Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 11 (1958)

Heft: 7: Colloque Ampère

Artikel: Mesure de la dépendance de fréquence des temps de relaxation

nucléaire des protons dans des solutions aqueuses d'ions

paramagnétiques

Autor: Laukien, G. / Noack, F.

DOI: https://doi.org/10.5169/seals-738899

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Mesure de la dépendance de fréquence des temps de relaxation nucléaire des protons dans des solutions aqueuses d'ions paramagnétiques

par G. Laukien et F. Noack I. Phys. Institut der T. H. Stuttgart

L'addition d'ions paramagnétiques diminue considérablement les temps de relaxation nucléaire des protons dans l'eau. Les résultats principaux de la première théorie traitant de la relaxation nucléaire dans les solutions aqueuses d'ions paramagnétiques, développée par Bloembergen, Purcell et Pound [1], sont les relations suivantes:

$$\frac{1}{T_1} = C_1 \frac{\gamma^2 \cdot N \cdot \mu_{\text{eff}}^2 \cdot \eta}{T}$$

$$T_2 \approx T_1$$

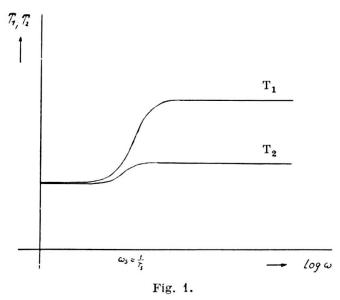
 $\begin{array}{lll} T_1 & temps \ de \ relaxation \ longitudinal \\ T_2 & temps \ de \ relaxation \ transversal \\ C_1 & constante \ de \ proportionnalité \\ \gamma & rapport \ gyromagnétique \ du \ proton \\ N & concentration \ d'ions \ paramagnétiques \\ moment \ magnétique \ effectif \ de \ l'ion \ en \ solution \\ \eta & viscosité \\ T & température \end{array} \right\} \ de \ la \ solution \ envisagée.$

Plusieurs auteurs, comme Zimmerman [2], Laukien et Schlüter [3], Kozyrev [4] et Morgan et Nolle [5] ont montré que la deuxième formule, particulièrement, n'est pas valable dans bien des solutions examinées. Solomon et de nouveau Bloembergen [6, 7] ont proposé une explication de cette discordance entre la théorie et les résultats expérimentaux. Ils ont ajouté aux expressions données, dont l'origine est le couplage direct des spins, des termes résultant d'une interaction indirecte des spins et écrivent:

$$\frac{1}{T_{1}} = C_{1} \frac{\gamma^{2} \cdot N \cdot \mu_{eff}^{2} \cdot \eta}{T} + C_{2} \tau_{g} p \frac{1}{1 + (\omega_{I} - \omega_{g})^{2} \tau_{g}^{2}}$$

$$\frac{1}{\mathrm{T_2}} \approx \mathrm{C_1} \; \frac{\mathrm{\gamma^2 \cdot N \cdot \mu_{e\eta}^2 \cdot \eta}}{\mathrm{T}} + \frac{1}{2} \; \mathrm{C_2} \; \tau_{\mathrm{S}} \, p \left\{ 1 \; + \; \frac{1}{1 \; + \; (\omega_{\mathrm{I}} - \omega_{\mathrm{S}})^2 \; \tau_{\mathrm{S}}^2} \right\}$$

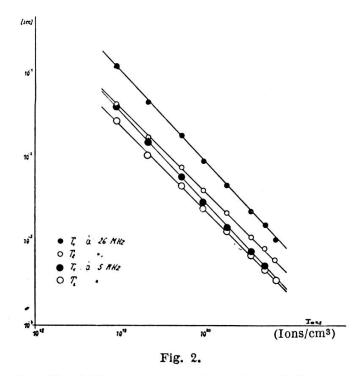
C₂ constante de proportionnalité


 au_{s} temps de la relaxation du paramagnétisme électronique de l'ion en solution

p probabilité pour qu'une molécule H₂O soit voisine d'un ion paramagnétique

ω, fréquence de Larmor de précession du proton

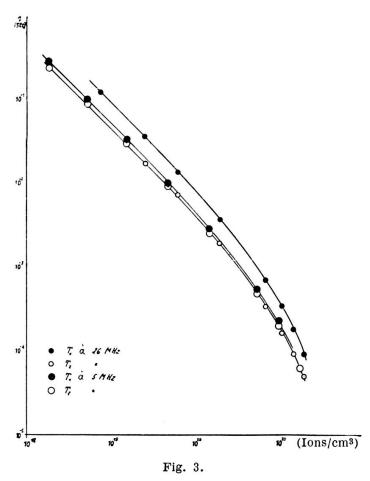
 ω_s la fréquence de Larmor de précession du moment magnétique électronique.


Pourvu que le temps de relaxation du paramagnétisme électronique τ_s soit assez grand, c'est-à-dire quand les termes ajoutés ne sont pas négli-

Temps de relaxation T_1 et T_2 des protons dans des solutions aqueuses d'ions paramagnétiques en fonction de la fréquence, dans le cas où $\tau_{\rm S} > 10^{-11}$ sec, d'après la théorie de Bloembergen.

geables, les temps de relaxation nucléaire montrent une dépendance de la fréquence ω_s ou ω_I et T_1 peut devenir plus long que T_2 comme le représente la première figure. Aux basses fréquences, T_1 tend vers T_2 ; lorsqu'on fait croître la fréquence on voit que T_1 et T_2 croissent en même temps, dès que $\omega_s \approx \frac{1}{\tau_s}$. Aux hautes fréquences le rapport T_1/T_2 est d'autant plus grand que τ_s est long. En effet, Kozyrev [4] réussit à montrer que τ_s est relativement long pour plusieurs solutions, pour lesquelles on a trouvé que T_1 est supérieur à T_2 , en excellent accord avec la théorie.

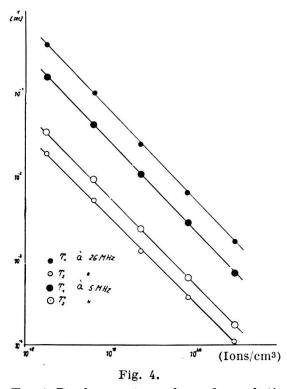
Pour vérifier la théorie, nous avons mesuré les temps de relaxation nucléaire dans diverses solutions aqueuses d'ions paramagnétiques, à deux fréquences, en fonction de la concentration pour diminuer l'erreur. Les mesures ont été effectuées avec la méthode des échos de spins à la température de 25°C. La deuxième figure montre nos résultats pour des



Temps de relaxation T₁ et T₂ des protons dans des solutions aqueuses de TiCl₃ à 26 Mc/s et à 5 Mc/s. Mesure effectuée 5 heures après la préparation des solutions, à la température de 25°C.

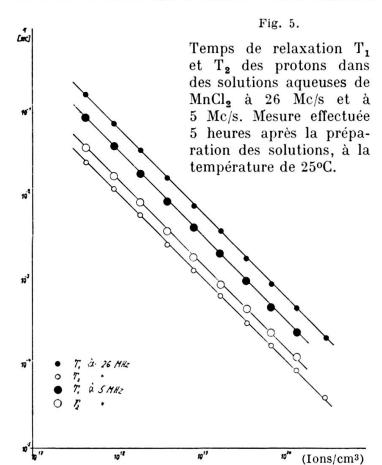
solutions aqueuses de TiCl₃. Les grands cercles représentent les mesures à la fréquence la plus basse; les mesures y sont moins exactes, parce que le signal nucléaire diminue proportionnellement au carré de la fréquence. Le rapport T_1/T_2 croît considérablement avec la fréquence en même temps que T_1 et T_2 , en accord avec la théorie. Malheureusement on ne connaît pas encore la valeur de τ_s pour les solutions de Ti^{+++} , et par conséquent on ne peut que supposer que l'interaction indirecte des spins est la cause de la dépendance de fréquence trouvée pour T_1 et T_2 .

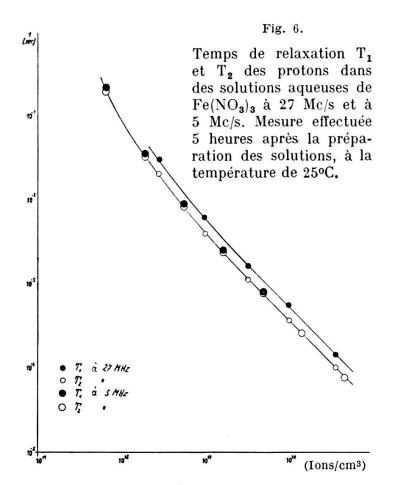
La figure suivante représente les temps de relaxation mesurés pour des solutions aqueuses de $VOSO_4$, pour lesquelles on sait que τ_c est long [4]. On peut constater que le rapport T_1/T_2 augmente de 1,2 à 2,0 dans le domaine de fréquence examiné, quand on fait croître la fréquence. Mais tandis que la variation de T_1 est qualitativement en accord avec la théorie,


T₂ reste constant; il existe donc un mécanisme qui compense l'augmentation de T₂ avec la fréquence, demandée par la théorie et montrée dans la première figure.

Temps de relaxation T_1 et T_2 des protons dans des solutions aqueuses de $VOSO_4$ à 26 Mc/s et à 5 Mc/s. Mesure effectuée 5 heures après la préparation des solutions, à la température de 25°C.

La quatrième figure permet d'observer cet effet encore plus distinctement. Dans des solutions sulfuriques de $VOSO_4$ — dans notre cas une solution normale d'acide sulfurique — nous avons observé que T_2 décroît lorsqu'on augmente la fréquence, pendant que T_1 croît comme l'exige la théorie. Par conséquent le rapport T_1/T_2 varie fortement avec la fréquence, d'environ 4,4 à 19. (Les variations des temps de relaxation sont encore plus grandes quand on augmente le p_H des solutions).


Les solutions aqueuses de MnCl₂ montrent une dépendance similaire de la fréquence, comme le représente la figure 5. Dans les solutions de manganèse bivalent τ_s a une valeur extrêmement grande [8, 9]. Mais tandis que T_1 et T_1/T_2 se comportent qualitativement en accord avec la théorie, comme Nolle et Morgan [10] l'ont vérifié aussi, la variation de T_2 est contraire à la courbe théorique dans le domaine de fréquence examiné. Il est remarquable de constater dans les deux exemples précédents, que,



Temps de relaxation T_1 et T_2 des protons dans des solutions de $VOSO_4$ dans H_2SO_4 normal, à 26 Mc/s et à 5 Mc/s. Mesure effectuée 5 heures après la préparation des solutions, à la température de 25°C.

malgré la variation de fréquence d'un facteur supérieur à cinq, le rapport T_1/T_2 ne tend pas encore vers un à la fréquence la plus basse et qu'à la fréquence haute T_1/T_2 n'a pas encore atteint une valeur maximum. Pour des solutions de Mn^{++} , Bloom [11] réussit à vérifier que T_1 montre une dispersion à $100 \mathrm{kc/s}$, où T_1 tend vers T_2 . On peut donc observer au moins deux domaines de dispersion des temps de relaxation nucléaire dans les solutions de manganèse bivalent. Ce phénomène n'est pas encore expliqué théoriquement.

La dernière figure enfin représente les temps de relaxation pour des solutions de $Fe(NO_3)_3$. Quant à la dépendance de fréquence, qui nous intéresse ici, elle est assez faible. Ce n'est pas surprenant, car d'après les mesures de Kozyrev τ_s est assez court dans ces solutions.

Pour résumer on peut constater que, malgré l'intérêt que présente la théorie de l'interaction indirecte des spins dans les solutions de sels paramagnétiques, cette théorie ne peut pas encore expliquer tous nos résultats expérimentaux. Nos mesures ont montré en particulier que les rapports T_1/T_2 élevés sont causés par une variation de T_1 et T_2 contraire, quand on fait croître la fréquence; cet effet n'est pas expliqué par la théorie. Pour clarifier ce problème, nous mesurons actuellement les temps de relaxation nucléaire dans des solutions d'ions paramagnétiques dans de l'eau lourde.

- 1. Bloembergen, N., E. M. Purcell, R. V. Pound, *Phys. Rev.*, 73, 679 (1948).

 —— *Nuclear Magnetic Relaxation*, The Hague, Nijhoff (1948).
- 2. ZIMMERMAN, J. R., J. Chem. Phys., 21, 1605 (1953).

 —— J. Chem. Phys., 22, 950 (1954).
- 3. Laukien, G., J. Schlüter, Zeitsch. f. Phys., 146, 113 (1956).
- 4. KOZYREV, B. M., Discuss. Faraday Soc., 19, 135 (1955).
- 5. Morgan, L. O., A. W. Nolle, R. L. Hull, J. Murphy, J. Chem. Phys., 25, 206 (1956).
- 6. Solomon, I., Phys. Rev., 99, 559 (1955).

 ——, N. Bloembergen, J. Chem. Phys., 25, 261 (1956).
- 7. Bloembergen, N., J. Chem. Phys., 27, 572 (1957).

 —— J. Chem. Phys., 27, 595 (1957).
- 8. ENGLAND, T. S., E. E. SCHNEIDER, Physica, 17, 221 (1951).
- 9. TINKHAM, M., R. WEINSTEIN, A. F. KIP, Phys. Rev., 84, 848 (1951).
- 10. Nolle, A. W., L. O. Morgan, J. Chem. Phys., 26, 642 (1957).
- 11. Bloom, A. L., J. Chem. Phys., 25, 793 (1956).