Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 11 (1958)

Heft: 7: Colloque Ampère

Artikel: Données numériques pour la détermination de T1 avec la méthode des

passages rapides adiabatiques

Autor: Tosca, L.

DOI: https://doi.org/10.5169/seals-738893

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Données numériques pour la détermination de T₁ avec la méthode des passages rapides adiabatiques

par L. Tosca Istituto di Fisica dell' Università di Pavia

On sait que, si la durée du passage à travers la résonance est beaucoup plus petite que les deux temps de relaxation nucléaire T_1 et T_2 et si la condition

$$\frac{d H_0}{dt} \ll \gamma H_1^2$$

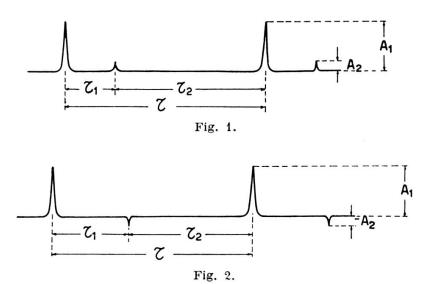
est vérifiée, la magnétisation nucléaire se renverse complètement pendant chaque passage et tend à la valeur d'équilibre dans les intervalles de temps entre les passages.

Si la modulation du champ statique est asymétrique par rapport au champ de résonance, les signaux sont tour à tour d'amplitude différente.

Nous avons déjà décrit une méthode pour la mesure de T_1 , [1] qui se fonde sur l'enregistrement des signaux qu'on obtient dans ce cas. L'enregistrement peut avoir l'aspect de la figure 1 ou bien de la figure 2 selon que la magnétisation change ou non son signe dans les intervalles entre deux passages successifs. Les amplitudes des signaux A_1 et A_2 et les intervalles de temps entre les passages τ_1 et τ_2 obéissent à la condition

$$\frac{A_1 e^{-\tau_1/T_1} - A_2}{1 - e^{-\tau_1/T_1}} = \frac{A_1 - A_2 e^{-\tau_2/T_1}}{1 - e^{-\tau_2/T_1}}$$

qui permet de calculer T1.


Dans le but de faciliter l'évaluation de T_1 avec cette méthode nous présentons ici un tableau dans lequel la quantité T_1/τ ($\tau = \tau_1 + \tau_2 =$ période du balayage) est représentée pour une série de valeurs du rapport τ_1/τ et pour une série de valeurs du rapport A_1/A_2 . Ce dernier rapport est positif ou négatif suivant que deux signaux successifs sont du même côté (fig. 1) ou de côtés opposés (fig. 2).

236 L. TOSCA

 $T_{ABLEAU}\ I.$ Valeurs du rapport T_1/τ pour une série de valeurs du rapport τ_1/τ et du rapport $A_1/A_2.$

A_1/A_2	0,050	0,100	0,150	0,200	0,250	0,300	0,350	0,400
	$ au_1/ au$							
+ 3	0,123	0,250	0,388	0,558	0,770	1,069	1,526	
+ 3,5	0,113	0,228	0,355	0,506	0,698	0,965	1,377	
+ 4	0,107	0,215	0,332	0,471	0,649	0,895	1,277	
+4,5	0,102	0,204	0,316	0,449	0,613	0,845	1,214	1,892
+ 5	0,0980	0,197	0,304	0,428	0,590	0,812	1,150	1,810
+ 5,5	0,0952	0,191	0,294	0,415	0,568	0,780	1,115	1,745
+ 6	0,0928	0,186	0,286	0,406	0,552	0,760	1,083	1,687
+ 6,5	0,0910	0,182	0,280	0,395	0,540	0,741	1,051	1,650
+ 7	0,0894	0,179	0,275	0,388	0,528	0,725	1,030	1,620
+ 8	0,0868	0,174	0,267	0,375	0,509	0,701	0,997	1,555
+ 9	0,0850	0,170	0,261	0,366	0,497	0,680	0,970	1,520
+ 10	0,0835	0,167	0,257	0,359	0,488	0,667	0,947	1,485
+ 11	0,0825	0,165	0,253	0,354	0,481	0,654	0,929	1,451
+ 12	0,0815	0,163	0,250	0,349	0,474	0,647	0,918	1,427
+14	0,0801	0,160	0,245	0,342	0,464	0,632	0,897	1,396
+ 16	0,0789	0,158	0,242	0,337	0,457	0,622	0,880	1,372
+ 18	0,0781	0,156	0,239	0,333	0,451	0,614	0,869	1,356
+ 20	0,0775	0,155	0,237	0,330	0,447	0,607	0,859	1,340
+ 25	0,0765	0,153	0,233	0,325	0,439	0,596	0,844	1,317
+ 30	0,0757	0,152	0,231	0,321	0,434	0,588	0,832	1,301
+ 50	0,0742	0,149	0,226	0,314	0,424	0,574	0,813	1,265
± ∞	0,0721	0,144	0,219	0,305	0,410	0,555	0,783	1,219
— 50	0,0700	0,140	0,213	0,295	0,397	0,535	0,753	1,170
— 30	0,0687	0,137	0,209	0,289	0,388	0,522	0,735	1,141
25	0,0681	0,136	0,207	0,286	0,383	0,516	0,726	1,124
20	0,0672	0,134	0,204	0,282	0,377	0,507	0,711	1,105
— 16	0,0660	0,132	0,200	0,276	0,370	0,496	0,697	1,079
— 14	0,0652	0,130	0,197	0,272	0,364	0,489	0,684	1,062
— 12	0,0640	0,128	0,194	0,267	0,357	0,479	0,669	1,036
— 1 0	0,0626	0,125	0,189	0,260	0,347	0,465	0,648	1,004
— 8	0,0605	0,121	0,183	0,251	0,333	0,445	0,619	0,957
— 7		0,118	0,178	0,244	0,324	0,431	0,600	0,921
— 6		0,114	0,172	0,235	0,311	0,416	0,574	0,880
- 5,5		0,112	0,168	0,230	0,304	0,403	0,557	0,857
— 5		0,109	0,164	0,224	0,295	0,391	0,539	0,823
- 4,5		0,106	0,159	0,217	0,285	0,377	0,517	0,789
_ 4		0,102	0,153	0,208	0,273	0,359	0,490	0,744
- 3,5		0,0971	0,146	0,198	0,258	0,337	0,459	0,695
			(55)	0.510				

Pour obtenir, au moyen d'interpolations, une précision suffisante, les données du tableau devraient être beaucoup plus nombreuses; nous conseillons pourtant de construire, sur une échelle assez grande, une famille de

courbes de sorte que chaque courbe représente l'allure de T_1/τ en fonction de τ_1/τ pour une valeur particulière de A_1/A_2 .

L'allure même de cette famille de courbes peut indiquer aussi les conditions les plus favorables pour obtenir une bonne précision. En général il est convenable que le rapport A_1/A_2 soit assez grand et que la période du balayage soit un peu plus longue que T_1 .

L'auteur remercie M. G. Bonera et M. G. Dominici pour leur apport à l'exécution des calculs.

1. CHIAROTTI, G., G. CRISTIANI, L. GIULOTTO et G. LANZI, Nuovo Cimento, 12 519 (1954); L. GIULOTTO, Arch. des Sc., 9, fasc. spéc. (1956).