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ETUDE THEORIQUE
DES EQUILIBRES CHIMIQUES

PAR

Sandor FLISZAR
(Ecole de Chimie de I’Université de Geneve)

(Avec 2 fig.)

PREMIERE COMMUNICATION ?

INTRODUCTION

Le présent mémoire comporte une étude des équilibres chi-
miques et a pour but de fournir des équations comparables a
celles données par la Loi d’action des masses de Guldberg et
Waage.

Cette étude est limitée pour l'instant aux systemes
A4+ B=—=AB et A+ B =—=C + D et ceci dans le cas parti-
culier ou le nombre de chocs (N;,4iy) d'une espéce de molé-
cules (par exemple A) avec des molécules qui ne donnent pas
de réaction avec A est petit par rapport au nombre N ;... de
chocs de molécules A avec leurs partenaires de réaction. Donec:
dem_ « Ninterr.'
limitation, sera 1’objet d’une future étude.

Par les lignes suivantes, nous espérons transmettre quelques
idées qui, bien qu’étant seulement des images approximatives,
peuvent guider vers des conceptions concretes.

Guldberg et Waage raisonnaient sur des grands systémes,
ainsi qu'on les réalise en pratique. Nous, par contre, considé-
rons chaque systéme comme étant composé d’un nombre fini

Le cas plus général, ne comportant pas cette

1 Communication a4 la SPHN, séance du 6 novembre 1958.
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de petits systemes, qui constitueraient en quelque sorte des
unités. Notre étude porte particulierement sur ces unités.

Ces petits systémes sont considérés pareils entre eux, ils se
comportent de méme fa(;on. Si, @ un moment donné, tous les
phénomeénes s’arrétaient dans le grand systéme envisagé, nous
pourrions donner & chacun de ces petlits systémes sa part égale
de chacun des constituants du systeme et, ce qui est important,
sa part d’espace. On pourra dire que chacun de ces petits
systéemes est a I'ensemble (c’est-a-dire au grand systeme) ce
(qu'une molécule est & un ensemble de molécules de méme espece.

Dans la premiere partie du présent travail, nous décrirons
comment on interprétera ces petits systéemes quand les phéno-
menes (déplacement des molécules, collisions et réactions) ont
naturellement lieu, et ceci dans le cas ou le grand systéme se
trouve en état d’équilibre.

Par la suite, le raisonnement portera essentiellement sur le
volume attribué a une de ces unités et on calculera ce qui doit
se passer a l'intérieur de cet espace pour que statistiquement,
nous apparaisse un état d’équilibre. Nous établirons un bilan
pour les échanges de molécules entre I'espace attribué a un
petit systeme et les espaces environnant celui-ci. Ainsi nous
trouverons des relations générales entre diverses fonctions.

Dans la deuxieme partie nous calculerons en détail ces fonc-
tions et, dans ia troisieme partie, nous montrerons, dans deux
cas particuliers, comment assembler ces fonctions sur le modéle
des relations générales trouvées. Nous obtiendrons ainsi des
équations d’état comparables a celles de Guldberg et Waage.

a) Systémes élémentaires. — Considérons un systéeme homo-
géne § et admettons qu’il se trouve a son état d’équilibre &.
Par homogéne, nous entendons que les molécules de chaque
espéce sont uniformément distribuées en &. Les facteurs déter-
minant & ne nous intéressent pas pour 'instant.

L’équilibre observé est celui de §; on ne saurait affirmer
qu’il doit étre le méme pour n’importe quelle fraction de &.
On demande pour quelle fraction de & un équilibre &, pourra
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encore étre considéré, méme si — en respectant tous les facteurs
jouant un réle — &, n’a pas finalement la méme définition que
I'équilibre & propre au systéme entier.

Ceci nous conduit a construire un nouveau modele per-
mettant d’étudier &, ; le volume V de la fraction de & alaquelle
s'applique &, intervient dans cette étude. Précisons qu’a
I'échelle d’une petite fraction de &, &, ne saurait étre interprété
comme un équilibre vrai, au sens classique du mot. Nous
décrirons plus bas comment a cette échelle, et dans quelles
conditions, la résultante d’une suite d’événements nous appa-
raitra comme un équilibre. En disant briéevement qu’un petit
systeme se trouve a I'équilibre &, nous entendons dire que les
événements se déroulant dans ce systeme ont une certaine
résultante qui nous fait apparaitre le systéme comme s’ était
a I'équilibre.

Un systeme & est considéré comme un ensemble de sys-
temes s (appelés élémentaires) se trouvant a 'état &.. L.’équi-
libre & de & est donné par I'ensemble des &..

*
*

Soit Vg le volume de & et V le volume de s; le nombre des
systemes élémentaires contenus dans S sera

N sera toujours fini, car V ne peut tendre indéfiniment vers
zéro; cela n’aurait en effet aucun sens de vouloir considérer un
équilibre dans un systéme si petit qu’il ne puisse contenir une
molécule. D’autre part N > 1, car nous considérons toujours &
comme un ensemble des s. (En réalité N = 1 est une limite
théorique car N est trés grand si le § considéré est un systeme
réalisé en pratique.)

Considérons un systeme s de volume V, se trouvant a un
¢tat d’équilibre &,. § étant admis homogene, les N systemes s
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sont admis égaux entre eux. Définir le point de vue selon lequel
ces systémes élémentaires sont considérés égaux entre eux,
revient & définir &,.

En prenant pour V la valeur minimum possible, le nombre
des molécules participant aux réactions peut étre assez petit
pour que nous ne puissions espérer, & un instant donné, voir
les N systéemes s dans un méme état, par exemple ¢,, et que cet
état e, ne varie pas dans le temps.

Par exemple, si1 e, est caractérisé par la présence dans V
de a molécules A, b molécules B, etc., il se peut que tous les
systémes s observés & un méme instant n’aient pas la méme
composition, donc ne se trouvent pas dans le méme état e,.
On pourra donc a chaque instant trouver des systémes élémen-
taires dans des états différents, e;, ¢, e,, etc. La réunion des N
systemes s aux différents états possibles doit reconstituer &
et son équilibre &. D’autre part, en définissant les N systemes s
comme étant égaux, ou mieux, comme ayant les mémes pro-
priétés et comportements, il doit exister parmi les états e,
ey, €, ... un état tel (disons e;) que si tous les N systémes se
trouvalent a4 un instant donné au méme état, la réunion des N
systémes reconstituerait § avec son équilibre &. Cest le cas si
chaque s change (ou peut changer) d’état dans le temps en
passant successivement par les autres états possibles et en
passant périodiquement par e,.

Mais e, doit aussi représenter 'état moyen de s pour qu’on
puisse dire que I’équilibre &, de s est tel que I'’ensemble des
N équilibres &, soit &.

Ainsi, en résumant: Un systeme & en état d’équilibre &
est supposé divisé en N petits systémes s de volume V (mini-
mum possible); ces N systémes fluctuent chacun autour d'un
état e;, ce qui définit I’équilibre &, de s; e, représente 1'état
moyen de s, tel que N systemes s a I'état e, reconstituent &
a I’équilibre &.

b) L'équilibre. — Pour I'équilibre d’un systeme élémen-
taire, nous pouvons donner la définition classique en chimie,
sous restriction toutefois de ne pas faire des observations ins-
tantanées: nous dirons qu'un systéme élémentaire est en équi-
libre si sa composition moyenne, prise dans un intervalle de
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temps At assez grand, ne varie pas en faisant varier I'instant
du début des observations. At aura la grandeur voulue pour
que la résultante ¢, des différents états se présentant au cours
de At soit telle que N systemes s reconstitueraient S et son
équilibre &. Nous considérons chaque systéme élémentaire a
I'état e, autour duquel il fluctue, et qui, en petit pour s, sera
I'image de I’équilibre & de §. e, représente I’état moyen dans
le temps d’un systéme élémentaire; d’autre part, e, représente
également & chaque instant 1'état moyen d'un s, cette
moyenne-ci étant prise parmi les états des N systemes s de §.
Nous opérons donc statistiquement comme si chaque s se
trouvait a un état d’équilibre vrai, représenté par e, Ainsi,
une équation décrivant e, devient en définitive une équation
d’équilibre. Les calculs porteront sur les conditions nécessaires
pour que la composition de s ne varie pas dans le temps et
auront la signification d’une moyenne prise sur un trés grand
nombre de systémes s.

Considérons un systéme s de volume V lors d'une réaction
faisant intervenir des molécules A, B, etc. Un certain nombre
de ces molécules, provenant d’autres systémes élémentaires,
pénetre en V. Soit @, (flux) le nombre de molécules d’une
espece pénétrant en s dans 1'unité de temps; pour distinguer
entre les @, des différentes especes on écrira @y,, Dy, etc.

Une partie des molécules ayant pénétré en V traversera le
systéme s sans y réagir avec d’autres molécules. @  (respecti-
vement @, , @, , etc.) représentera le nombre de molécules
d’une espece quittant V en 'unité de temps. Ce nombre ne
comprend que les molécules ayant appartenu a @,

O, = @, — @, exprime le nombre de molécules de I'es-
pece considérée retenues en V dans I'unité de temps. La réten-
tion en V de molécules d’une espéce signifie une consommation
de ces molécules avec formation des produits de réaction.

La réaction inverse, par contre, engendre la formation de
ces especes & partir des produits de réaction. Seules nous inté-
ressent ici les molécules naissant en V (c’est-a-dire se formant
en V) de I'espece a laquelle se réfere @,. E, exprime le nombre
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de molécules d’une espece naissant en V dans I'unité de temps.
(Pour différentes espéces on distinguera Eg,, Eq,, ete.).

Ces molécules naissantes peuvent quitter V ou y étre
retenues en réagissant avec d’autres molécules. E, (respecti-
LAY EJ.B’
pris naissance en V et quittant s dans I'unité de temps. Donc
E, = E; — E, = nombre de molécules de I’espéce considérée
retenues en V dans l'unité de temps.

L’équilibre de s (ou mieux: I'état statistiquement observé
e,) peut étre exprimé de la facon suivante: le nombre des

vement K etc.) exprime le nombre des molécules ayant

molécules d’une espece pénétrant en V dans I'unité de temps
est égal au nombre des molécules de la méme espece quittant V
dans le méme intervalle de temps. Donc:

1 f
O, — (I)L + E L

¢’est-a-dire

Si, pour une réaction donnée, il y a lieu de considérer plu-
sieurs sources E;, E;, ete. d'une espece de molécules, on a
I'équation suivante:

®, = > E (1, 1)

1l convient de définir les fonctions:

E E

R L

Ia = B et fo= 3
o 0

pour une réaction évoluant dans un sens (par exemple
A+ B—C + D) et des fonctions analogues g, et g, pour la
réaction inverse (G + D— A + B).

Il résulte immédiatement, étant donné E; = L 4+ E, £ 0,
que f, + f, = 1. En effet, E, = E; - f,; E, = E; - f,, d’ou
E,+ B .= Ey= E;{f, + f.)

On verra par la suite que f, (par exemple) se référant a
I'espéce de molécules dont on considere E,, est fonction a la
fois de la concentration du corps avec lequel ces molécules (k)
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peuvent réagir et de la grandeur du volume V. Les molécules
constituant E; auront d’autant plus de chance de réagir dans
le systéme s (c’est-a-dire de n’en pas sortir) que ce systéme
est grand et que la concentration du partenaire de réaction est
grande.

¢) Le volume V.— Considérons une réaction A +- B == AB.
l.a présence de molécules AB dans un systéme entraine la
coexistence des molécules A et B et donc de tous les éléments
nécessaires a établir 'équilibre. 11 suffira done de connaitre quel
est le volume V tel que dans N systemes de ce volume on puisse
espérer rencontrer dans chacun un méme nombre de molécules
AB. On pourra ainsi considérer statistiquement pour chaque V
un équilibre (I'état e;), car si en V la réaction AB -~ A + B peut
avoir lieu, de méme la réaction inverse doit étre possible.
Suivant cette hypothese, nous écrirons donc:

N + nombre de molécules AB dans ¥,

ou encore (V + 1/x)

I1

a) La réaction A + B == AB. — Pour I'équilibre de s, a
chaque synthése A +~ B — AB doit correspondre une dissocia-
tion AB — A + B. Nous ne supposerons pas une source unique
E, (de molécules A ou B) en s, mais autant de sources E;, E;,', ete.
que nous admettons de syntheses. Ainsi, & @, (de A ou B)
correspond E/: mais une fraction de E,, réagissant en s, donne

<7

E,, auquel correspond E;, etc. Donec:
E — o, : E, = E g
E'=E, = E g ; E, =E g, =E g
E'=E, = E ¢; etc.

En appelant E; la somme des émissions:

B, = E0 £ Iu0 b e e B

0
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on a

1=n ) n__1
nzg:{ - ng’-RAi
i=0 R

=N
E, = EOEg; = @ (i=0,1,2 ..
i=0

c¢’est-a-dire, en prenant la limite pour n — o, étant 0 << g, <71,

1 :
E; = (I)Rq (1, 1 bus)

En admettant que pour une température donnée la fraction
de molécules AB se dissociant, par rapport au nombre de ces
molécules présentes, est constante et en définissant

S
V = AB] (1, 2)

(@ = constante) on a E; = constante. a représente le nombre
de molécules AB présentes en s et E; la fraction de a se décom-
posant par unité de temps.

L’équation 1,1 bis est bien une forme de la 1,1 car

O, = E (1 —g,) = Eyg, = E,.

Note: La suite des événements ®_— E — E. - E; - ete.
demande un certain temps. Nous avons fait la somme E; en
la définissant comme 1’émission de molécules (A ou B) dans
I'unité de temps, en considérant que chacun de ces événements,
I’'un succédant a un autre, provient d’une réaction ayant précédé
celle qui a engendré I'autre. Donc, pendant I'équilibre, on les
rencontre tous comme s’ils étaient simultanés.

b) La réaction A 4+ B —=—=C + D. — On ne saurait définir
ic1 V en fonction de la concentration de I'une des quatre espéces
chimiques en réaction. On peut, par contre, considérer cette
réaction comme se faisant par étapes: A 4+ B = AB et
AB == C 4 D, ou AB représente un composé intermédiaire
hypothétique (ou a vie tres courte) non identifiable analytique-
ment. La réaction peut alors étre étudiée selon le schéma

A + B == AB, avec V:[A—B]'
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L.e composé AB, bien que ne nous apparaissant pas comme
tel, correspond a quelque chose de réel en tant que la formation
de AB a partir de A + B se manifeste par la naissance de
C + D et que la formation de AB a partir de C 4+ D se manifeste
par la naissance de A 4 B. La définition donnée pour V équi-
vaut a dire que E;, = E;, = E;, = E;, = constante. On
retrouve, en effet, la méme équation finale pour I’état e, repré-
sentant I’équilibre, soit a partir de cette derniére relation, soit
a partir de ®, = XE, .

b") Equation initiale: ®,, = XE ,. On a en V des émis-
sions de A de deux origines différentes:

[. (Tableau 1.) Des molécules C pénétrent en V (@), réa-
gissent avec des molécules D, d’ou @, . . ®, . donne des
molécules A (et B), c’est-a-dire que @, est une source de
molécules A (E(;A). La fraction E;A de E(;,\ engendre des
molécules C (et D); il y a donc une source E(;C qui se crée.
E;, donne E; , donc & nouveau des molécules A (et B)

et ainsi de suite.

II. (Tableau 2.) @, engendre en V des molécules C (et D),
d’ou création d’une source de molécules C qui, par la
fraction réagissant en s, donne des molécules A (et B), et
ainsi de suite.

1
A4+B2xC+4+ D.
2

Tableau 1. Soient g la fonction de la réaction 1 et f. la
fonction de la réaction 2.

By = Ppe - / / y

o ’ B, By, — BEpy = By, (1 8r)
hn\ EUA SR

_‘l /7 I

L(}( = By, = EUA ER

~7 ’ ’

}"‘m: = E cfn EOA fn Er

<‘Il - Y ’/ ]

I‘O.\ - Enc - EO.-\ fn SR vy

]ju e ’ 9 }&L—\ - EOA ('1 _-— gﬂ)fﬂ gR
“Ra T E‘OAOR EUAfR oR .



466 ETUDE THEORIQUE DES EQUILIBRES CHIMIQUES

v — a )
= 4 e > *

hnc L(rc fR EOA fn AR

rry ’s ’ a9 9
ol et ) = y ~ ™
EUA E‘BC EUA f}l &R Yy L o o

= T 2

11y rre 7 5 o ”JL:\ LUA (1 bR) R ®R
E = [ g — B j' o’

RA 0a °R 0A/R ®R

Donc la somme X, des molécules A quittant V:

i=n
' g LR 4 RN RS _ 3 i
L LL.-\ J P“L;\ Toeee T Hpa T b();\(' gn) .\_ (fn gn)
i=0
(t = 0,1, 2, ... entiers)
N\ E’ (1 (fn gn)n — 1 O (1 )(fn gn)n — 1
= " _ _— = IR - § —— e
; ( 8 : . g
iy 0A R fR gR 1 RC ( R fR gR e ]
Tableau 2.
’
EO(: = (DH.\
,‘I o __‘I o
L'RC T I4‘0(“. f R (DR.\ f R
EI EI
0a — Tre T (I)R.-\ff{ , (1 — g )
E = ('f) 4—Rf o
v ’ LA RA g R PR
RA EO,\ En mn‘-\fn SR i
‘II o ’I o
I“()L; - ERA - CI)".\ fﬂ Sk
r7 “’I o .;)
ER(; == P“U(: fk - q)n;\ -fR SR
7 ‘II o .:)
By, = Epe = @py 1 8x . (1 —~%:) 5 o
vy vy a o B, = (Dn..\#g R OR
h)m - E‘U;\ By, = (DRAfH AR R

(Les valeurs du deuxieme tableau ne sauraient étre com-
parées une a une a celles du premier tableau. Rappelons qu’il
s'agit de phénomenes semblables, mais d’origines différentes.)

Pour les molécules A, provenant de cette source et quit-
tant s dans 'unité de temps (note page 464), on a:

% Fr i E” ) L on ® 1 — gy i;‘n ;
— 4 - el sy &l p—d p e p——— a

gy “‘La ! La 0ol LA RA g 2 (fn bn)
2L DR
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Y o . (fR gn)n__ 1
D L e

En prenant pour X, et X, les limites pour n— g, on a
0 =8 <y O, 1)

DB =l 2, 2y, =
= Py (1 — 8n) 1_;% + Ppa (1 —2) 7 _ﬁf}}n gx
Mais XE, , = ®_,, alors:
Prs (1 —1Fr) = Ppe (1 — 85)
c¢’est-a-dire
Pt = Dy 8e, (1, 3)

b"") En partant de Ej, = Ej, = E;, = E,, il suffit de
reprendre les valeurs des tableaux 1 et 2 et de calculer:

i=n
3 NG ! T 1’
210 = Eg, + Epy + ... + EgA = By, Z(f g )
i=0

:n
= Oy 4 (f gR)
i=0

et la valeur correspondante

N ifgh-

Alors
1 n ="
B . \ 3
EO-\ - }‘_110 T Z"O = Dy _1 (fn gn) + W Iy S (fﬂ gn)l .
" i=0 i= 0

De fagon analogue, on trouve pour I'émission totale de
molécules C, c’est-a-dire L, :

i=n i=n
- : i .
= Dy, 2_4 (fn gn)l + @y, £ Z, ('fI{ gn)l .
i=0 i=0
En posant E,, = E;, on retrouve finalement ®_, f
= @, . g . On calcule également EOLA = g,. En introduisant

ARCHIVES DES SCIENCES. Vol. 11, fasc. 4, 1958. 31
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cette valeur, I’équation d’équilibre (page 467) peut aussi s’écrire:
EO(1 _fR gﬂ) = (Dm: EE ('DnAfR #

[ci aussi on aura E; = constante pour V = avec a

a
[AB]
constante; on note que suivant la valeur que nous donnons
a a, nous considérons soit le volume d’un systeme élémentaire s,

soit un multiple entier de celui-ci.

11

Les fonctions @, et E, représentent des nombres de molé-
cules ayant réagi avec leur partenaire de réaction. Nous désirons
ic1 obtenir une relation en fonction du nombre de collisions
entre les molécules de différentes especes. La réaction du type
A 4+ B <= AB sert de modele, les réactions plus compliquées
pouvant étre ramenées a ce type de réaction.

Désignons par @3, le nombre de chocs (efficaces et ineffi-
caces, c’est-a-dire respectivement, aboutissant a une réaction
entre les molécules en collision, ou n’y aboutissant pas) entre des
molécules A traversant V et des molécules B. ®%, ne se réfere
qu’aux molécules ayant appartenu a ®,, et a leur premiere
collision avec une molécule B.

Une molécule A ayant heurté une premiére fois une molé-
cule B (cette collision étant comprise dans @2 ,) et n’ayant pas
réagi avec celle-ci (choe ineflicace), peut par la suite entrer a
nouveau dans V en collision avec des molécules B. Ces nouveaux
chocs ne seront pas comptés dans ®2,. Nous considérons que
les chocs inefficaces conduisent a la formation d'une source
Egind. (induite) de molécules A et B qu’il faut considérer a coteé
de E,.

On peut donner, en résumé, le schéma suivant (pour les
molécules A ou B):

o = L0 + T
chocs efficaces chocs ineflicaces

v
source de molécules A et B
E,ind.
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Les molécules provenant de Ejind vont a leur tour heurter
des molécules du partenaire de réaction: ici aussi une fraction
des collisions sera efficace, 1’autre inefficace. Cette derniére
fraction constituera a son tour une source E[;ind, et ainsi de suite.

n

1 —1
Egind — Eyind > — Bind + ———E ind — Ejind - B ind —

ch. ef. ch. inef.
1 m— 1 _
- —E ind + —_— E ind - Eélind —
m R m R

ft est le rapport entre le nombre de molécules traversant V
en ne heurtant aucune molécule du partenaire de réaction et le
nombre de molécules constituant la source qui a engendré ces
molécules.

[* est le rapport entre le nombre de molécules entrant en
cellision avec le partenaire de réaction (indifféremment si ces
collisions sont efficaces ou non) et le nombre de molécules cons-
tituant la source qui a engendré ces molécules. Par la suite nous
connaitrons les relations entre f* et f d’une part, et f* et [,
d’autre part.

Tableau 3.

m—1

E,nd = —— P>
0 m R

. - *
E ind = Egind f,

v m— 1 _ m—1 *
Egind = ——— E ind = ——— E,ind f
m m R
E,' | Fr_ 1 * m — 1 E 1 *2
pind = igind f, = —— Einc Ta

’ m—1_,, (’m —1

EO'in(l = — FkE =

*2

2
) E,ind f

m

’7, 2 * ‘m— 1\2 . *3
Ejind = Ejindf, = (T) Eoind f o

/

Tableau 3 bis.

o ind

[ 1., =
pell = ;lb‘n’“d = Ehomd fx
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m—1

E nd lE;ind -
m

. *2
Refl E,ind fR

m

1
m
~/7ind 1 rr, 1 m — 1\2 —— *3
Eler = n_zERmd = (——n—L——) Eqind fj

Chaque collision efficace conduit & une réaction. Le nombre
de chocs efficaces est donc égal au nombre des molécules d’une
espece (par exemple A) retenues en V. Toutes les molécules
ayant appartenu a l'origine & I’ensemble @, (®,, si on
considére les molécules A) et retenues en V sont comprises
dans la somme X0 .

On a pour les molécules provenant de Eind:

% ind _ ind o7 ind “ind nind __
>_| Eneﬂ” - Eneﬂ“ + Dneﬂ‘ ¢ ER efl T+ Eneﬂ" -
i=n *
. Egind m-—1 i i
= lim =2—f > [ . f;] = E,ind . _.
n—->o M =0 m m— (m — 1) f,

En substituant dans cette derniére équation E;ina =

m—1 .
= ——— O on obtient:
m
*
ind m—1 fn
Rell CDE :
m

N'E
)

m— (m—1) f;
I en résulte pour X®,:

1
m— (m—1)f

1 o ind "
Eq)fi: (DR+EEm = OF

m Rrell

(1, 4

R

Nous appliquons maintenant le méme raisonnement pour
calculer ZE_a partir de E,, réelle source de molécules A et B
dans le systéme élémentaire. Il suffit de reprendre le tableau 3
en lisant E; au lieu de Ejind et E; au lieu de E ind. On obtient
ainsi le tableau 4:

Tableau 4.
E, = E,f,
V7 PR m — '1 * %
E‘L = EOfL = EﬂfnfL

e 7 % MH'lz %9 &
B = B = () B,

nm
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Alors

ME =E +E +E +..+E =

L

1=n ,
x Y i — 1 «]t * m
— lim E \_“[”‘— ]:E _.  (1,5)
n-> 0o Ofl’i‘:o. m /a Ofl’m—(m—'l)jﬂ

Cette derniére équation donne avec les équations (1, 1) et

(1, 4):

O, = mE,f, - (1, 6)

En comparant I’équation (1, 5) avec I'équation équivalente
XE, = E,f,, il résulte (f; + [, = 1):

m

L+ m— 1) f)

fL = f;.

Observons enfin que, suivant la définition donnée:

1 nombre de chocs efficaces

m  nombre total des chocs

€

‘1 " -
— représente le facteur de Boltzmann e sl

DeuxiEME PARTIE.

Nous nous proposons de calculer ici les différentes fonctions
(/5 @, etc.) décrites au cours de la premiére partie de ce
travail. Nous introduisons les hypotheses suivantes:

1o Le nombre de molécules d’une espéce, traversant V, qui
(en un point donné) entrent en collision par unité de chemin
parcouru est proportionnel au nombre de molécules arri-
vant en ce point et a la concentration du partenaire de
réaction;

20 Nous supposons pour s une symmeétrie sphérique.
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Calcul de E, = E, [}.

Suivant I'hypothese 1, on a pour une émission E, (P, 0)
naissant en un point P de s et suivant un chemin A (fonction
de 0):

~dE,, (P 0)

d = k[B] ELA '

Il en résulte immédiatement:

B . 0B §) = By, PUOR (2, 1)

[B] représente la concentration du partenaire de réaction,
k le nombre de molécules A rencontrant des molécules B dans
I'unité de chemin avec [B] et E , unitaires.

Spécifions bien que E , = E;f, ne comprend que les
molécules provenant de E; et traversant V sans entrer en

Fig. 1.

collision avec des molécules B. E, | ne comprend donc pas les
molécules provenant de chocs inefficaces.

E_, (P, 0) représente la valeur de E , pour une émission
ayant lieu en P et suivant un angle compris entre et Q + dQ).
En admettant que toutes les directions sont également pro-
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bables, nous obtenons une valeur moyenne E_, (P), fonction
de E,, naissant en P:

4t
[E. (P, 0)dQ

E 0

a (P} = (2, 2)

b1t
jdn
0

Chaque point de s ayant égale probabilité d’engendrer K,
(homogénéité de &), nous calculons, en intégrant suivant p, la
valeur moyenne E ., pour E,, naissant en n’importe quel
point de V:

[E,, (P)aV deTEM (P, 0)dQ
E - 0 __ 0 0

(2, 3)

v v bt
[av [av]da
0 0 0
a) Calcul de E_, (P).

D’apres les équations (2, 1) et (2, 2) on a (A" = £[B))
4 N
[EBg,e™?dQ
0

P) — : (2, 4)
a0

E

Lal

e~
=]

C(_ﬁ

D’apres la figure 1: A = —p cos 0 + l/p2 cos? B + R2— p?
(seul signe + car A = 0).

En substituant (R2 — p?) k2 = B et k' p cos 6 = x, I'expo-
sant — k" A devient z — ;/xz + B.

En introduisant encore dQ = 27 sin 0d6, I'équation (2, 4)

devient (dr = — k' o sin 0d0):
-k’p
2 . A/ x2:0
— ]1.—,5 f EOA ex ’\/x d&'\ E -k'o
+h! 0 A/ x2+p
E,([P) = ’ = f &V gy,

T
21r_[sin 0d0o +h'p
0
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En posant z = z — |//;E2 + B on obtient:

g fh(Ree)

04 23+ B
E ,(P) = Tk o € 53 dz
2,=-k'(R-p)
et, en intégrant:
By L Bl
4 —_— OA T i
BBy = =75 z, + 4 k 7 |z,
E, B Zy E,, B 2 3 z
0a ~ 0A kA z z o 2
4k'plrl0z1+4k'p(1!|_2-2!+3-3!+ )zl 125 9)
b) Calcul de E,.
En appelant R — p = y et R + p = 2, il résulte
n=—kKR—p)=—FKy
et
gg=—k(R+p =—K=z.
En introduisant ces valeurs dans I'équation pour E_, (2, 3):
v R
[E, (P)1dV  4x[E_, (P)p*de i,
g 0 b "
b v 43w R? Uf Jetdp
[av
0
cette derniere devient, avec I’équation (2, 5):
3 Eg, ,
ELA:&Rak/'l (2!6)
ou I possede la valeur suivante:
R ’ 0 ’,
I = —je—“(me)dI + [V (y —R)dy —
R
0 ’
Aj R R) 2R —z)dz + k' [¢*Y(y—R) 2R —y)dy—

R
2R

—k*[inz- (z—R)2R —z)zdz +
R

0
¥2[iny - (y—R) 2R —y)ydy —
R
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_R'ZJ (_E._as+k,2x2—k’3_a:3 —|—-.-)(x~R) (2R — ) xdx +

11 T 321 3-31
R
0
19 k’ ’f’z kl3
J‘Hk“f(—i—?*’z-z! 33”L )( —RIRR—ylyay
R

En observant les limites d’intégration, on voit que cette
intégrale peut étre exprimée de la facon suivante:

2R 2R
—1 = [e"*(z —R)dx + k'fe""x(:v—R) (2R — z)dz +
0 0

2R
+k’zjlnx- (t—R)2R —2)xdr +
0

2R
Kz  K2z2 48
g | (— _ _ .
: ]\f( 1!—}-2_2! 3.31+ )(x R)(2R — ) zdzx
0

En exprimant les termes du deuxiéme membre de cette
derniére équation dans leur ordre par I, I,, I5, I,, de facon que
—1=1,+1,+ I3 + I, nous obtenons les valeurs sui-
vantes:

—kr 2R e—k’x 2R
Iiz—k,a(x—l-'l) +Rk' =
-2R’'R -2k'R
e 1 e R
e h'x 2R " 2R
I, = —3kKR Kz 1 2REg™X I
2 kig ( 1'+ )0 + € 0
, , 2
x e-kxxz R + %e—kx(k/x+ 1) OR =
_f)hR
T %___(2}(IR+ )+3R+2R2 —2’{3__
——2R2+4R2e‘2k'“+%e‘QhR(2k’R+1)—%
, x2 |2r , 3 x3 |2Rr
IS=—2k2R2-—an—2—2 +3k2R —3"ln$C'—‘3—2“ -
24 |2m k2 R4
N 1 o =
k L lnx 7 3
k' x* k2 b k'3 28 2R
- 2R |— | - T
e Gk R[ £-1] ' 2.5.21 3.6-3! ]0
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— 2k2R? [- 3kjf3! + lk:"r; - 3A§£Z1 ¥ '”}ZR“
_k,g[vskjfsl+2{f:iz_3ff:jr;!+'“}zn:
:lf’3R<5[1_§4_.““1?;;.2;1+1.25;:2‘;I]%
_k'4Rﬁ[2_25.21*9?35;?;!+2%?521] T
o gty 2]
On trouve ainsi I = — (I, + I, + I3 -+ 1) en développant
e k'R en série:
1=’ik'RS_k’ﬂR*‘+k’3R5(ﬁ—2—4+
3 51 1-3-1!
.24 - 24
+1.34.21!H1-25-21!)—
_'qus(g_G!_z.fs.z!+2f}5'-2;l_2'25-2;5)+
7 26 328 - 2°
—1~“’W(%*3.;.31J“3-36-23!_3-27-23!)‘T

Enfin, en appliquant I’équation (2, 6), on trouve E_,:

3 3 /95 24
B — F 1 — KR - F2R2 (|2 . = o+
LA EOA[I g & B ERE 4(\5. 1-3-1"°
3. 24 2. 24
+1-4—1_1-5-1)_
3 (28 gh 3«28 2- 28
PN 8 e o o — sl e e
KR 4(6! 2.4.-2] " 2.5.9] 2-6-2!) ' ]

En associant a chaque terme en £ R" un facteur F, repré-
sentant le coefficient numérique et en introduisant #" = k[B],
nous écrirons done:

E ., = Fy (1 — 4 k[BIR + F, k*[BFR? —

— F,k*[BJFR® - ) :
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On peut facilement calculer autant de coeflicients I que
I'on désire. En particulier, on a:

2
3 O ::25-."; F, =3 (—2)" il

{_n~|-3)!'

q

: s 3 . :
Observons incidemment que ZR représente le chemin

moyen A qu'une molécule naissant en un point quelconque de s
pourrait parcourir, suivant n'importe quelle direction, avant
de quitter V; c’est-a-dire on calcule que

v 4t
jdvjx(P, 0)d Q
= 0 0 3
A s i = Zl{
_fd\"fd(l
0 0

Ceci permettrait dans certains cas (£[B] R suffisamment
petit) de considérer la valeur approchée:

Q9
= -k[B1=-R
; A -k[Bln __ 1 T4
E gAY I:,U'\e = ho e

LA A
11
Calcul de ®°

RA®

On calcule d’abord @], et trouve ensuite @}, = ®,, — D ,.
Suivant la théorie cinétique, le nombre de molécules d’une
espéce (A) pénétrant dans 'unité de temps dans une sphére de
ravon R vaut:
[A] 1 dR

D), = — —dV = —[A] 4rRE =

3 B dR)
ua dt 6 6 t

m[A]R%¢ (U =

/

w|ro

Pour un élément de surface AS de la sphere, on a:

AS

04% 7 R2

5 1
@y, (AS) = @ = <[A]AS0.

®,, (AS) représente donc le nombre de molécules A péné-
trant en s en traversant AS dans l'unité de temps. Suivant
I’hypothese (1), on aura donc:

O] (AS, 0) = Dy, (AS) MBI — [_6\“] AS . SHB
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@’ (AS, 0) est fonction de A, donc de 6 (fig. 2), et représente
la fraction de molécules ayant appartenu a @, (AS) quittant s
apres l'avoir traversé en suivant A sans rencontrer de molé-
cules B.

Pour un angle d’incidence (en AS) quelconque, chaque angle
étant également probable, on trouve:

fo:, (a8 0)a0 f[—‘:-,ﬂﬁs"'?k[wdﬂ
LA = .
0

c¢’est-a-dire (A = 2R cos 0):

/2
J' e—f{[B}QRCUSO 9 T sin O d O
x ¥ o ¢ 0
®;, (AS) = ¢[A]AS — -

27:J' sin 0d 0
0

™
2 _ v[A]AS (1 — ¢ kBRR) .

_ ¢[AJAS _xBRRcoso |2 _
12 k(B R

~ 12k[B]R
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®@:  (AS) représente la contribution de I’élément de surface
unitaire AS au @, cherché. Chaque AS possédant le méme
poids, on trouve pour la surface S = 4=R? de s:

. * 4 R?
(I)LA = (I)LA(AS)—A—S——‘
Il en résulte que
. v[Alr R, -k[B12R
Dy = Wd—»e‘[ )

En développant I’exponentielle en série, on obtient:

2k[BJR | 2°k*[BFR®* )

. 2
)] = — 2 -
d S o[Aln R (1 7 =

LA
Mais, suivant la théorie cinétique:

%o[A]nR2 = [;2—10~4xl{2 = @, .

On trouve ainsi finalement:

2 3.2 2 2
>t = %okn[A][BjR3(1~—2 kig}?]R 28k EB'] R _) (2.8)
g ¢ 3

RA

Au cours de ce chapitre, nous avons calculé les fonctions:

1) E ., = E(E,, V,[B]), done, d'une fagon générale:

L —%k[B]R+ F, i2[BER?—F, K[B]FR® + ... (2,9)

fL:E;

2) @ = @ (®,, V,[B]), donc, d’une facon générale:

RA

(D;‘ 2 BI1R 2 2IB12 R2 28 3 3R3
o, = g K[BIR — 57 RIBPR? + 7 K[BPR — ..
En introduisant encore ’équation du volume d’un systeme
élémentaire
{1, 2)
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donc
Ja

; -
W = kn[AB]’

nous pourrons calculer d'une facon simple les conditions d’équi-
libre pour une réaction donnée. On analyse d’abord les phé-
nomenes comme nous l’avons montré pour les réactions
A+ B=z=ABet A4 B == C -+ D et trouvons des équations
générales du type (1, 1), (1, 3), (1, 6). En substituant dans ces

*

R?
dantes calculées ci-haut, on obtient les équations pour I'état e,

équations les fonctions f7, g7, @7 par les valeurs correspon-
représentant I'équilibre des systémes proposés.

Nous désirons illustrer ce procédé par les deux exemples
suivants.

TroisiEME PARTIE
Au cours de cette partie du présent travail nous désirons
donner les équations découlant de la théorie que nous venons

d’exposer et qui expriment I'équilibre pour divers types de
réaction.

I
La réaction A +~ B — AB.

En introduisant les valeurs calculées pour @ (équation 2, 8)
et f; (équation 2, 9) dans I'équation (1, 6)
O = mE, f:

RA
on obtient:

22k[B]IR 23 k2[B]2 R? B \
3! + 4 | )

w]|ro

o k[AJ[BR? (1 —

= mB, (1 ~—24{.[}3]1{ + F,R[BER? — F, B3[BP R® + )

On observe que pour kR [B] tres petit on a

1 ——52-/.-[13]11 L F,R[BPER? — F,kB3[BPR® + - .-
~ 2k[BJR 97 k2E[,3J2 R*2RBFR

3! i 41 51

1
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correspond alors a la constante de Guldberg et Waage.

Nous obtenons donc pour la réaction A + B— AB a
I'équilibre 1'équation qui suit:

L.e terme constant (a température constante)

1 ~%R[B_]R 4+ Fy R [BIER? — F, k¥ [BP RIS + -

(AJB]
[AB] © | _Zk[BIR  PREBFR_¥E[BPR®
(3,1) 3T ! 41 51
11

1
La réaction A + B :2—* C + D.

Soient g; la fonction de la réaction 1 et /. la fonction de
la réaction 2.
En appliquant I’équation (1, 6) on trouve:

* *
( = D o
Dn.-\ my I“O.-\ 5y,

* 3 *

) = {
q - mey L‘Oc Iy s

Mais E,, = E,.; donc, en divisant membre a membre ces
dernieres équations, 1l résulte:

/. 22K [B]R . 22k:[BER® \

oy ky [A1[B] (1 — 13[!] v 14[!J S
7 2K[DIR _ P kIDER? -

<-2k2[(ll[D‘](1— 23[!] + 24[1] e

t — 2 KIBIR + Fyh[BPR® — -

ny

M2y 34 IDIR + Fyk2[DJERE — -
k3
En posant:
my e ky
myey ky iy

et
 wsa —z-kl[B}R + F, k2[BER2 — F, k3 [BPR? + ...

= 3.9
P1 y _ Zh[BIR P kBPRT 2k I[BPRT (3,2)
31 Al 51
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f, s %kz[[)] R + F,k2[DPR2 — F k?[DE R 4 ..
(3, 3)

Qg = L 22k, [DP]1R 4 23 k2D 2R? R 3D R N (
31! 4 | 5 oo

I’équation pour I’équilibre devient:

[AIB] _ o @1,

[CI(D] ~ "%, o

Le fait qui pourrait surprendre, que ¢ ne contient qu’un
terme en [B] et pas de termes en [A] et [AB], provient de la
limitation imposée au début, c’est-a-dire [A] et [AB] « [B]. Le
cas plus général, ne comportant pas cette limitation, fera I’objet
de la prochaine communication.

REsuUME.

LLa théorie que nous exposons propose de considérer un
systeme & a 1'équilibre comme un ensemble de N systémes s
fluctuant chacun autour d’un état moyen e, tel que la réunion
des N systémes s, chacun a I’état e,, reconstituerait le systéme &
a I'état d’équilibre. Nous établissons ensuite pour chaque s un
bilan des entrées et des sorties des molécules de chaque espece,
en nous servant de fonctions de caractére général (O, f., ete.).
Nous calculons encore en détail ces fonctions suivant une
hypothese classique: savoir que le nombre de collisions entre
molécules est proportionnel & leur nombre par unité de volume.
Finalement (3¢ partie), nous trouvons (avec la limitation citée
dans l'introduction) des équations d’équilibre semblables &
celles données par la loi de Guldberg et Waage mais contenant,
a cOté de la constante d’équilibre, un facteur variable qui peut
tendre vers 1.
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DEUXIEME COMMUNICATION 1

Lors d’une précédente communication 2 nous avons établi
les équations relatives aux équilibres des réactions du type
A4+ B=ABet A 4- B+ C 4+ D en faisant l’approximation
suivante: « le nombre de collisions entre molécules quine peuvent
pas réagir entre elles est négligeable par rapport au nombre des
collisions entre molécules pouvant réagir entre elles ».

L’objet de la présente communication est de calculer les
équations d’équilibre sans introduire cette limitation. On .
considere donc que chaque molécule peut entrer en collision
avec des molécules de chaque espece. Les calculs porteront sur
le cas le plus général ol se trouvent en présence non seulement
les molécules formant I’équilibre mais aussi des substances
n’intervenant pas (du moins directement) dans les réactions;
par exemple pour une réaction en phase gazeuse on pourra ima-
giner la présence d’un gaz inerte. Ceci sera notamment le cas
des réactions se faisant en solution.

I. Le flur ®,.

Considérons le flux ®;, de molécules A entrant dans un
systéeme élémentaire s de volume V dans 'unité de temps.

En traversant V ces molécules peuvent entrer en collision
avec des molécules A, B, AB, C, D, ... etc. ou peuvent quitter s
sans avoir subl aucune collision.

Soient:

(I)i>A la fraction de @, entrant en collision avec des molécules A,
@’ . idem, avec des molécules AB,

—>AB
* * . ,
O, ., D etc., tdem, avec des molécules C, D, ete.,

->D?
@’ la fraction de @,, réagissant avec B,
eff.
@’ | la fraction de @, entrant en collision avec des molécules
ineff.
B mais ne donnant pas de réaction.

1 Communication a la SPHN, séance du 4 décembre 1958.
2 Voir ci-dessus page 457.

ARCHIVES DES ScIENCES. Vol. 11, fasc. 4, 1958. 32
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Enfin, si @, est la fraction de @, quittant s sans avoir
subi de collision, on aura:

Dy, =0, +@ O+ D F O+ DL (4,1)

ineff. efl.

A la suite des collisions @7, @’ ®° @  etc., on aura
inefl.

des molécules A se trouvant en un point de s (chaque point
ayant égale probabilité) et partant dans une direction (chaque
direction ayant égale probabilité). Ces molécules A peuvent
donc étre considérées comme une émission, que nous appelle-
rons émission induite E; , en indiquant par la qu’il s’agit de
molécules A ayant appartenu a I’ensemble @,,.

Dy = By, + (D:;TB + (D; A (4, 2)
eff.

En plus du comportement de E; ;, nous devons étudier
celul de E;. Donc tout le probléme se réduit a un calcul des
émissions.

1I. Calcul d’une émission quelconque E (E, 4 ou Eg).

Comme dans le cas de @, une partie de E, soit E; quittera s
sans avoir subi de collisions avec d’autres molecules.

Al *
E,. =E-f .

L’autre partie de E, soit E— E; = E, = E -/, sera
entré en collision avec des molécules A, AB, C, ... etc. et B en
formant avec une partie de ces dernieres le produit de réac-
tion AB. On aura donc:

B, =E:f +B-f, +E-f + - +E-f +
—A —AB —C effl.—B

+Ef; =E—Ef:,s

ineff.>B

ou en général E - f; représente la fraction des molécules A

—X

de E entrant en collision avec z.
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En éerivant encore:

* _ *
B.f —B.1 s pm=1)
5B m—>B - B
coll, eff, coll, ineff,
on aural
* * * * n — '1 * 1 4 *
f“=,ifA+f_1:AB+f_§C+---+ m §B+;2§B=1_fL'
*
* *
5 . . _—
Les molécules Ef, + Ef, 4 Ef, + ..+ = Ef,
—>A > AB —>C m —B

constituent a leur tour une émission de molécules A, soit E’;
on peut donc écrire:

5 1 x , *
B=E+,Bf, +B /.
Une partie de E’ engendrera une émission E’’ en entrant

en collision avec des molécules sans pourtant aboutir & une
réaction, et ainsi de suite.

TABLEAU 1.
- ’ 1 * . . . -
E =E +—-Ef +Ef E j = E
m —-B
’ 77 1 r* ' 4 g 38 *®’
E' =E’ +_E'f +E{ E fi = E]
m —B
’ 11t 1 re p* rr2* rr2* wrr
B” = B + —E"f, +E"f E’fl = E!
- B

D’apres les valeurs de ce tableau on calcule:

" 1 . , , 1 .
E, =E ——E ij%E . E =E(1—-{§Bqu)
Y = B g s E” i B" == B P e
By = om f_i‘B“ E B (1__mf$nhfL

il N1 1 17 1* PY7I 177 1 .« )3
E, = E'——E ij—E . B —_E(i——_E‘B—fL)

1 1/m = coefficient de Boltzmann.
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On obtient ainsi:

W Et

. L

P

et

nl 1 ! nid "o o
=E——f, (E+E +E" +.) =

"> B
1 7 1 1
* "V * w il
ceta Sl L)
m Ry = m’ Ry .
i=0
*
AN E* 1 ’”!L
2By = Brop— =g
fn + mf
—-»B

Y E; représente la fraction totale des molécules E quittant s
dans I'unité de temps.

I11.

Calcul des émussions ayant liew en s.

Nous pouvons maintenant calculer les deux valeurs sui-

vantes:

a)

b)

m f;

M — (3, 3)
frn +mf,
—B

LA 0a

(molécules A quittant s et provenant de la décomposition
de E, molécules AB a l'intérieur de V dans l'unité de
temps);

m f;

!

* %
fR T"l’fl,
- B

E = H

. 4
pind ind

E;, 4 représente la fraction des molécules A ayant appartenu a
®,, et qui subissent une premiére collision avec d’autres mo-
lécules sans aboutir & une réaction.

D’apres 'équation (4, 2):

*
-1
elr,

E =0, — ¢, — @

ind

On aura également:

* 1 _» ,om—1
(I)_)B _— 5(I)_*B - T(I)*B :
coll. efTl. coll. inefl,
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*

En introduisant encore @, — @;, = @], il résulte:

* 1 *
Oy — =0

ind = “ra

E
Cette valeur, substituée dans l'équation (4, 4) fournit:

*x * ! m.
B :((p _ 1o )____f" (4, 5)

ind RA —p| * * '
L m , fn +m fL
— B

IV. Equation générale pour une réaction du type A -+ B == AB.

On applique I'équation (1, 1) sous la forme
Oy, = B, + X0, .

X @, , représente la somme de toutes les molécules ayant appar-
tenu a I'ensemble @, et quittant s dans 'unité de temps, done:

En combinant ces deux derniéres équations, on a:

o, =E  +® 4+ E

0A LA LA Laind -

En substituant les équations (4, 3) et (4, 5) dans cette der-

niere, 1l résulte finalement:

*

q);,\'f_%B + D,y - f: = m EOf:.' (4, 6)

* *
RA? fR ’
—>B

V. Calcul des fonctions @ @ el f,.

Nous reprenons I’hypothése déja formulée au cours de la
communication précédente, voire: « Le nombre de molécules
d’une espéce qui (en un point donné) entrent en collision par
unité de chemin parcouru est proportionnel au nombre des
molécules arrivant en ce point et a la concentration des parte-
naires de collision. »

Nous écrirons donc:

dd;, (AS, 0)
— "T = k(a;[A] + a;[B] + a3[AB] +

+ q,[C] + ..) @], (AS, 0)



488 ETUDE THEORIQUE DES EQUILIBRES CHIMIQUES

ay, a,, ... ete. représentent les rapports entre le nombre de mo-
lécules A rencontrant B, A, AB, C, etc. dans 'unité de chemin
parcouru avec [B], [A], [AB], [C], etc. et @], (AS, 0) unitaires,
et le méme nombre se rapportant a une espéce de molécules
déterminées pour laquelle le coefficient a est unitaire. Dans
notre cas, étant donné que c’est la réaction A + B ~ AB qui
nous intéresse, nous avons avantage a fixer £ de sorte que le
coefficient de [B] soit unitaire, donc a, = 1. Alors k& représente
le nombre de molécules A rencontrant des molécules B dans
P'unité de chemin avec [B] et @ unitaires. Les valeurs de ces
fonctions a; dépendront des diameétres de collision des molécules
et d’autres facteurs (charge des ions, par exemple). Nous les
supposerons constantes pour I'instant, quoique ceci ne soit pas
rigoureusement le cas, surtout dans les solutions assez concen-
trées d’électrolytes.
En exprimant par

I = Za;[i] = [B] + a,[A] + ag[AB] + a,[C] + .| (4, 7)

nous pouvons écrire:

d®;, (AS,0) . ,
— k@], (A8, ).
En effectuant le calcul comme précédemment décrit !, on
trouve:

3
!

~

f

. 22
ok m[A]T }{3\1 — 37kTR +

i

RA Lt

| [}

k212 R?2 — ) :

wlre
W

En observant encore que la valeur entre parentheses vaut

2 > (—2kTR)"-

40 (n + 2)!

=

on écrira:

@0

1

O, = Zokr[AITR?-2 Y (— 2k TR

RA

(4. 8)

n=0

1 Loc. cit., deuxiéme partie.
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De facon tout a fait analogue !, en posant

dE._, (P, 0)
LA ?
il résulte:

*

P 1—:Z-krR + Fyl*T?R* — F, /T3 RS + ... —

(&, 9)

©

N n. nt2
= 3> (—2kT'R) RN

n=0 !

*
* %

E - f. représente la fraction de E qui entre une fois en
collision avec une molécule de I'une des espéces comprises
dans I'. La fraction qui entre en collision avec une espece
déterminée ¢ sera

* * Q[L]
B-fp = B:fy—7 (4 10)
Il est d’ailleurs évident que:
(N T
30 = S = 1
De fagon analogue:
o — or il (4, 11)
S I ’

VI. Eguation d’égquilibre pour une réaction du type
A 4+ B = AB.

En considérant les flux et émissions du composé A, le
composé ¢ sera B, le partenaire de réaction de A. Dans ce cas,
a; étant posé égal a 1, il découle en introduisant les valeurs
(4, 10) et (4, 11) dans I’équation (4, 6):

« +[B] ., .+ [B],s .
(Dna.fRT] i CDRA.[_I‘J L= mEef, .
Mais f; -+ f, = 1, donc
L ] B *® .
0;, 2! = mE,f . (&, 6 bis)

1 Voir la note de la page précédente.
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Finalement, cette derniéere équation donne avec les équa-
: 4[AB)):

tions (4, 8) (4,9) et (1, 2) (R3 = 3a

)

= 9
\*I (— 2 kT R)" %_l
[AI[B)  2mE, 3Ty \n o+ 3)
vka 2 = |
S I A n
—2&L R (n + 2)!

[AB]

n=0

a représente le nombre de

Observons que V .[AB]
By 1 est la fraction de a se décom-

molécules AB dans s - -
a m,
posant en A -+ B par unité de temps.
En posant:
?ow (— 2;)n n + 2
K — 2m - — kTR ¥ 17:(; (n -+ 3)!
& v kmy - (2) 2 1
> (—22)®
(4, 13) =0 7 e |
(4, 14)

C’est sous cette forme que nous appliquerons et vérifierons

au cours d’'un prochain travail la loi d’équilibre énoncée.

Equation d équilibre pour une réaction du type

VII.
A+ B===C 4 D.

On procede exactement comme nous 'avons décrit dans la
communication précédente, en appliquant ici deux fois I'équa-

tion (4, 6 bis).
« [B] ©. o D] .
Q)RA_IT = m EDA g1 (DRC 1_12 = My EOC fL ) EOA = K

0c *
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En introduisant les équations (4, 8) et (4, 9) on trouve:

(AIB] o Yeo| | g _ muek
[C][D] % ‘F(zz) = my ¢y ky
(4, 16) (4, 17)
Résumé. — La théorie récemment exposée sur les équilibres chi-

miques a ¢t¢é généralisée en admettant que chaque molécule peut
rencontrer des molécules de chacune des espéces présentes. Les
formules décrivant ’équilibre pour les réactions du type A + B £ AB
el A+ B = C + D ont été données.
Université de Genéve.
FEecole de Chimie.
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