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CHAMP TENSORIEL
D'UNE MASSE FLUIDE EN ROTATION

PAR

Pierre DIVE
(Avec 5 flg.)

INTRODUCTION

Peu apres les publications initiales d'Einstein et de Schwarzschild,

l'etude du champ tensoriel d'une sphere tournant autour
d'un de ses diametres a fait l'objet de plusieurs importants me-
moires de de Sitter, Lense, Thirring, Kramer, Bach...

Aujourd'hui cette question, malgre son interet en Mecanique
celeste, ne semble plus provoquer beaucoup la sagacite des

chercheurs. A notre connaissance, eile n'a cependant pas encore
ete resolue en toute rigueur et dans des hypotheses assez gene-
rales, comme l'a ete, par J. Haag, l'etude du champ d'une sphere

heterogene immobile, soumise ä des tensions internes. Les

equations relativement simples, dans le cas d'une masse an

repos, sont, en effet, notablement plus difliciles ä resoudre

lorsque la masse est en mouvement. Et l'on comprend assez

pourquoi les chercheurs les plus distingues ont dü se resigner ä

grever d'approximations les equations aux derivees partielles
du champ.

Les hypotheses simplificatrices consenties pour rendre le

probleme abordable ont consiste generalement a admettre:

— que la rotation de la masse est faible, ce qui autorise ä traiter
sa vitesse angulaire « comme une quantite infiniment
petite;

— que sa densite est tres petite et, parfois meme, qu'on peut
negliger son effet gravifique, en adoptant pour le ds% d'uni-
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404 CHAMP TENSORIEL Il'CNE MASSE FLUIDE

vers du champ induit, la forme galiltenne, au terme pres
apportant la correction due ä sa rotation

— que les tensions internes sont nulles ou ntgligeables, ce qui
revient ä considtrer, ä priori, que la masse est constitute par
une multitude de points materiels sans contact entre eux,
occupant l'interieur d'une surface limite dont la forme sphe-

rique et la rotation sont imposees d'avance;

— que les vitesses de ces points sont de l'ordre de la racine

carree de la constante de la gravitation universelle G 2;

hypothese qui etablit entre la vitesse angulaire co et G une

relation d'infinitude (co ^ G'~) permettant de developper
3_

le ds2 jusqu'ä l'ordre de G2.

Dans le present memoire, qui n'a encore pour objet qu'une
solution approchee, nous etudions les champs gravifiques
Interieur et exterieur dus ä la rotation lente d'une masse de faible
densite substantielle, constitute par un fluide parfait doue de

pression interne.
Nous consacrons d'abord quelques paragraphes ä l'eta-

blissement de la forme gtntrale du ds2, tirte des seules
hypotheses faites sur son caractere rtvolutif, sur l'existence d'un
plan tquatorial de symttrie et sur la paritt en co de ses

coefficients. Ainsi, avons-nous pu d'avance reduire ä ztro sept des

dix composantes distinctes du tenseur fondamental et ramener
le probleme ä la recherche de trois fonctions inconnues seule-

ment.
Nous ne supposons pas ä priori que la masse fluide est sphe-

rique. Mais nous montrons que cette forme rtsulte de l'approxi-
mation des tquations au deuxieme ordre pres en co (co2 ~ 0)

et de l'hypothese d'une pression nulle sur la surface limite du

fluide.
Nous ttablissons ensuite un systeme d'tquations approchtes

au deuxieme ordre pres en co (indtpendamment de toute hypo-

1 Cf. J. Chazy, La theorie de la Relalivite et la Me'canique celeste,
t. II, p. 173.

2 J. Chazy, loc. cit., t. II, p. 159.
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these restrictive sur l'ordre de grandeur du produit Gq (q: den-

site substantielle)).
Nous trouvons ainsi que le seul coefficient -q du ds2 qui

depend de w doit satisfaire une equation aux derivees partielles
du second ordre dont la resolution constitue une partie essentielle

de notre analyse.
Alors seulement nous introduisons l'hypothese d'une den-

site substantielle q assez faible pour que la quantite

(oil c est la vitesse de la lumiere dans le vide) puisse etre assi-

milee ä un infiniment petit et nous permettre de limiter nos

developpements ä l'ordre de x2.

La necessite de developper le ds2 jusqu'ä cet ordre vient de

l'obligation d'obtenir des formules capables de fournir la

valeur du residu d'avance du perihelie de Mercure, non explique

par la Mecanique de Newton L

De plus, pour comparer les ordres de grandeur des termes
du ds2, nous admettons entre co et x, regardes comme des infiniment

petits, une relation d'infinitude telle que w ~ xß (ß > 0).

Dans cette hypothese, nous avons reconnu que, pour obtenir
des approximations coherentes jusqu'ä l'ordre de x2, nous
devions prendre pour exposant ß un nombre de l'intervalle

et qu'il suffisait alors de limiter au premier degre le

developpement en x du coefficient q 2. A ce degre d'approxima-
tion, l'equation aux derivees partielles en tj se simplifie. Une

Substitution de fonction inconnue — qui nous est inspiree par
la forme particuliere de cette equation — nous amene ä une

equation differentielle du type d'Euler dont l'integrale se

calcule aisement. La solution ainsi obtenue satisfait bien ä

1 Cf. J. Chazy, loc. cit., t. II, p. 155.
2 De Sitter et Chazy donnent des formules approchees jusqu'ä

_3_

l'ordre de x 2 seulement (cf. J. Chazy, loc. cit., t. II, p. 159), et
1

supposent que ß —, ce qui, dans le cas d'un fluide, empecherait

de regarder son aplatissement comme infiniment petit [Voir§ 3, (65)].
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toutes les conditions aux limites du probleme. Mais, comme
cette solution n'est pas tiree de l'integrale generale de l'equa-
tion en tj, nous avons dü en demontrer Vunicite. II nous a fallu.

pour cela, etendre a un domaine non borne et ä une equation
aux derivees partielles du type elliptique, dont les coefficients

ne sont pas tous Continus, la demonstration classique du principe

de Dirichlet. Cette partie de notre analyse est renvoyee ä

la fin du memoire.
Nous avons done etabli, tant ä 1'Interieur1 qiCä Vexterieur du

domaine du fluide, les expressions du ds2 du champ, limitees ä

l'ordre de x2, et les formules exprimant, au meme degre d'ap-
proximation, la variation de la pression et la variation de la

densite d'inertie (densite d'energie) ä l'interieur de la masse.

Cette solution est donnee dans le Systeme des coordonnees

geodesiques, le plus usite pour resoudre le probleme de Schwarzschild

relatif ä la sphere au repos. II est done aise, dans ce cas,
de comparer nos formules (en y faisant <o 0) ä Celles de

Schwarzschild, M. Brillouin, de Donder, Haag, Chazv...

Mais, en raison de l'interpretation concrete que nous don-

nons aux coordonnees isotropiques, il importait de traduire nos

resultats dans le Systeme de ces coordonnees. Car c'est bien
dans le repere spatial trirectangle auquel nous les rapportons
que nous avons exprime les symetries du champ et son carac-
tere revolutif; dotant ainsi ces variables de la signification
physique de mesures de longueurs et d'angles2. II n'est pas

possible, en toute rigueur, d'accorder ce privilege au Systeme

geodesique. L'obligation d'introduire deux variables diffe-
rentes rE et rl pour designer, dans ce Systeme, la distance au

centre ä l'exterieur et la distance au centre ä Vinterieur, enleve ä

ces coordonnees le caractere de mesures de longueurs, au sens

de la Geometrie (H. Poincare). Une semblable difficulte ne se

presente pas avec les coordonnees isotropiques: A l'interieur
du domaine du fluide, comme ä l'exterieur, une meme variable l
mesure la distance au centre, et c'est bien par rapport ä cette

1 Notons un memoire de J. Lense et Tirring qui traite en premiere
approximation du champ interieur d'un fluide denue de pression
(cf. Physikalische Zeitschrift, Band XIX, 1918, p. 156).

2 Cf. J. Haag, Le probleme de Sehwarzschild. Memorial des

Sciences mathematiques, fasc. XLV1, p. 3.
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unique variable que se verifie le raccord ä la surface des poten-
tiels et de leurs derivees.

En terminant, nous confrontons nos formules ä Celles qui
ont ete obtenues par d'autres precedes analytiques.

Dans le cas de la sphere immobile, une difference entre

Fexpression du coefficient de dt2, dans le ds2 isotropique appro-
che de de Sitter, retrouve par J. Chazy 1 et Fexpression que

nous avons obtenue, disparait facilement quand on remarque
que, dans le ds2 de de Sitter, le coefficient attractif keplerien
est encore exprime en coordonnees geodesiques et des qu'on
donne ä ce coefficient, comme cela est indique pour la coherence

des formules, son expression en coordonnees isotropiques.

§ 1. FORME A PRIORI DU ds2 D'UNIVERS
DU CHAMP

1. Conditions generales et axes de coordonnees

Dans la theorie newtonienne, une masse fluide homogene,

en rotation lente autour d'un axe et soumise ä une pression
superficielle uniforme, affecte la forme d'un ellipsolde de

revolution aplati (Mac Laurin) dont Vaplatissement k est de l'ordre
de la vitesse angulaire to.

Au premier ordre d'approximation en oo, auquel nous nous
bornerons dans la presente etude, la surface limite du fluide

en rotation peut cependant etre assimilee ä une sphere 2.

1 Cf. J. Chazy, loc. cit., t. I, p. 102 et t. II, p. 157.
1 1

2 Soient: a le — grand axe et b le — petit axe de la meridienne

Jq;2

limite; k 1/ — — 1, son aplatissement. Son equation peut s'ecrire

x1 (1 — Ä2 + y2 b2

Or, on demontre que (voir § III)
g

to2 ~ -r= it G q k2
15 2

(G: constante de la gravitation universelle; q: densite; n 3,14159...
Cf. P. Dive, Rotations internes des astres fluides (thfese, p. 81, Dunod,
edit.)) En negligeant les terines de degre superieur ou egal ä 2 en k
ou en co, l'equation de la meridienne se röduit done ä celle d'une
circonKrence de rayon b.
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Nous montrerons que cette propriete est conservee, au

meme ordre d'approximation, dans la Gravifique tensorielle
d'Einstein.

L'existence d'un plan de symetrie equatorial, demontree en

Mecanique classique, pour une masse heterogene, par Lichtenstein,

Plancherel, Wavre, et par nous-meme, dans le cas des

rotations internes baroclines sera postulee ici.
Dans ces conditions, rapportons la masse tournante ä un

repere cartesien trirectangle (x), fixe dans l'Ether, d'axes Ox,

Q

V y
^<6 \

•
i • K ;

V7

Fi«. 1.

Oy, Oz, les axes Oy et Oz etant situes dans le plan equatorial
de la masse, et faxe Ox etant place sur Faxe de rotation.

Nous utiliserons aussi un repere polaire (I) correspondent
ä ce repere cartesien (x):

Soit un point P (x, y, z) de projection Q (y, z) sur le plan
de symetrie y Oz. Posons

I OP 0 Ox OP ^ Oy OQ

on a, de (l) ä (x) les formules de transformation

x I cos 0 y I sin 0 cos <, z I sin 0 sin ^ ;

et, de (x) ä (I), les formules inverses

I \/x2 + y2 + z2

X
0 Arcos

Vx2 + y

6 Aretg —
y

(1)

(2)
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Nous supposons la masse isolee, c'est-ä-dire infiniment
eloignee de toute autre masse ou localisation d'energie. Le

champ gravifique qu'elle induit (dans son voisinage), ainsi que
le ds2 d'Univers qui l'exprime seront alors:

1° de revolution autour de Cte;

2° stationnaire, c'est-ä-dire independant du temps tJ;
3° symetrique relativement au plan x 0.

Les conditions 1° et 3° ont un sens precis dans la geometrie
euclidienne que nous adoptons ici (cf. J. Haag, Le probleme de

Schwarzschild. Memorialdes Sciences matkematiques, fasc. XLV1,
p. 3).

2. Invariants du groupe des rotations

La premiere condition implique que le ds2 du champ soit

un invariant du groupe des rotations prolonge statiquement2.
Prenons <\i comme parametre de rotation autour de Ox et

designons par x~, y~, z, f des derivees, ou des differentielles,

par rapport ä une variable non designee. Ce groupe et son pro-
longement s'ecrivent en coordonnees rectangulaires rectilignes:

x~

y~ cos + z" sin tjj

— y~ sin i}1 + cos ^

r
Les invariants de ce groupe ä un parametre s'obtiennent

en annulant ses transformations infinitesimales dont les coefficients

sont ici de deux sortes3. Soit, en adoptant 0 comme

1 t: variable temporelle, sera dit temps cosmique.
2 Cf. J. Le Roux, La Mecanique invariante, p. 19 ou P. Dive,

Le Principe de relativite selon Poincare et la Mecanique invariante de
Le Roux, p. 33.

3 D'une fajon generale, considerons dans l'espace ä 3 dimensions
(ä 6 parametres independants un groupe ä m variables x :

M- -xv.- ' V ')

(X et p.: de 1 ä m; h: de 1 ä 6). Les valeurs initiales ty°h donnent la
transformation identique: Voir la suite ä la page suivante.

(3)
y cos ({/ + z sin A

— y sin ^ + s cos
(4)

y

t' t
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valeur initiale du parametre tp:

x*x 0. z. -v — V ' \l 0
>

et

0 ' z~> Tiz — y~ > Tit 0

Le nombre m des variables x, y, z, t, x~, y~, z, t~ etant
egal ä 8 et la matrice des coefficients:

0 z — y 00 z~ — y~ 0,

etant de rang 1, le nombre des invariants independants est egal
ä 7 8—1

Ce sont les integrales en F de l'equation aux derivees

partielles

z dy F — y dz F + z" ö F — y- b
_ F 0 (5)

Elles sont donnees par les integrales premieres du Systeme
differentiel

dy dz _ dy~ _
dz~

z y z~ y~

On trouve ainsi les sept invariants:

_2 _2 _2
x y2 4- 7.2 t x y -f- z yz — zy t (7)

Le ds2 cherche est une forme quadratique des differentielles
x~ dx, y~ dy, z dz, F dt qui ne depend que des

invariants ci-dessus.
Suite de la note 3.

x'x fx (• • xt, ' xx

Si l'on pose

Oa(--V') s ]im0d^h>
^

les invariants independants de ce groupe sont les solutions indepen-
dantes F xx du Systeme d'equations aux derivees partielles

f xhX dxx F 0 •

Si p est le rang de la matrice rhy] formee avec les coefficients -vhx,

on sait que ce Systeme admet m — p solutions independantes (cf.
par exemple Goursat, Cours d'Analyse mathematique, t. II, p. 640).
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On a done

ds2 — H dx2 + K (dy2 + dz2) + L (y dz — z dy)

+ M dx (y dz — z dy) + N dxdt
+ P (y dz — z dy) dt + Q dl2

ou, en vertu des conditions 1°, 2°, 3° (p. 6), les sept coefficients

H, K, L, M, N, P, Q ne peuvent dependre que de x2 et (y2 + z2)

et sont independants du temps.

3. Symetrie relativement au plan x 0

Mais, en ecrivant x2 au lieu de x, nous ne tenons compte

que partiellement de la symetrie du champ relativement au

plan x 0. Nous devons exprimer aussi que le ds2 est invariant
quand on y substitue simultanement — a; et — dx ä x et dx

respectivement. Ce qui donne la condition:

quels que soient dx, dy, dz, dt. D'oii necessairement M 0,

II reste, en ordonnant:

ds2 -- II dx2 + (K + L z2) dy2 + (K + Ly2) dz2

— 2 L yz dy dz + P (z dy — y dz) dt -f Q dt2

4. Parite en w des coefficients du ds2

L'expression du ds2 se simplifie encore, quand on tient
compte de la parite de ses coefficients par rapport ä la vitesse

angulaire co de la masse.
Considerons deux points X (x, y, z) et X' (— x, y, — z), et

deux elements de parcours dX (dx, dy, dz) et dX' (— dx, dy,

— dz), symetriques deux ä deux par rapport ä Oy

[M (y dz — z dy) + N dl] dx 0

N 0.
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Le ds2 doit evidemment conserver la meme valeur quand
—> ->

on y substitue — co ä co et dX' ä dX, ces deux elements etant

supposes parcourus dans le meme temps dt.

Pes fonctions H, K, L, P, Q etant paires en x et z, cette

condition se traduit par l'identite:

[H (co) — II (— co)]dx"

+ { K (co) — K (— co) + [L (co) — L (— co)J } dy-

+ { K (co) - K (- co) + [L (co) — L (— co)J i/2 } dz*

— 2 [L (co) — L (— co)] yz dy dz

+ [P (co) -f P (— co)] y dz dt — [P (co) + P (— co) J z dy dt

+ [Q (co) — Q (— co) j dfi 0

qui doit etre satisfaite quels que soient dx, dy, dz, dt. D'oü

{x, y, z etant fixes):

II (- co) II (co) L (- co) L (co) 1

K (— co) K (co) Q (— co) Q (co) J

tandis que
P(—co) — P (— co) (11)

Ainsi H, K, L, Q sont des fonctions paires de co, alors que

P est une fonction impaire de co.

Afm que le ds2 soit du type hyperbolique normalnous
imposerons, de plus, que la fonction Q, coefficient de dt2, soit

constamment positive.
Ces proprietes sont vraies en toute rigueur.

1 Ce qui permet de mettre en evidence la nature speciale de la
variable temporelle t.
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5. Le (is2 ISOTROPIQUE AU SECOND ORDRE PRES EN CO

Les fonctions H, K, L, Q etant paires en co sont done, au
second ordre pres, independantes de co.

Imaginons que co decroisse indefmiment. La forme du fluide
tend vers celle d'une sphere. A la limite, la symetrie spherique
du champ exige que le ds2 soit une forme quadratique ne dependant

que des invariants du groupe prolonge des rotations
autour d'un point, c'est-ä-dire des combinaisons L

P x2 + y2 + z2 t dl2 dx2 + dy2 + dz*

x dx -)- y dy + z dz dt

Ainsi, quand co 0, tous les coefficients des termes en dx2,

dy2, dz2 doivent etre egaux et fonctions de l seul.

Des lors, II, K, L, Q etant, au deuxieme ordre pres,
independantes de co, l'expression (9) du ds2 nous donne les conditions

necessaires:

H IC + L;2 K -f- Li/2 quels quo soient x, y, z.

Ce qui exige
L 0 et II IC (12)

Au second ordre pres en co, nous pouvons done poser, ä

priori, en coordonnees cartesiennes:

ds2 II (dx2 -f dy2 -j- dz2) -f P (z dy — y dz) dt + Q dt2 (13)

oü figurent seulement trois fonctions inconnues:

H (l) P (co, *2, y2 + z2) Q (x2, y2 + z2)

Passons des coordonnees cartesiennes x, y, z aux coordonnees

polaires l, 0, i|i, au moyen de la substitution (1). II vient:

ds2 II [dl2 + l2 (d 02 + sin2 0 d <>2)]

— PI2 sin2 0 d (J; dt + Q dt2
(14)

1 Cf. par exemple Von Laue, La theorie de la Relativite, t. II,
p. 226.
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oil H et Q dependent de 1 seul, tandis que P est une fonction

impaire du premier ordre en o> et ne depend que de 1 et sin2 0.

Les formes (13) et (14) du ds2 sont isotropiques. On voit que
les conditions imposees au fluide et le recours aux coordonnees

euclidiennes cartesiennes ou polaires nous y conduisent direc-

tement. Nous dirons que ces coordonnees sont isotropiques.

6. Les coordonnees de sciiwarzschii.d

Posons
II Z2 — r2 (15)

D'oii, par inversion,

l f(r), H (I) II [r] (16)

II vient:
II dl2 II [r] P (r) dr2 (17)

P (to, I, sin2 0) P[to, r, sin2 6] (18)

Q(l) Q M (19)

Les coordonnees r, 0, iji, t seront appelees coordonnees geode-

siques ou coordonnees de Schwarzschild. Ce sont celles qui ont
ete le plus souvent utilisees pour integrer les equations aux
derivees partielles du champ dans la gravifique d'Einstein.
Nous les noterons aussi

^ r 52 0 5, * 54 t (20)

Introduisons trois nouvelles fonctions p., X, i) telles que

e^(r) _ H [r] (r) (21)

eMr) Q [r] (22)

2 to 7) (r, sin2 0) — P [to, r, sin2 0] f (r) sin2 0 (23)

II vient:

ds2 — e* dr2 — r2 (d 02 + sin2 0 d i>2)

+ 2 co 7) d iJj dt + dt2
(24)

oü les fonctions inconnues p et X ne dependent que de r, tandis

que la fonction rj peut dependre de r et sin2 0.
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§ II. EQUATIONS AUX DERIVEES PARTIELLES
DU CHAMP

1. Rappel des equations generales

Designons par ya0 (a, ß: 1, 2, 3, 4) les potentiels de

gravitation en coordonnees de Schwarzschild; par ^ le tenseur de

courbure, ou tenseur de Riemann-Christoffel contracted par 0aß,
le tenseur phenomenal d'energie. Les equations generales de la

gravifique tensorielle s'ecrivent:

X«ß A 0aß 2 T«3® (25)

oü A est lie ä la constante de la gravitation newtonienne G et
ä la vitesse de la lumiere c par la relation

a -«4 <26>

(G 6,67 .10~8 c.g.s. A — 1,87.10~27 c.g.s.)

Representons par y [ya0 ;] le determinant des compo-
santes covariantes yaß (potentiels de gravitation) du tenseur
fondamental, et par

rIß TYX r«ßA TT TyX (öa Tpx + de T)a - öx Yaß)
1 (27)

un svmbole ä trois indices de Christoffel.
On a 2

Xxv - - d„ r?v 4- Tl r-3 + d,v L V— Y - r?v da L V- Y (28)

1 Les indices y, X, v ne peuvent etre confondus avec les fonctions
designees par les memes lettres.

öa, öaß, d* designerons respectivement les derivees partielles

ö ö ö2

0 s ' ö o £ ' ÄT2 ß L 2, 3, 4)
0 ° -»a 0 dt,a

2 Cf., par exemple, de Dondeb, Mentor. des Sc. math., fasc. XLIII
p. 2.
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D'autre part, soit en un point du champ, p: la densite

d'energie (ou dlinerlie), p: la pression. Le tenseur phenomenal

pour un fluide parfait est 1

®2 - (29)

oil est une composante Contravariante de la vitesse

quadridimensionnelle.
La difference

- p-c4

est la densite substantielle. Elle est egale ä la constante q ä

l'interieur (crr q) et ä 0 ä l'exterieur (aE 0).

Rappeions aussi Videntite d'Einstein-Cartan:

(30)ß 2 a X

Elle entraine, comme consequence des equations (25), les

quatre equations « de conservation »:

tPp©2 0. (31)

Pour expliciter les equations (25) nous aurons done ä

calculer, au deuxieme ordre pres. en w:

1° le determinant y et les derivees partielles

öa L V— Y ö«xß L V— Y ;

2° les composantes contravariantes yag du tenseur fonda-

mental;

3° les symboles de Christoffel de seconde espece:

r^ß - 1 Y1* (öa Yßx + öß T>.a - öx vaß) ; (32)

4° les dix composantes yap du tenseur de courbure;

1 Cf., J. Chazy, La theorie de la JRelativite' et ta Me'canique
ce'leste, t. II, p. 94.
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5° les composantes contravariantes et covariantes de la vitesse

quadridimensionnelle:

> d*>x >

n=-dT'
6° les composantes du tenseur phenomenal d'energie 0ag et

ses composantes mixtes 0£;

7° les quatre derivees partielles tpg 0„.

2. Le determinant y

La formule (24) nous donne

— v — r2 v — r2 Sin2
'11 '22 '33

'12 '13
0 V Cü Ti* '34 ' '

(33)

D'oü, au deuxieme ordre pres, en co:

On en tire

en posant

örL V: 7 + { (V + i2-')

d„ L y/— y cot 0

_ (iÄ ' _ d\J.

dr ' ^ dr

(34)

(35)

(36)

Les derivees partielles en iji et l de y et L ]/— y etant
identiquement nulles.

3. Les composantes contravariantes y"3

Nous appliquons la formule

r i&ß
y«3 (_ i)«+3 LYJ

_ (37)
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oil [y]a|3 est le determinant mineur du determinant y, obtenu

en supprimant, dans ce dernier, la ae ligne et la ße colonne.

Au deuxieme ordre pres en co, on obtient:

„22 _r2 '
— 1

r2 sin2 0

„12 „13 „14 „23 _i — — Y — i —
r2 ex sin2 0

(38)

avec ya(i yp*.

4. Les symboles de Christoffel

A titre d'exemple, donnons le calcul de r;'3 et
On a

r3 — v3^ rA 23 — 1 A 223>v

D'apres le tableau (38) seules les valeurs 3 et 4 de A donnent
ä y3X des valeurs non identiquement nulles. II sufTit alors

d'ecrire
r3 v33 r -L v34 r1 23 Y 1 233 ' 1 234 J

on, puisque toutes les derivees partielles en 33 et S4 sont

identiquement nulles,

IA — ~2
(Y33 ^2 Y33 ~i~ Y34 ^2 Y34I

Les composantes y33 et y33 sont d'ordre 0 en co, tandis que
y34 et y34 sont du premier ordre. Le produit

est done du second ordre en co et pent etre neglige (co2 ~ 0)

devant le premier terme de la parenthese. II reste done

On a
r„ cot

r4 v4'- r, 3A
'
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Seules les valeurs 3 et 4 de X donnent ä y4X des valeurs non

identiquement nulles. D'oü

r4 v43 r 4- v44 v1 23 — Y 1 233 ^ I 1 234 >

OÜ

1 1
^233 ^2 Y33 ^234 ^2 Y34 *

On obtient, an moyen des tableaux (33) et (38)

r23 J
e~X (>j 2 7) COt 0)

en indiquant par un point superieur • une derivee partielle
relative ä 6 (y) S6 v)).

L'application des memes procedes de calcul nous conduit
au tableau, ci-contre, des quarante symboles de seconde espece
de Christoffel oü, comme il sera convenu dans la suite, un point
superieur indiquera une derivee par rapport ä 0, et un prime '

une derivee par rapport ä r.

rl1 u il 4» II o r3a it II o 4L II o

rl, 0 r2 — —' 4 12 r rl II o II o

r1L 13 0
> r13 o, rl t pi to X /

7' r" 2e -7)<
r11 14 0 r2 — o

> 1 14 v r31 14
to 7] X' — 1)' 4

2 r2 sin2 0 ' 14

X'
~ J '

— '• ^, r22 o, 4» II o 0

+»

II O

r11 23 0 i r23 o, rl cot0, =|e"x (7) — 2 7) cot 0)

rlX 24 0 r2+ o rl " "p4
2 r2 sin2 0 ' 24 o,

rl1 33 — r e_|i sin2 0 r24 33 — sin 0 cos 0 r33 oIIuoII

rl to
~~ "2 rl to

~~ 1 — r3 — o r4 —
r1 i 34 — O > 1 34 — 0

rl X'
~ 2" rl 0 r'l o, r:4 o

avec rj3 r^a.
Archives des Sciences. Vol. 11, fuse. 4, 1 958. 28
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Remarques. — Les symboles qui contiennent un nombre

impair d'indices 3 et 4 sont nuls. Les symboles qui contiennent

une fois l'indice 3 et une fois l'indice 4 sont de l'ordre de to.

Nous donnerons quelques breves indications sur le calcul,
assez laborieux, mais sans difficulte theorique, des composantes

du tenseur de courbure au deuxieme ordre pres en to (28).
On observera que ce calcul se trouve facilite par les

remarques ci-dessus qui permettent de laisser tomber les pro-
duits tels que

dont les deux facteurs contiennent les indices 3 et 4 une fois

chacun.
On notera aussi qu'il est inutile, le plus souvent, d'expliciter

un terme contenant un meme indice a dans deux symboles
differents (Operateur de derivation ou Symbole de Christoffel).
II suffira d'ecrire, en dessous de chaque symbole, les valeurs
de a qui ne lui donnent pas une valeur nulle. Quand ces valeurs

sont toutes differentes, ce terme est nul.
Par exemple,

Car l'operateur de derivation Da ne donne une valeur non
nulle pour le terme etudie que si a est egal ä 1 ou 2; tandis que
les valeurs 3 et 4 de cet indice donnent seules (d'apres le tableau

(39)) des valeurs non identiquement nulles au symbole r"3.

5. Le tenseur de courbure

ti* -p3 p2 -pi1 13 1 14 J 1 43 1 •

öar« so.

On a:

Xn - - ö.r» + ifa r?p + üIlV-t-^ü.lV- y •

a) öa rf,
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h) rß t* — r1 -i- f^ f2 -i- f^ f3 j- f^ f41 la 1 lß — 1 11 1 iß ' 1 12 1 13 > 1 13 1 lß ' 1 14 1 lß

ß { 1 I 1 { 2 I 2 {
4

I

4 {

13 1 * 13 * 13 1 14 13

3 I 3

4 4

D'oü

r?ar?3 (r;,)2 + (r;,)* + (rj,)" + (i* )2 +
(u) (u)

Le dernier terme, du second degre en co, sera neglige. II
vient

rf«i?P - ^ + t<x'2 + ^
-*(1., y+J^\ - _

2 ^ + e".c) d2 L \/— Y di

d) r» Öa l - r|, \ l v—r - £ + £ (*' 4 n')

a { 1 i 1 '

Au total

_ X" X' n'
Xn T + 4

(X ~~ ^ > ~~ 7 '

On a

- - ö„ n2 + rgB r?g + ö2 L V- Y - n= aa L V"
a) dBr«, s d.r;, ^

*u
b) rj?a i* rgt + rg, r2g + rg, r23 + rg, r* ;

D'oü

ß {212 Ol1 {1 |

4 {3I3

rga r?ß ^ 2 (rl, r^2 + r*s r24) + (r23)2
(") (w)

Le second terme de la parenthüse, du second degre en cor

sera neglige. II vient

rL r?g — 2 e-* + cot2 0

c) ö2 L \/— y sin-2 0
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d) r?» öa l V— t rl2 dt l V— T •

Ml-
D'oü

r?, du L ^ [2 + I (X' + p')|

Au total

On a

Z33 ^ - öcr* 4 r« 4 ö!L v~ - r?3 da L •

a) öa r?3 Ö! rjj + d2 r'3 ;

r 1 1
a { 2 2

d'oii
Öa r?3 — sin2 0 [e-11 (1 — r /) — 2] — 1

b) it r% ^ i* i% + r?2 r;ß + it + it rj3,
3 3 13 3 1 1 1 1 1 1

4 4 1 4 4 1 2 2 1 2 2

Tgi, Tj,, Tg,, r|4 etant du premier degre en w, il reste,

au second ordre pres en co,

r!L r% ^ ~ 2 [(e"" ^ 0 sin2 6 + !] •

c) Ö3 L yj— Y 0

d) It da L y/ y It L y/ y + It ö2 L y/ y i

I 1 1
a 1 2 2

d'oü

Taj da L y/— y — e* [2 + (X' + (x')j sin2 0 —cos2 0

Au total

*33 - f1 4 \ (X' ~ ^'] ~~ 1 } Si"2 0 '
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On remarque que
(40)

Les memes precedes nous donnent sans difliculte les autres

composantes distinctes du tenseur de courbure. On obtient
ainsi le tableau ci-contre:

- x" J- x'/v
Zu T + 4

(X
r

y — y Sin-3
"33 22

[t + T{r ~ ^ + 7]

CO

2
e ^ I 7

- */24 - 0

X' + (/.'

2

X'] CO 7) cot 0 7)

"2 ^

(41)

On sait de plus que ya(3 ypa.

6. La quadrivitesse

Pour un point materiel lie au fluide en rotation, dr 0,
d0 0, d^ co dt. D'oü, d'apres (24),

ds2 \_ex — co2 (r2 sin2 0 — 2 7))] dl2

Au deuxieme ordre pres en co, il reste

ds2 ex dt2

On a done immediatement, au meme ordre, les composantes
contravariantes

* - ds
£T

_A _A
n1 0 n2 0, a3 co e

2 n4 e
2 (42)
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et les composantes covariantes Qx y?>aßa de la quadrivi-
tesse tensorielle:

X A

Ol 0 p II o n0 Ol f>
2

(7) -- r2 sin2 0) a4 e2 (43)

7. Le tenseur phenomenal

La formule (29) et les expressions ci-dessus, des Oa, nous
donnent le tableau des composantes distinctes 0a(3 du tenseur

phenomenal:

III
N®a.III III "to

> ©33 ^ r2 sin2 0

© in III aex (a: densite substantielle),

0 iii © w III © III ©23 III © to III O

©34 co (ct r( — p r2 sin2 0

(44)

De plus, on voit que 0ag 0ßo,.

D'oü les composantes mixtes:

(45)

Et, par contraction, l'invariant

© - 20« p-4§. (46)

On en deduit les composantes covariantes du tenseur

Haß ©aß ~2 laß © '
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nu T I a

n.

n44 — 2

sin2 0 n22 sin2 0

n„ fi-23 ri24 0

II, M /Hi 5 3&)-|a ^ I r2 sin2 0
c

Avec naß es npa.

8. LBS DERIVEES TENSORIELLES Cpß @a

On a

tPp©» s cPß(PnBnp)-ö,»(&r2)
oü 1

iPß (p nane) ^ oanß öß P + ~^= aB (V~ o« nß)

Le jeu des indices des symboles öß, Qa, Q0 montre que

d3 p. na np 0, dp (V~: oa o3) o

ß{iC >{*
9

2

ne n* Ö y„ „ (n3)2 a„ v + (n4)2 d v +2 Q3 04 d„ Va ' ß? * ' a 133 1 \ ' a • 44
1 a • 34

(co2) (to) (co)

r
r 3 3 [ 3

P { 4 4 ' { 4

D'oü, au deuxieme ordre pres en w:

ßßß!PöaYß., - öa*"

1 Cf., par exemple, Von Laue, La the'orie de la Relativite, t. II,
p. 30.
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Ainsi, ä ce degre d'approximation,

toß(PnanP)

D'autre part

II reste done

cVtt 0» — £ ö„ X — pp (X 2 ® ^ CC
(48)

9. Les equations approchees du champ

D'apres les tableaux (41) et (47) les equations du champ,
non identiquement satisfaites au second ordre pres, sont:

Xn a nn X22 a ii22, X33 a n33, X44 a n41,
X34 An34 (49)

On remarque que la troisieme equation est äquivalente ä

la deuxieme; de sorte qu'il reste le Systeme des quatre equations

aux derivees partielles distinctes:

(50)

(51)

(52)

(53)
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Aux equations (49) nous associons les quatre equations de

conservation (32), consequences des precedentes. D'apres (48),
elles s'ecrivent, au deuxieme ordre pres en w:

oü l'on reconnait la forme classique des equations de la Meca-

nique des fluides 1.

La fonction X ne dependant que de r, ce Systeme se reduit
aux deux equations

La seeonde exprime qu'au deuxieme ordre pres les surfaces
isobares (p cte) sont spheriques.

Des lors, puisque le fluide Supporte une pression uniforme,
on en deduit qu'ä ce degre d'approximation (w2 ^ 0) la masse

est spherique.

Remarque. — A l'ordre 0 en co, c'est-ä-dire pour une masse

spherique immobile, nos equations (50), (51), (52) sont les

memes que Celles de Haag dans le fascicule XLVI du Memorial
des Sciences mathematiques (p. 12). Toutefois, il convient de

noter que la lettre p y designe la densite substantielle (representee

chez nous par la lettre a) et non la densite d'inertie.
En effet, d'apres notre formule (29),

ce qui s'ecrit, avec les notations de Haag 2 (en prenant c 1):

^öa/'=-^öaX («: 1. 2.3, 4) (54)

©3 ^ anan»-J(YP-natf)

P «5 — P\

Oil

P\

c
1 — — X y joue le röle de la fonction des forces.
2 Me'mor. des Sc. math., loc. cit., p. 10.
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et donne bien p\ 0, comme l'indique le troisieme alinea de

la page 11 du Memorial.
Au contraire, si p designait la densite d'inertie, il faudrait

ecrire pour un fluide parfait (d'apres notre formule (29))

P\ P g]

ce qui donnerait p p\ ^ 0, et contredirait l'alinea indique.

§ 3. APPROXIMATIONS

Dans la theorie classique de la masse fluide en rotation (qui
est une approximation de celle que nous donnons ici), la liaison
entre la vitesse angulaire co, la densite q et l'aplatissement k

peut s'ecrire x:

^ Ä ArctK * - 3 (56>

ou

* ^3 (A==-8,t?)' (57)

II n'existe done ä priori aucune relation univoque entre co

et x. Et, sous la seule reserve exprimee par l'inegalite

r^rs < °'168 • <58)
|x|c2

0,168 etant la valeur du maximum du second membre de

l'equation (56), cette equation montre bien qu'on peut attribuer
des valeurs arbitraires ä co et x et en deduire un aplatissement k.

Mais, si Ton veut comparer les grandeurs infinitesimales des

termes en co et x du ds2, on doit imposer une relation d'infinitude
entre ces quantites regardees comme infiniment petites. Soit

CO i I x |ß (59)

1 Cf., par exemple, Paul Appell, Traite de Mecanique ration-
nelle, t. Ill, p. 174.
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oil j est une fonction (de dimension L^T"1) qui tend vers une
limite finie, non nulle, quand x tend vers 0, et ß un nombre
essentiellement positif.

L'inegalite (58) s'ecrit alors

f I x I20"1 < 0,168 c2 (60)

Elle est certainement satisfaite quand x est assez petit,
pourvu que Ton ait

ß>{- (61)

De plus, d'apres (56),
<o2 k2

- C\j
| x I c2 — 5

D'oü Ton tire, au moyen de (59),

Ä2 ^ 5 ^ | x I20"1 (62)

La condition (61) exige done que Vaplatissement k soit infi-
niment petit avec x.

Ceci pose, rappelons que, pour obtenir la valeur observee
de l'avance du perihelie de Mercure, il est necessaire de deve-

lopper le ds2 jusqu'ä l'ordre de x2\ Adoptons ce degre d'approxi-
mation dans tous les termes du ds2 (13) ou (14).

Les coefficients H et Q du ds2 etant des fonctions analy-
tiques 2 de co2 et x, on remarque que les termes en to2 des deve-

loppements de ces coefficients doivent s'annuler quand x est

nul. En effet, la densite substantielle q etant alors nulle, le ds2

est necessairement galileen, quelle que soit la vitesse angulaire co.

II en resulte que les termes en co2 de H et Q de degre le plus
petit en x sont, au moins, de l'ordre de w2 x, c'est-ä-dire de

l'ordre de x20+1.

Nous avons convenu de negliger ces termes. A 1'approxima-
1

tion adoptee, on doit done avoir 2ß + 1 > 2, soit ß >
condition identique ä (61). k tend alors vers 0, quand x tend
vers 0.

1 Cf. de Sitter, Monthly Notices, vol. 76, 1916; et J. Chazy,
loc. cit., t. II, p. 155.

2 Cela se deduit de la forme analytique des equations du champ.
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Si, dans le developpement du coefficient P du ds2 (14), nous
conservions les termes de l'ordre de iox2, c'est-ä-dire de l'ordre
de xp+2, on devrait avoir ß + 2 < 2, soit ß < 0; condition
rejetee d'emblee et d'ailleurs contredite par (61).

Negligeons done les termes de P de Vordre de ox2. Ii faut alors

ß + 2 > 2, soit ß > 0, ce qui est pose ä priori. Dans ces conditions,

nous conservons le terme en ox, de l'ordre de xp+1,

pourvu que ß + 1 <2, soit

ß < 1 (63)

Rappeions enfin, qu'ä l'ordre de w2 pres, l'equation de

conservation se reduit ä (54).

id«x

Or, p etant au moins de l'ordre de x, on peut dire que cette

equation est ecrite ä l'ordre de xeo2 ~ x2(3+1 pres, comme le ds2

du champ.
Ainsi nous obtenons bien des approximations eoherentes, ä

Vordre de y,2|3+1 pres, quand on a

< ß < 1 (64)

lim k2 — lim ;2

x 0 c2 x 0

0 (65)

§ IV. RESOLUTION DES EQUATIONS
EN COORDONNfiES GEODESIQUES

1. Les fonctions p. (r), X (r), p (r), p (r)

Les trois premieres equations (50), (51), (52) ne contiennent

que les trois fonctions inconnues p (/•), X (r), p (r). Elles peuvent

1
1 Quelques auteurs, J. Cliazy, entre autres, ont admis ß — •

D'apres (62), cela revient a rejeter le cas d'un aplatissement inflni-
ment petit avec x. En efTet, pour cette valeur de ß
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etre resolues independamment de la quatrieme (53). Toute-
fois, pour calculer X et p, il est commode d'utiliser l'equation
de conservation (55) qui est une consequence des precedentes.

Retranchons (50) et (52); on obtient:

X' + p' — A r p (66)

en substituant p — a ä ^r c2

Retranchons (51) et (66), il vient:

p' -(l — e^) — Af/o (67)
r

L'equation de conservation (55) s'ecrit:

X' — 2 — 1 (68)
P

Nous affecterons les variables r, p., X, p, p de l'indice j ä

l'interieur et de l'indice E
ä l'exterieur.

Champ Interieur

a) L'equation (68) donne immediatement

eh ^ (69)
P?

Cx etant la constante d'integration dont la valeur sera deter-
minee plus loin par la condition de raccord de Xr et XE ä la
surface (condition de raccord des potentiels ya!3 ä la surface,

posee par Schwarzschild).

b) L'equation (68) ne contient que la fonction inconnue pt
et se resout sans approximation. Son integrale generale est

e
111

1 + ^ • (cq q) (70)

1 X' et p' ne dependant que de r, il en est necessairement de
meme de p, d'apres (66). Si l'on se donnait a priori la densite d'inertie
p (r), (68) donnerait X (r) et (66) donnerait p (r). On tirerait a (r) de
(67) et p de p c2 (p — a). On pourrait, par exemple, choisir la loi
de Roche: p p (0) — mr-. Dans ce memoire, nous avons suppose
que la densite substantielle a etait constante.
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La constante d'integration C doit etre nulle. Car, sans cela,
la vitesse de la lumiere suivant un rayon vecteur, donnee par
l'equation ds2 0, oü dÖ d^ 0, serait d'apres (69)

i i C'i f-i) "y/Cg o
dr

' e* e
dt Pl

done infinie au centre comme e ce qui est physiquement
exclu. Ainsi

ei)

c) En substituant ä A(, dans (68), son expression tiree de

(66), on obtient l'equation de Bernouilli en P[:

1*1 A |Xj 2

Pl 2" Pl 2rie pi '

Son integrale generale s'ecrit, en utilisant (71)

P, - (72)

3 + C2 q e
2

oil C2 est une nouvelle constante d'integration ä determiner.
En coordonnees geodesiques, designons par a le rayon de

la sphere limite du fluide. Si nous supposons que la pression est

nulle sur cette surface, on a

Pj (a) 0 et p, (a) q

On tire alors de (72)
iMa)

C2 --e1
1 2

D'oü
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Et

Pi c2(Pi — 9)
[/\ + x Tj — Vi + x <x2

3 Vi + x a2 — \/^ + * L
(74)

Champ exterieur

A l'exterieur p p 0. Nous affectons les variables r, p.,

X, p, p de l'indice
E

a) L'equation (68), oü a 0, a pour integrale generale

"^E 1+^-
r

La condition de raccord de p.r et pE ä la surface donne, au

moyen de (71) et (75)

C3 x a3 ;

d'oü

(76)

b) D'autre part, l'equation (66) se reduit ä

~l" [XE — 0

D'oü
'•E r, CE

e Lde

Or, ä l'inflni (rE oo) le ds2 doit etre galileen; eßE a pour
limite 1, tandis que e^E tend vers c2; ce qui exige C4 c2. Ainsi

(77)

La condition de raccord de e>E et e*1 pour rE r1 a
donne alors immediatement

Ct o2 (1 + *<*2) (78)
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Au total, le champ ä Vordre 0 en co (w ^ 0) est donne par
les formules suivantes:
A Vexterieur:

A I
01

1 + X —
r„

c2 1 + x -

Pe 0 Pe 0 K °)

(79)

A V interieur:

- 1

1 + K /
* '

-(3 Vl + x«2 — V 1 + xrj)

p,
2?

n t A ~ " '' l
V 1 + X a2

1 I xr! — \/l + xa2
ri

3 \/1 + x a2 — |/71 + x r j

(80)

2. La fonction y (r, 0)

Les fonctions A(r) et p. (r), maintenant connues, tant, a l'in-
terieur qu'ä l'exterieur, il nous reste ä resoudre l'equation aux
derivees partielles en yj (53), au premier ordre en x.

Substituons ä X' et p' leurs expressions (67) et (68) en fonction

de e^ et de p; l'equation en tj devient:

r2 r" + x r3 — (v; — r, cot 6) +
2 q

+ |^2 (e|i — 1) + 3 x r2 e11 rt 6 x r4 e14 ^ sin2 0

Oil (81)
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On remarque que les fonctions e^' et p„ d'une part, et e^E

et pE, d'autre part, etant analytiques en x, l'equation (81) a,
ä l'interieur comme ä l'exterieur, tous ses coefficients analytiques

en x. En vertu d'un important theoreme de H. Poincare

(sur les integrales des equations dependant d'un ou plusieurs
parametres), il en est de meme de sa solution en tj 1.

Observons de plus que, si la gravitation n'existait pas
(G A 0), ou si la densite substantielle q etait nulle, le ds2

serait galileen et rj serait identiquement nul. Cette fonction est
done de l'ordre de x au plus d'apres l'equation (81).

En tenant compte de cette remarque, nous exprimons cette

equation, au premier ordre en x en y portant p et eß ä l'ordre 0

en x, c'est-ä-dire en y substituant simplement, d l'interieur
comme d l'exterieur, a ä p et 1 ä eß, et en laissant tomber le

deuxieme terme et le quatrieme qui sont de l'ordre de x2. On

obtient ainsi l'equation plus simple

r2 7)" + 7j 7] cot 0 6 x — r4 sin2 0
1

(82)

Affectons la variable y) de l'indice
1

ä l'interieur et de l'in-
dice E ä l'exterieur, cette equation s'ecrit, ä 1'Interieur (a q)

r\ Ii Ii — ^i c0'; ® ® K ri s'n2 ®

et, ä l'exterieur (a 0),

''e — y)e cot 0 0 (84)

a) Conditions aux limites

A l'interieur et ä l'exterieur, la fonction yj doit etre nulle,
quels que soient r, et rE, quand 0 0 et 6 u.

En effet, en un point quelconque Q (r > 0, 0 0, tj; quel-

conque) de l'axe de rotation Ox, un element dQ de faisceau

lumineux a pour composantes spatiales:

dr =£ 0 d 0 0 diji quelconque,

1 II. Poincare, Les melhodes nouvelles de la Mecanique celeste,
t. I, p. 52 et suivantes.

Archives des Sciences. Vol. 11, fasc. 4, 1958. 29
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et sa duree de parcours dt est donnee par l'equation ds2 0

qui se reduit ici ä

— e^ dr2 + 2 to q (r, 0) d i{/ dt + e* dt2 0

Comme cette equation doit admettre la meme racine dt, quel

que soit on voit immediatement que

"0 (t 0) 0 1 (85)

A Vinterieur, q doit done aussi, par raison de continuity, etre
nulle pour r 0, quel que soit 6:

qx (0, 0) 0

A Fexterieur, le ds2 devant etre galileen ä l'infini, q doit
etre egalement nul quand rE est infini, quel que soit
6 "/)E oo, 6) 0.

b) Resolution de Vequation en q

La structure de l'equation (82) et la condition -q (r, 0) 0,

nous invite a chercher une solution de la forme

q y.Z, (r) sin2 0 (86)

ou £ (r) est une fonction de r seul satisfaisant aux conditions

aux limites precisees 2.

Nous allons montrer que cette solution existe. Nous eta-
blirons qu'elle est unique (§ VI).

1 Cette condition se deduit aussi de la relation

2coq — P [to, r, sin2 0] /2 (/) sin2 0,

oü P doit etre analytique en sin2 0 (23).
2 Si Ton impose aux coefficients du ds2 (13) d'etre analytiques en

x, y, z, on voit que la fonction P doit etre analytique en

y2 + z2 12 (r) sin2 0.

(Cf. P. Dive, Ondes ellipsoi'dales et Relativite, note II, p. 137.

Gauthier-Villars, edit.) On en deduit, d'apres la relation

2coq — P [co,, r, sin2 0] f2 (r) sin2 0,

qu'il doit en etre de meme en sin2 0 de la fonction q.
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La transformation (86) ramene l'equation aux derivees

partielles (82) ä l'equation differentielle d'Euler en "C, (r):

r2 Z" — 2 £ 6 - r4
1

qui s'ecrit, ä Vexterieur (er 0):

£ - 2 0

et a 1' Interieur:
r or R ,.•*'i r '

(87)

(88)

(89)

L'integrale generale de l'equation sans second membre (88)

est

o:

oü C5 et C sont deux constantes d'integration. Mais, comme ä

l'infini, le ds2 doit affecter la forme galileenne, doit tendre

vers 0, quand rE augmente indefmiment. D'oü C 0 et

l 2»
C-E >

L'integrale generale de l'equation avec second membre (87)
est

3 4 „ 2 C

^ TT''i + C«fi + 7 (ri < a)

oü Ce et C sont deux constantes d'integration. Mais nous ne

conservons que la solution qui reste finie au centre du fluide

(rt 0); done C 0, et

3 4

~rio 1
C« r~

Les constantes C5 et C6 se calculent en exprimant le raccord
de (rE) et (rz) et de leurs derivees premieres £E et ä

la surface du fluide, oil rE rz x (Schwarzschild).
On a

C5 - 12 3
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D'oü les deux equations lineaires eri C5 et C6

2C., + * -lS
a*4 5

qui donnent

c, - | a» C, - a' ;

et

(90)

La solution en yj satisfaisant aux conditions du probleme,
est, au premier ordre en x:

3. Le champ en cooriionnees geodesiques

Les formules (79), (78), (91), (92) nous donnent done, ä

Tordre de x2, les expressions cherchees du ds2, de la densite p,
de la pression p, tant ä l'interieur qu'ä l'exterieur du fluide.

A VInterieur:

ds\ — (l — x r] + X2 /y) dr] — r\ (d 02 + sill2 0 d

(91)

2 a • " oTj„ x — sin- Ö
5 r_

(92)

(93)

(94)

(95)
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.4 Vexterieur:

:2 dr~ — r*E (d 02 + sin2 0 d <>2)

rJ

E

(96)

b r2 |l -f x dt*

PE 0 • Pe 0 •

Avant d'etablir l'unicite de la solution que nous venons de

donner, nous traduirons les formules precedentes dans le

Systeme des coordonnees isotropiques.

Les difficultes logiques auxquelles on se heurte quand on

cherche ä donner un sens concret aux coordonnees spatio-
temporelles du «mollusque» d'Einstein, sans signification
geometrique prealablement definie, ont souvent ete signalees h

Le plus souvent les auteurs se sont accommodes de ces im-
precisions en regardant la variable temporelle t comme le temps
universel classique determine par l'Astronomie 2 et les variables

1 Cf. en particulier: J. Haic, Le probleme de Schwarzschild,
Me'mor. Sc. math., t. 46, p. 2. — S. Zaremba, Journ. math, pures et

appliqudes, 9e ser., t. I, 1922, p. 105. — H. Eyraud, Les equations
de la dynamique de VEther (these, 1926). — J. Le Roux, Principes
et melhodes de Mecanique invariante. Gauthier-Villars, edit., Paris,
1934. — Ed. Guillaume, Archives des Sciences physiques et naturelles
de Geneve, 1917, XLIII, p. 5, p. 89, p. 185; XLIV, p. 48; 1918, XLVI,
p. 309; 1920, II, p. 125. — Voir aussi H. Poincare, La Mecanique
nouvelle, introduction de Ed. Guillaume, p. X. — G. Tiercy, La
theorie de la Relativile dite generale et les observations aslronomiques
(Geneve et Paris, 1939). — P. Dive, Les interpretations physiques de
la theorie d'Einstein, 3e edit., 1948, p. 18. Preface de E. Esclangon
(Dunod, edit., Paris).

2 «temps sideral»

§ V. LE CHAMP EN COORDONNEES
ISOTROPIQUES
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r, 0, ^ de Schwarzschild comme des coordonnees polaires eucli-
diennes. En sorte que, pratiquement, c'est la theorie appelee
semi-einsteinienne par Painleve qui est, en fait, appliquee
(cf. J. Chazy, loc. cit., t. II, p. 33).

Dans la presente etude, le Systeme de coordonnees rectan-
gulaires rectilignes ou polaires, utilise pour traduire les syme-
tries du champ et son caractere revolutif, est regarde d'emblee

comme un svsteme dans lequel les deplacements de solides

ideaux (geometriques) sont representes par un groupe euclidien

(celui des rotations, par exemple) h

Grace ä cette interpretation precise, nous avons pu expri-
iner, sans ambigu'ite, la rotation uniforme du fluide au moyen
de la Substitution classique i]; cot + <ji0 2.

Or, nous avons montre, au debut de ce memoire, que ce

Systeme «euclidien» se confondait au second ordre pres en m.

au moins, avec un Systeme de coordonnees isotropiques 3.

C'est done seulement en coordonnees isotropiques, rectan-

gulaires ou polaires, que les mesures de longueurs d'angles ou
de temps possedent, dans notre interpretation, une signification
concrete immediate. La variable I, par exemple, designant la

distance au centre du fluide directement mesuree au moyen de

1'unite de longueur etalon.

1 Le groupe euclidien ne s'impose cependant pas (H. Poincare):
un groupe caylevien, qui respecte aussi la notion de deplacement
sans deformation pourrait etre plus commode en Astronomie et etre
utilise. Cf. P. Dive, Ondes ellipsoidales et Relalivite, 1950, p. 130.
Gauthier-Villars, edit.

2 Comme d'ailleurs cela a ete fait maintes fois, dans plusieurs
ouvrages sur la Relativite:

Dans les Fondements de la the'orie de la Relativite generale, Einstein
rappeile que dans l'ensemble des substitutions utilisables « sont en
tout cas contenues Celles qui correspondent ä tous les mouvements
relatifs des systemes de coordonnees (tridimensionnels) ».

Cf. aussi II. Weyl, Temps, espace, matiere, trad. Juvet, 1958,

p. 196; von Laue, La theorie de la. Relativite', t. II, 1926, p. 173;
J. Chazy, La theorie de la Relativite el la Mecanique celeste, t. II, 1930,
p. 194; P. Dive, J^es interpretations physiques de la theorie d'Einstein,
loc. cit., p. 71.

3 Cf., par exemple, J. Chazy, loc. cit., t. I, pp. 102 et 249.
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1. Passage des coordonnees geodesiques
AUX COORDONNEES ISOTROPIQUES

Nous connaissons dejä la forme generale (14) du ds2 dans

le Systeme des coordonnees isotropiques polaires Z, 0, tji, t:

ds2 H [dl2 + Z2 (d 02 + sin2 0 d 42)] —

— PZ2 sin2 0 d i|i dt + Q dt2 (97)

II nous suffira done de calculer les expressions de H, P, Q

en fonetion de ces coordonnees.

Designons par r (Z) la fonetion inverse de Z / (r) (16).

H (Z) et r (l) doivent satisfaire les deux equations (15) et (17)

que nous pouvons ecrire:

Nous alfecterons les variables r, II, P, Q de l'indice x ä

l'interieur, et de l'indice E ä l'exterieur.

a) Cdlcul de r (1)

A l'interieur substituons ä son expression (70). On tire,
par division de (99) par (98)

L'integrale generale de cette equation s'ecrit

(98)

(99)

dr
ou r est mis pour

2 B I
(101)r,

1 — xB2Z2

oil B est une constante d'integration.
.4 l'exterieur, substituons a son expression (69). On

obtient de meme 1'equation
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dont l'integrale generale est

|,oa|

oil Bj est la constante d'integration.
B et Bx se calculeront en exprimant le raccord de rE et rl

et de leurs derivees r'E et r'v pour I a.

L'equation (98) et l'equation derivee en I:

II' I2 + 2 11/ — 2 rr' (104)

montrent, en effet, que le raccord de H et H', pour I a

(a: rayon isotropique de la sphere fluide) ne peut etre satisfait

que si r (l) et r' (I) sont Continus pour I a.

On tire de (101) et (103)

et
dl

dr„
dl

2 B

Bi
2

1 + xB /

(i -nB'iy

1 r-
«" \

BjO2)

(105)

(106)

D'oü les deux equations:

^ ^ b /
- x B2 a2 1 \

1 + x B2 a2

(1 — xB!a»)! 11

1 -
4 B

i — — y
2 Bj a/

x2 a6 \
4Bfa*) '

(107)

(108)

Par addition de ces equations (107) et (108), on obtient:

d1,091
puis, par division,

2 8. -i(A)'- dl«)

D'oü, de (109):

4 B Bj (1 — x B2 a2)3 (Ill)
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On a d'ailleurs:

<
2 B a 1

* r^TB^ ' (112)

On choisira Bx de lapon que l et r soient des infiniment
grands equivalents ä l'infini. Ainsi, d'apres (103), Bx 2.

Des lors (111) donne

2 B (1 — kB'O')s (113)

Cette equation definit B en fonction implicite de xa2 2.

II vient au deuxieme ordre en x:

B l(i-4xa, + Sx,a4)- (ii4)

On tire alors de (101), au troisieme ordre pres en x:

1 [l + | (V — 3 a2) + ^ (l4 — 9 a2 Z2 + 21 a4)] (115)

Et, de (103), au meme ordre d'approximation

[" x a3 x2 a6 1

rE z [ "2 T + 16 T2"( + a'j (116)

On verifie que

a rj (a) rE (a) a ^1 — a2 + x2 a4) (117)

mais que
' r.

dr* I 2 1 + x a2
1 M a

(119)

1 Remarque: Les relations (110), (111), (112) ne sont pas inde-
pendantes: (112) et (111) donnent (110), (110) et (112) donnent (111).
Les relations (111) et (112), par exemple, entrainent (107) et (108),
quel que soit BI. II fallait s'y attendre, car si r (I) est continue, les
deriv6es r' et V r'"1 sont continues aussi, d'apres (100) et (103).

1
2 On peut la resoudre par iteration en partant de B0= — •
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(115), (116) et (119) montrent que rE et rl n'appartiennent
pas ä un meme Systeme (repere) de coordonnees spatiales l.

Cette remarque fait ressortir le caractere abstrait et pure-
ment analytique des coordonnees geodesiques.

b) Calcul de H (I)

On a (98)

" - - (0' •

A Vinterieur, on tire de (115), au troisieme ordre pres en x:

Ht — 1 — | (P — 3 a2) — ^ x2 (P — 8 a2 /2 + 17 a1) (120)

A Vexterieur, on tire de (116), au meme ordre:

n3 Q,^

Hb--1t + a) (121)

On verifie que

II» HB(a) - 1 +|- Ax., (122)

et que

c) Calcul de P (I)

Dans la relation (23)

P/2 2 cox £ (124)

nous devons exprimer X, au degre 0 en x, en fonction de la
distance isotropique l et du rayon isotropique a de la sphere
fluide.

1 rE (/) n'est pas le prolongement analytique de rt [l). Pour la
sphere immobile, cf. de Donder, Memor. des Sc. math., fasc. XLIII,
pp. 9 et 21. (Au second membre de la formule (134) (p. 21), il manque

le facteur •
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A Vinterieur, on a obtenu, en coordonnees geodesiques (90):

2

^ i (3 '• ~5 a2)

II suflit done de substituer a r, et a leurs expressions en
fonction de l et a, ä l'ordre 0 en x, e'est-a-dire d'ecrire simple-
ment I an lieu de rs et a au lieu de a:

^ —5a>) (125)

D'oü, au premier degre en x, done ä l'ordre de xB + l

^ < (3 < l), c'est-ä-dire ä l'ordre de x2 au plus

2
—

-g- to x (3i2 — 5 a") (126)

.1 Vexterieur on a, en coordonnees geodesiques (90):

1^.
5 r„

II suflit encore de substituer a ä ot et l ä rE pour obtenir, en

coordonnees isotropiques ä l'ordre 0 en x:

9 /j5
<127>

Et. ä l'ordre de x2, au plus.

4 a*
Pe - 5 «"iron

verifie que:

(a) ?E (a) "F w

et que

u/,=a dl

12

(128)

(129)

(130)
I a
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d) Calcul de Q (/)

On a (22)
Q s

A Vinterieur, en coordonnees geodesiques (80)

A, c^(äV1 + K a2 — 1 -fx r])

En exprimant a et rl en fonction de a et I, an premier degre

en x, on obtient. ä l'ordre de x2:

Q, ^ c2 [l - | (I3 — 3 a2) - ^ (14 — 6 a* I* + 21 a4) | (131)

^4 Vexterieur, en coordonnees geodesiques (79)

Q e'E cs (l + x

oil a3 et rj seront exprimes en fonction de a et I, au premier
degre en x. On trouve:

r a3 x2 / 3 a'
[ "P XT — Y \T — i2 (132)

On verifie que

Qj (a) Qe (a) c2 (1 -f xa2— x2 a4) (133)

et que

dQ,

dl 11 a \ dl I; a

dQ,
— c" x «(l-|a2)- (134)

e) Calcul de p (f)

.1 Vexterieur: pE 0.

A Vinterieur on a, en coordonnees geodesiques (73):
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oil, au troisieme ordre pres en x:

Pi 1 — T — x a2) («2 — D (135)

Dans le deuxieme facteur du crochet, il suffit d'ecrire a

au lieu de a. Dans le troisieme, a2 et r2 seront exprimes, en

fonction de a et Z, au premier degre en x. II vient

p> " 9 [l ~ f (°2 ~ /2) + ¥(/4 ~ 5 a2/2 + 4 fl4)] (136)

Remarque. — Au deuxieme ordre pres en x, la variation de

la densite d'inertie est conforme ä la loi de Roche.

f) Calcul de p (1)

A Tinterieur :

Pi q + c"2 Pl ;

d'oü, en coordonnees geodesiques [(70) et (136)], au troisieme
ordre pres en x:

Pj — — x q (1 — x a2) (a2 — r2) (138)

Et, au meme ordre pres, en coordonnees isotropiques:

Py "= +|(i2"4^)j (a« — /») (139)

.4 rexterieur; pE 0.

1 A titre de verification, cette formule peut etre obtenue ä partir
de la relation (69):

cW1^,
Pi

et des formules (131) et (133). En remarquant que
Pi (") + <*'2 Pi (a) q, on a, en eft'et,

x(/)
" (137'
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2. Le champ en coordonnees isotropiques polaires

Au moyen des formules (120), (121), (126), (128), (131), (132)

nous pouvons ecrire le ds2 du champ en coordonnees
isotropiques polaires, au degre d'approximation que nous venons de

preciser.
.1 V Interieur:

ds\ - — 4 (3 "2 — l~) + U4 — 8 ~ l< ('4)]

x [dl2 -f r- (rf02 + sin2 0 d t>2)]

-r -jr to x P (3 I2 — 5 a2) sin2 0 d <\> dl
0

2 (140)

+ c2 1 +4 (3 — /2) — TZ </4 — 6 °2 /2 ~ 21 °4) d'2

.4 Vexterieur:

ds
E

(141)

Nous avons obtenu aussi:

.4 Vinlerieur (136) et (139):

a [l - 4 (a2 - r-) + J (l* - 5 a2 P + 4 a4)] (142)

P ~?XCT[1 + ¥ C2~4a2) (a2-/2)]- (143)

A Vexterieur:
Pe 0 - PE 0
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A a
Remarque sur la dimension nulle de la quantite xa2 -g- a2,

pour le contröle de l'homogeneite des formules obtenues.

On sait que

A=-^G;
ou G est la constante newtonienne de la gravitation universelle

(G 6,67 x 10"8 c.g.s.).
La formule de dimension de G est L3 T~2 M_l; celle de A

est LM"1; celle de a est ML"3; on voit que xa2 est sans dimension,

done independant du Systeme d'unites choisi.

3. Le champ en coordonnees isotropiques rectilignes
RECTANGULAIRES

La formule (13), d'oü nous sommes partis, nous donne

immediatement, au moyen des expressions ci-dessus (120), (121),

(126), (128), (131), (132) de H, P, Q:
.1 V Interieur:

[l -|(3o«-P) - Ay.2(/4_8a2Z2 a. 17a«)j
1

/ 1 J. O \ J_9\

ds.

x (dx2 + dy2 + dz

' 5
co x (3 I2 — 5 a2) (y dz — c dy) dt

-r |1 — j (I2 — 3 a2) — jg (l* — 6 a2 I2 -f 21 a4) | c2 dt2

ou I2 est mis pour x2

.1 Vexterieur:

(144)

ds'
d^ 3 (v* 1

1 - xT !-
g

Xs
p (4 I + a) (dx2 + dy2

-g
CO x -p {z dy — IJ dz) dt

1 + Zy — y (31 — a)^\c2df-

dz2)

(145)
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§ VI. UNICITE DE LA SOLUTION -q

a) Exprimons d'abord l'equation en tj (82) dans le Systeme
des coordonnees isotropiques, oil la meme variable I mesure, ä

l'interieur comme ä l'exterieur, la distance au centre.
On a

71' ö; 71 Tr ' '146)

M
1 Lt cPr\

(I)
D'oü 1'equation isotropique en -q:

di - öi -n -jit • (147)

(ö* T) — di 1 + öe -IJ — cot 0 d0 y) 6 X r1 ^ sin2 0

W/)

Mais, 7] etant de l'ordre de x, il suffit, pour obtenir l'expres-
sion de cette equation au meme ordre, de reduire les fonctions

r2 (si) ' "5^" ^ l'ordre 0 en x, c'est-ä-dire de leur substituer

respectivement I2, 1, 0, ä l'interieur comme ä l'exterieur. II
vient

l2 öj y) v) — cot 0 ö0 7) — 6 ~ s'n2 6 (148)

On voit qu'au premier ordre en x, l'equation en 7] conserve
la meme forme dans les deux systemes de coordonnees.

Le changement de variable

L Log I (149)

donne ensuite ä cette equation la forme canonique des equations

aux derivees partielles du type elliptique1:

V 7] — dL 7) — cot 0 d0 7) 6 x e4L — sin2 0 (150)

1 E. Goursat, Analyse mathe'matique, t. Ill, 1942, p. 83.
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UÜ

V •/] ö° r, + d* yj

La fonction inconnue /] (L, 0) devant ici satisfaire aux
conditions aux limites suivantes:

•/j (L, 0) 0 y) (L, 7r) 0 quel que soit L; 1

7) (— 0) =0 (au centre du fluide, quel que soit 0), { (151)

1 (4- <» 0) ~ 0 (ä rinfini, quel que soit 0) j

b) La solution rj obtenue satisfait bien aux conditions ci-
dessus. Supposons qu'il existe deux telles solutions: r]1 et rl2.

Leur difference w rtl — t)2 satisferait aux memes conditions
et serait une integrale de l'equation homogene:

V w öL iv — cot 0 ö0 « 0 (152)

53)

(154)

oü le coefficient de la nouvelle fonction inconnue \Y est essen-

tiellement negatif.

D'apres (153), W doit satisfaire aux memes conditions aux
limites que

L'unicite de notre solution yj sera done etablie si nous demon-

trons que la seule integrale de l'equation (154) satisfaisant ä

ces conditions est W 0.

Imaginons que W ne soit pas identiquement nulle dans la

bände infinie B comprise entre les droites 0 0 et 0 t:.
Gette fonction qui doit etre continue dans B, comme rl2

et ir, admettrait alors necessairement une borne inferieure

Archives des Sciences. Vol. 11, fasc. 4, 1958. 30

Operons la substitution

w (l +
c'') W (1

L'equation (152) devient

L

1

vw - ö. w cot e
L L ö„W--4

' LW 0

1 + e'z 1 + e'1
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W < 0, ou une borne superieure WM > 0, ou a la fois une
borne inferieure < 0 et une borne superieure > 0

L

+ 1

£

n

: [«]

/
u

-1

^ :

/
1

B

Fig. k.

De plus, YV etant nulle ä l'infini, ces bornes ne pourraient
etre atteintes qu'en des points interieurs de B ä distance finie2.

1 En etablissant la correspondance biunivoque

>: th L ou L log \J\Z- r ' *155'

on substitue ä la bände infinie B, le domaine jerme [c?] limite aux
droites 0=0, 0 7r, i." 1, i," — 1. La fonction continue
Wf/T, 0] dans [t<?] est bornee dans ce domaine.

2 Voici une demonstration de cette proposition intuitive utilisant
les proprietes des ensembles:

Supposons que l'ensemble des valeurs de YV admette dans B une
borne superieure WM > 0.

Pour chaque valeur de L, la fonction YV (L, 0) continue en 0

dans l'intervalle ferme [0, 7i] atteindrait, dans cet intervalle une
borne superieure YV (L) > 0 et l'ensemble des valeurs W (L) admet-
trait encore YY7M comme borne superieure.

Soit c > 0, tel que
e < YVm (156)

Par definition de la borne superieure YVM, il existerait des valeurs
L telles que

W (L) > YVM - | (157)

Voir la suite ä la page suivante.
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Pour montrer que W est necessairement identiquement nul
dans B, il nous suffit d'examiner le cas oü cette fonction
admettrait une borne superieure WM > 0. Le cas d'une borne
inferieure Wm < 0 se ramenant au premier par la substitution
de — W ä W.

Soit done PM un point interieur de B ä distance finie, de oil
W atteindrait sa borne superieure WM > 0. Je dis d'abord que
WMserait un maximum de W.

Considerons un domaine ferme [DM] contenu dans (B) et
dont PM est un point interieur. Dans [DM] tous les coefficients
de l'equation (154) sont analytiques en L et 0 (cot 0 =£ 0). II
en resulte, d'apres un theoreme de E. Picard, que l'integrale W
de cette equation est aussi analytique en L et 0 dans le meme
domaine '.

Suite de la note 1.

Or W (L) tendant vers 0, quand | L | augmente indefiniment, on
peut choisir un nombre N > 0, tel que | L | > N entraine

|W(L)j<|- (158)

Dans ces conditions, je dis que l'ensemble des valeurs | L | est borne
par X.

En effet, s'il existait une valeur | L | > X, on aurait, pour cette
valeur, d'apres (158)

I W (L) | < |
Oil

- | < W (L) < |
Ce qui, d'apres (157), entrainerait

Wm - | < f ®u ' > WM

en contradiction avec (156).
Ainsi l'ensemble des valeurs | L [ de | L | telles que

WM —W(L)<| (159)

est certainement borne par N. On en deduit que la borne superieure
WM, si eile existe, est atteinte ä distance finie dans B.

La demonstration est semblable dans le cas d'une borne
inferieure W,„ < 0.

1 Cf. E. Goursat, Analyse mathe'matique, t. Ill, 1942, p. 230.
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On est alors certain de l'existence et de la continuity des

derivees partielles 5L YY, 5,, YY, W, j'jW dans fDM].
WM est done bien un maximum de \V (L, 6), et Ton a en

wM>0, ölW[Pm]-0, ö0W[Pm] o

<W[PM]<0, ö*W[PM]<0.

Or ces conditions ne satisfont pas l'equation (154). On en

conclut que YY est identiquement nul et que rn ~~ rl2 dans B

CONFRONTATIONS

1. Teh.me en or/.

Dans La Theorie de la Relativite el la Mecanique celeste (t. II.
p. 173), J. Chazy a donne le terme correctif a ajouter au ds2

galileen exterieur induit par une masse spherique tournante,
de tres faible densite et denuee de pression, pour tenir compte
de sa rotation, au premier ordre en <o:

Ce terme, qui s'ecrit

/ M CO (x dy - - q dx) (161)
5 rJ

(oil M est la masse de la sphere, R, son rayon; /, la constante
de la gravitation universelle; r, la distance au centre du point,
(.r, y, z); la vitesse de la lumiere etant prise pour unite; et

l'axe Oz etant place sur Taxe de rotation) est egal au terme

correspondant de notre formule (145). Au degre de nos approximations

(co2x~0, v? 0, cn ^ xfl (ß > y)) l'influence de la

pression interne sur la morphologic de 1'Ether exterieur est done

negligeable.

1 Cette demonstration etend au dornaine infmi B et a l'equation

(150) ä coefficients non tous analytiques dans B, une demonstration

de Paraf pour les domaines bornes et les equations ä
coefficients tous analytiques dans ces domaines.
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2. TeRME EX dt2 POUR LA MASSE AU ItEPOS

Dans le meme ouvrage, J. Chazv a donne, pour le champ
exterieur d'une sphere au repos, le ds2 isotropique approche
suivant, obtenu en poussant, dans le coefTicient de dt2, les

approximations jusqu'au carre de la constante de la gravitation.

On a, en designant par r la distance isotropique au centre
et V la vitesse de la lumiere L

ds2 =-- — t - (dx2 -f dy2 + d:2) +

y (V«-2^ A 2^L2)dr- (162)

OÜ

p. -j- 7t p / R3 (163)

est le coefficient attractif kleperien; p designant ici la densite

substantielle; /, la constante de la gravitation; R, le rayon
de la sphere 2.

Le coefficient de dt2 dans (162) devrait done etre equivalent
(aux notations pres) ä notre coefficient QE (132) correspondant,
puisque co, qui est ici nul, n'y figure pas.

Avec nos notations, le coefficient attractif dans le repere
isotropique s'ecrit

^r.qG a3 —~y.a3 (164)

Le coefficient de dt2 dans (162) devrait alors etre equivalent ä

1 J. Cii\zy, toe. cit., t. II. p. 157. Ce ds2 coincide avec le ds2

approche de de Sitter (Proceedings. Amsterdam, vol. XIX, 1916,
p. 371) obtenu en substituant. dans le ds2 bien connu de Schwarzschild,

exprime en coordonnees geodesiques, la somme r + ä

la variable geodesique r, et en negligeant les termes en ^
2 Cf. Chazy, loc. cit. t. II, p. 119.
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et identique ä notre coefficient QE [(132) et (145)]

/73 v2 n51
11 +xj-j(3l-a)^\- (166)

Or la quantite entre parentheses (165) excede la quantite
entre crochets (166) de la quantite

3 a5
~2 ~f ' (16/)

de l'ordre de l'approximation consideree et, par suite, non

negligeable.
Cet ecart vient de ce que, dans le ds2 isotropique de Chazv,

p. est encore la valeur du coefficient attractif dans le repere
geodesique de Schwarzschild, alors que r y designe bien, comme
il convient, la nouvelle mesure isotropique de la distance au
centre.

L'expression de ce ds2 presente done une incoherence.

Pour la faire disparaitre, il suffit, dans (163), de substituer
ä la mesure geodesique R du rayon de la sphere, son expression

en fonction de sa mesure R en coordonnees isotropiques:

R R + £ ; (168)

puis de substituer ä p. dans (162) son expression en fonction de

R el de la nouvelle mesure p. du coefficient kleperien, aux
infmiment petits d'ordre superieur pres, on a

Le coefficient de dt2, dans (162) devient ainsi

_ 2p _2jp _r V2 r2 V2 R r
1 '

On verifie bien. en effet, qu'en substituant, dans cette

expression, l ä r et a ä R, c ä V, on retrouve l'expression exacte
du coefficient QE de dt2 dans notre ds'E (145).

Faculte des Sciences de Montpellier,

Mathe'matiques.
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