.

Or il est assez évident qu'un tel point de vue ne peut guere
etre défendu; il suffit en effet de vouloir considérer une partie
de 8§, également macroscopique — & l'intérieur de &, ou sil'on
veut, « baignée » dans un systéme infini — pour étre placé dans
le cas des systemes réels, non limités; une équation décrivant
I'équilibre de '§ (limité par le récipient) doit certainement aussi
étre valable pour une partie de &, si celle-ci est également
macroscopique. Done, étant donné que la fraction considérée
n’est pas limitée et que les équations décrivant I’équilibre limi-
tés et non limités sont différentes, on devra appliquer I’équa-
tion 4,15 — qui décrit les systémes réels — également au
systeme total &, méme si ce dernier est contenu dans un réci-
pient ’entourant de toutes parts. Tout au plus dira-t-on qu’au
voisinage des parois de & il existe une zone de perturbation
(phénomene de surface). Il n’en reste néanmoins vrai que — a
condition que § soit suffisamment grand — une telle zone peut
étre négligée a coté de 'ensemble du systéme.

® L’¢équation 4, 14 ® définit ¥'(,). Observons que pour les systémes
limités on a I’homologue ¥, = 1.
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En continuant a raisonner ainsi de proche en proche, sur
des systemes de plus en plus petits, nous aboutirons a des
résultats semblables & ceux que nous venons d’exposer ?; mais
ceci jusqu’au moment ou la fraction considérée s ne peut plus
étre mentalement divisée en parties plus petites, dans le sens
que nous avons précédemment exposé 3. Pour un tel petit
systeme s, appelé élémentaire, I’équation du type « classique »
(6, 6) sera vérifiée si s est limité.

On conclut donc, en considérant les systéemes limités, que
I’équation 6, 6 («classique ») n’est vérifiee qu'a condition que
celle-ci se rapporte a une partie bien définie, de volume V fini
et déterminé, de 'ensemble &, soit & un systeme élémentaire.
Ceci bien que I'équation 6, 6 ne contienne pas de termes en V,
ce qui provient du fait que, dans cette ¢quation, la fonction 't
prend la valeur particuliere ¥, = 1% caractéristique des
systemes limiteés.

Dans le cas des systémes réels, on voit de suite que I'équa-
tion d’équilibre dépend de la grandeur de la fraction de '$ consi-
dérée, car ici la fonction W est bien fonction de R. Ce rayon
est le méme que celui qui figure dans la forme particuliére de ',
c’est-a-dire ', = 1, dans le cas des systémes limités. D’ou il
résulte que I’équation représentant 1'équilibre de '$ n’a un sens
que s1 I'on attribue a V la valeur du volume des unités (sys-
temes élémentaires) dont & est constitué. En d’autres termes.
dans I’étude de I'équilibre d’un systéme &, basée sur la conser-
vation de son homogénéité, on ne peut pas laisser au libre
arbitre le choix de la parcelle que I'on prend en considération.
Ceci se congoit du reste aisément, en considérant que pour une
molécule naissant en V (€ E;) la probabilité d’en sortir sans
subir de collision n’est pas la méme que pour une molécule qui
(en provenant de I’espace environnant la partie de § considérée)

? Notons toutefois que pour des systemes de plus en plus petits,
le temps d’observation — sur lequel on prend la moyenne — doit
étre pris de plus en plus grand, car a la moyenne sur ’espace-temps
vient se substituer la moyenne sur le temps pour un espace tres
petit. En plus, suivant ce mode de raisonnement, les « phénomeénes
de surface » dont nous avons parlé prennent de plus en plus d’impor-
tance et ne pourront plus, pour les systemes tres petits, étre néglige
par rapport a I’ensemble du petit systéme considéré.
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pénétre en V (e ®;) et que WV est une fonction de ces prnba-
bilités qui, a leur tour, sont des fonctions de V 8.

Ainsi que nous l'avons précisé a plusieurs reprises, le
volume V d’un systéme élémentaire est une quantité finie; les
calculs faits n'auraient en effet pas de signification pour des
¢léments de volume infiniment petits. Si I'on pose arbitraire-
ment V- 0 — c’est-a-dire si ’'on considére S comme un ensemble
de systémes infiniment petits — il est ¥ = 1 10 et ’équation
d’équilibre 4,15 devient [A][B]:[AB] = constante, ce qui
représente — a la signification de la constante pres — la lo1
d’action de masses. D’apres ce que nous venons de dire, la loi
du type «classique» de Guldberg et Waage apparait donc
comme un cas limite d’une loi qui, a cette limite, cesse
d’exister.

Résumeé.

En postulant pour un systéme macroscopique & al'équilibre,
initialement homogene, la condition de conservation d’homo-
généiteé ce qui revient a admettre qu’il ne se vérifiera en
aucun point de & une accumulation durable d’aucun de ses
composants — on conclut que & doit étre considéré comme
un ensemble de petits systémes s (systemes élémentaires) dont

le volume est déterminé par la nature méme du systéme et
n'est pas sujet a notre libre arbitre.

En plus, on montre que I'on obtient, pour 1'équilibre, une
équation du type « classique » si I'on considere ces unités munies
chacune d’une enveloppe ne permettant pas 'échange de
particules avec 'extérieur (systémes élémentaires limités); car,
a cause de la paroi méme, on n’attribue pas a toutes les molé-
cules une égale probabilité de translation dans toutes les
directions de l'espace.

Finalement, en attribuant a toutes les molécules une égale
liberté de translation dans toutes les directions, on montre que

10 S, FriszAr, Arch. Sci. Genéve, 12, fasc. 1, 124 (1959).
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pour les systemes macroscopiques & réels I’équilibre est exprime
par une équation qui contient un facteur ¥, fonction du rayon R
de I'unité élémentaire s.

Summary. — By postulating for a homogeneous chemical sys-
tem & at equilibrium the conservation of its homogeneity, we
demonstrate that & has to be considered as an assembly of elementary
systems s, whose volume cannot be chosen arbitrarily.

An equation of equilibrium describing the law of mass action will
contain a function of the volume of s. An equation of “ classical »
type is obtained in limiting cases which do not correspond to reality.

Untversite de Genéve.
Ecole de Chimie.

D. Cassimatis, P. Gagnaux et B.-P. Susz. — Préparation et
spectre infrarouge du composé d’addition du chlorure de benzoyle

avec le tétrachlorure de titane.

Le tétrachlorure de titane est parfois utilisé dans la synthése
cétonique de Friedel et Crafts et dans la réaction de Fries. Son
pouvoir catalytique peut s’expliquer par sa réactivité envers
les cétones et les halogénures d’acide; le mécanisme de ces
réactions a été étudié expérimentalement par Cullinane et ses
collaborateurs [1].

Le TiCl, forme des composés d’addition avec les cétones et
les halogénures d’acides, grace & sa capacité d’attirer les élec-
trons, qui le fait considérer comme un acide de Lewis. Nous
nons sommes proposé d’étudier I'absorption infrarcuge de ces
composés d’addition, en rapport avec les recherches antérieures
effectuées dans notre laboratoire par Susz et divers collabora-
teurs: Cooke et Herschmann (halogénures de benzoyle et d’alu-
minium), Wuhrmann (fluorure d’acétyle-BF,, chlorures d’acé-
tyle-AlCl; et de mésitoyle-AlCl,) et Lachavanne (acétophénone-
TiCl, et benzophénone-TiCl,). Les cétones et le chlorure de
benzoyle donnaient alors d’autres modifications du spectre
d’absorption du composé d’addition vis-a-vis des corps de
départ que les halogénures d’acétyle et de mésitoyle, ce qui a
été expliqué par une différence importante de la constitution
des composés d’addition.
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