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Seance du 19 mars 1959

Paul Rossier. — Sur Vegalite des courbtires interne et totale

des surfaces.

1. Soient A et B deux points voisins d'une surface; menons
deux droites paralleles, l'une par A dans le plan tangent a la

surface et l'autre par B; projetons orthogonalement cette
derniere sur le plan tangent en B. On dit que la droite menee

par A a ete transportee parallelement sur la surface de A en B.
Sur la surface, traqons une courbe; divisons-la en arcs

infinitesimaux et transportons une droite successivement sur
chacun d'eux; la droite a ete transportee parallelement sur la
courbe consideree.

Le transport parallele conserve les longueurs des segments
et les angles des droites. Cela est du au fait que les plans
tangents en deux points voisins forment un angle infiniment petit
et que le cosinus d'un tel angle diflere de Limite d'un infiniment
petit d'ordre deux.

Si la droite transportee est la tangente ä la courbe et que
eelle-ci est une geodesique de la surface, la droite reste tangente

par transport parallele; en effet, deux tangentes consecutives
determinent le plan osculateur et celui-ci est normal ä la surface.

2. Sur la surface, deeoupons une petite calotte, faisons-en

parcourir le contour par une droite; en general, les positions
initiale et finale de celle-ci ne coincident pas, elles forment un
angle non nul; le rapport de cet angle ä Faire de la calotte est

la courbure interne de celle-ci.
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Lors d'une flexion, les arcs, les angles et les aires sont

conserves; la conrbure totale est done un invariant des flexions.

3. Proposons-nous de calculer la conrbure interne d'une
sphere. Pour cela, resolvons un probleme prealable. Sur un
cöne de revolution dont les generatrices font un angle cp avec
la base, soient A et B deux points de cette courbe. Deplapons
parallelement de A en B la tangente ä la base en A. La tangente
en B et la parallele par B ä la tangente en A sont contenues
dans le plan de base. Projetons la parallele ä la tangente en A
dans le plan tangent en B; cette projection fait un angle <; avec
la tangente en B; calculons-le. Pour cela, projetons orthogona-
lement la figure sur le plan de la base pris comme horizontal
et sur le plan du meridien par B pris comme vertical. Sur les

deux tangentes, portons l'unite de longueur. Soit a l'angle des

rayons par A et B. La longueur de la projection verticale de la

projection sur le plan tangent en B de la parallele par B ä la

tangente en A est cos cp sin a; la longueur de la projection de

cette parallele sur la tangente en B est cos x; la tangente de

l'angle \ est egale au rapport de ces deux longueurs. Done

tg 5 cos 9 tg x

4. Sur une sphere de rayon R, soit un petit cercle de

rayon r, done d'angle au centre ^ Pour le transport parallele

sur ce petit cercle, celui-ci pent etre considere aussi bien

comme appartenant & la sphere qu'au cone tangent; la formule
ci-dessus est applicable. Considerons un secteur de ce petit
cercle d'angle au centre ^ Transportee parallelement le long

de l'arc correspondent, la tangente en une extremite fait avec
la tangente en la seconde extremite l'angle •; tel que

t ' '' *tg ; cos - tg —- •

A une droite, faisons parcourir le contour du secteur. Aux

extremites de l'arc et au centre, eile tourne des angles ~ -f- c,

et 7r — — Finalement, l'angle des positions initiale et finale
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est — — E. L'aire du secteur est — R2 (1 — cos —). Pour la
P P r

courbure totale, il vient

2 TT

i.- _ P "

— R2 1 — cos ^
P V R

Supposons p sufYisamment grand pour que Ton puisse poser

tg — —. Le numerateur devient — (l — cos ^) et, apres
P P p \ R/

simplification, on trouve que la courbure interne de la sphere

est egale au carre de l'inverse du rayon.
Ainsi, sur une sphere, la courbure interne est egale ä la

courbure totale. L'invariance de la courbure totale lors d'une
(lexion est bien connue A Une flexion permet de donner la forme

spherique ä une petite calotte. Ainsi les deux courbures interne
et totale sont toujours egales. En general, on demontre cette

propriete en faisant intervenir une condition d'integrabilite de

diverses differentielles totales.

5. On peut reprocher ä la demonstration ei-dessus de ne

s'appliquer qu'ä un secteur circulaire. Cette restriction est de

peu d'importance, car toute courbe analvtique tracee sur une
surface analvtique au voisinage d'un point regulier possede des

cercles geodesiques osculateurs et nos raisonnements ne font
intervenir qu'un secteur d'ouverture infinitesimale.

Enfin, notre demonstration n'est valable que pour les

surfaces convexes.

Paul Rossier. — Sur la construction & la regle des courbes

unicursales ayant un unique point multiple.

Si une courbe unicursale d'ordre n ne possede qu'un unique
point multiple, celui-ci est d'ordre n — 1. La donnee de ce

1 Pour une demonstration elementaire de cette propriete, voir
P. Rossier. Sur le theoreme de Gauss relatif ä la conservation de
la courbure interieure d'une surface lors d'une flexion. Archives des

Seiences, vol. 3, fasc. 6, 1950, p. 450.
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