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CHAMP TENSORIEL
D’UNE MASSE FLUIDE EN ROTATION

PAR

Pierre DIVE

(Avec 5 fig.)

INTRODUCTION

Peu apres les publications initiales d’Einstein et de Schwarz-
schild, ’étude du champ tensoriel d’une sphére tournant autour
d’un de ses diameétres a fait I’objet de plusieurs importants mé-
moires de de Sitter, Lense, Thirring, Kramer, Bach...

Aujourd’hui cette question, malgré son intérét en Mécanique
céleste, ne semble plus provoquer beaucoup la sagacité des
chercheurs. A notre connaissance, elle n’a cependant pas encore
été résolue en toute rigueur et dans des hypothéses assez géné-
rales, comme I’a été, par J. Haag, I'étude du champ d’une sphere
hétérogene immobile, soumise a4 des tensions internes. Les
équations relativement simples, dans le cas d’une masse au
repos, sont, en effet, notablement plus difficiles a résoudre
lorsque la masse est en mouvement. Et I'on comprend assez
pourquoi les chercheurs les plus distingués ont dua se résigner a
grever d’approximations les équations aux dérivées partielles
du champ.

Les hypotheses simplificatrices consenties pour rendre le
probleme abordable ont consisté généralement & admettre:

— que la rotation de la masse est faible, ce qui autorise a traiter
sa vitesse angulaire ® comme une quantité infiniment
petite;

— que sa densité est trés petite et, parfois méme, qu’on peut
négliger son effet gravifique, en adoptant pour le ds? d’uni-
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404 CHAMP TENSORIEL D'UNE MASSE FLUIDE

vers du champ induit, la forme galiléenne, au terme pres
apportant la correction due a sa rotation!;

— que les tensions internes sont nulles ou négligeables, ce qui
revient a considérer, & priori, que la masse est constituée par
une multitude de points matériels sans contact entre eux,
occupant l'intérieur d’une surface limite dont la forme sphé-
rique et la rotation sont imposées d’avance;

— que les vitesses de ces points sont de 'ordre de la racine
carrée de la constante de la gravitation universelle G 2;

hypothése qui établit entre la vitesse angulaire w et G une
1

relation d’infinitude ((o o~ Gm‘f) permettant de développer

3

le ds? jusqu’a l'ordre de G2.

Dans le présent mémoire, qui n’a encore pour objet qu’une
solution approchée, nous étudions les champs gravifiques tnté-
rieur et extérieur dus a la rotation lente d’'une masse de faible
densité substantielle, constituée par un fluide parfait doué de
pression interne.

Nous consacrons d’abord quelques paragraphes a I'éta-
blissement de la forme générale du ds?, tirée des seules hypo-
theéses faites sur son caractere révolutif, sur I'existence d’un
plan équatorial de symétrie et sur la parité en w de ses coefli-
cients. Ainsi, avons-nous pu d’avance réduire & zéro sept des
dix composantes distinctes du tenseur fondamental et ramener
le probleme a la recherche de trois fonctions inconnues seule-
ment.

Nous ne supposons pas a priori que la masse fluide est sphé-
rique. Mais nous montrons que cette forme résulte de ’approxi-
mation des équations au deuxiéme ordre prés en o (©? ~ 0)
et de I'hypothese d’une pression nulle sur la surface limite du
fluide.

Nous établissons ensuite un systéeme d’équations approchées
au deuxiéme ordre prés en w (indépendamment de toute hypo-

L Cf. J. CHAzY, La théorie de la Relativité et la Mécanique céleste,
t. 11, p. 173.
2 J. Cuazy, loc. cit., t. 11, p. 159.
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these restrictive sur I'ordre de grandeur du produit Gg (¢: den-
sité substantielle)). _

Nous trouvons ainsi que le seul coefficient n du ds?* qui
dépend de w doit satisfaire une équation aux dérivées partielles
du second ordre dont la résolution constitue une partie essen-
tielle de notre analyse.

Alors seulement nous introduisons I’hypothése d’une den-
sité substantielle ¢ assez faible pour que la quantité

% = —gnGi

02

(ou ¢ est la vitesse de la lumiere dans le vide) puisse étre assi-
milée 4 un infiniment petit et nous permettre de limiter nos
développements a 'ordre de »2.

La nécessité de développer le ds? jusqu’a cet ordre vient de
I’obligation d’obtenir des formules capables de fournir la
valeur du résidu d’avance du périhélie de Mercure, non expliqué
par la Mécanique de Newton 1.

De plus, pour comparer les ordres de grandeur des termes
du 4s?, nous admettons entre w et x, regardés comme des infini-
ment petits, une relation d’infinitude telle que w ~ %® (8 > 0).
Dans cette hypothese, nous avons reconnu que, pour obtenir
des approximations cohérentes jusqu’a l'ordre de %2, nous
devions prendre pour exposant 3 un nombre de l'intervalle
(%, '1) et qu’il suflisait alors de limiter au premier degré le

\

développement en x du coeflicient % 2. A ce degré d’approxima-
tion, 'équation aux dérivées partielles en 7 se simplifie. Une
substitution de fonction inconnue — qui nous est inspirée par
la forme particuliére de cette équation — nous ameéne & une
équation différentielle du type d’Euler dont l'intégrale se
calcule aisément. La solution ainsi obtenue satisfait bien a

L Cf. J. Crazy, loc, cut., t. 11, p. 155,
2 De Sitter et Chazy donnent des formules approchées jusqu’a
3

Pordre de » 2 seulement (cf. J. CHaAzY, loc. cit., t. 1I, p. 159), et

supposent que 3 = %, ce qui, dans le cas d’un fluide, empécherait
de regarder son aplatissement comme infiniment petit [Voir § 3, (65)].
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toutes les conditions aux limites du probleme. Mais, comme
cette solution n’est pas tirée de l'intégrale générale de I’équa-
tion en v, nous avons dit en démontrer 'unicité. Il nous a fallu,
pour cela, étendre & un domaine non borné et a une équation
aux dérivées partielles du type elliptique, dont les coeflicients
ne sont pas tous continus, la démonstration classique du prin-
cipe de Dirichlet. Cette partie de notre analyse est renvoyée a
la fin du mémoire.

Nous avons donc établi, tant a Uintérieur! gu’a Uextérieur du
domaine du fluide, les expressions du ds* du champ, limitées a
I'ordre de %2, et les formules exprimant, au méme degré d’ap-
proximation, la variation de la pression et la variation de la
densité d’inertie (densité d’énergie) a l'intérieur de la masse.

Cette solution est donnée dans le systeme des coordonnées
géodésiques, le plus usité pour résoudre le probléme de Schwarz-
schild relatif a la spheére au repos. Il est donc aisé, dans ce cas,
de comparer nos formules (en y faisant w = 0) a celles de
Schwarzschild, M. Brillouin, de Donder, Haag, Chazy...

Mais, en raison de 'interprétation concréte que nous don-
nons aux coordonnées isotropiques, il importait de traduire nos
résultats dans le systeme de ces coordonnées. Car c’est bien
dans le repére spatial trirectangle auquel nous les rapportons
que nous avons exprimé les symétries du champ et son carac-
teére révolutif; dotant ainsi ces variabies de la signification
physique de mesures de longueurs et d’angles?. Il n’est pas
possible, en toute rigueur, d’accorder ce privilege au systeme
géodésique. I’obligation d’introduire deux variables diffé-
rentes r. et r, pour désigner, dans ce systéme, la distance au
centre a Uextérieur et la distance au centre a U'intérieur, enleve a
ces coordonnées le caractére de mesures de longueurs, au sens
de la Géométrie (H. Poincaré). Une semblable difficulté ne se
présente pas avec les coordonnées isotropiques: A l'intérieur
du domaine du fluide, comme & ’extérieur, une méme variable
mesure la distance au centre, et c’est bien par rapport a cette

! Notons un mémoire de J. Lense et Tirring qui traite en premieére
approximation du champ intérieur d'un fluide dénué de pression
(cf. Physikalische Zeitschrift, Band XIX, 1918, p. 156).

2 Cf. J. Haac, Le probleme de Schwarzschild. Meémorial des
Sciences mathématiques, fasc. XLVI, p. 3.
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unique variable que se vérifie le raccord a la surface des poten-
tiels et de leurs dérivées.

En terminant, nous confrontons nos formules a celles qui
ont été obtenues par d’autres procédés analytiques.

Dans le cas de la sphere immobile, une différence entre
I’expression du coeflicient de d¢?, dans le ds? isotropique appro-
ché de de Sitter, retrouvé par J. Chazyl et I'expression que
nous avons obtenue, disparait facilement quand on remarque
que, dans le ds®> de de Sitter, le coefficient attractif képlérien
est encore exprimé en coordonnées géodésiques et des qu’on
donne & ce coefficient, comme cela est indiqué pour la cohérence
des formules, son expression en coordonnées isotropiques.

§ 1. FORME A PRIORI DU ds? D’'UNIVERS
DU CHAMP

1. CONDITIONS GENERALES ET AXES DE COORDONNEES

Dans la théorie newtonienne, une masse fluide homogene,
en rotation lente autour d'un axe et soumise a une pression
superficielle uniforme, affecte la forme d’un ellipsoide de révo-
lution aplati (Mac Laurin) dont 'aplatissement k est de 1'ordre
de la vitesse angulaire w.

Au premier ordre d’approximation en w, auquel nous nous
bornerons dans la présente étude, la surface limite du fluide
en rotation peut cependant étre assimilée a une sphere 2.

1 Cf. J. CuHazy, loc. cit., t. I, p. 102 et t. II, p. 157.

2 Soient: a le —12— grand axe et b le % petit axe de la méridienne

a? ; . :
— 1, son aplatissement. Son équation peut s’écrire

b?
22 (1 —Kk...) +y* = b*.
Or, on démontre que (voir § III)

limite; & =

8
w? o 5T Gaqgk®.
(G: constante de la gravitation universelle; ¢: densité; = = 3,14159...
Cf. P. D1vE, Rotations internes des astres fluides (thése, p. 81, Dunod,
édit.)) En négligeant les termes de degré supérieur ou égal 4 2 en k
ou en o, I’équation de la méridienne se réduit donc a celle d’une
circonférence de rayon b.
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Nous montrerons que cette propriété est conservée, au
méme ordre d’approximation, dans la Gravifique tensorielle
d’Einstein.

L’existence d’un plan de symétrie équatorial, démontrée en
Mécanique classique, pour une masse hétérogene, par Lichten-
stein, Plancherel, Wavre, et par nous-méme, dans le cas des
rotations internes baroclines sera postulée ici.

Dans ces conditions, rapportons la masse tournante a un
repere cartésien trirectangle (r), fixe dans I’Ether, d’axes Oz,

Oy, Oz, les axes Oy et Oz étant situés dans le plan équatorial
de la masse, et I'axe Oz étant placé sur 'axe de rotation.

Nous utiliserons aussi un repére polaire (I) correspondant
a ce repeére cartésien (z):

Soit un point P (z, y, z) de projection Q (y, z) sur le plan
de symétrie y Oz. Posons

N N
l=0P, 6=0z,0P, ¢=0y,0Q.

on a, de (/) a (x) les formules de transformation
x=1cos0, y=1sinBcos¢, 3z = 1IsinOsin ¢; (1)

et, de (z) a (I), les formules inverses

l=\/x2—i—y2+32, )
T
0 = Arcos ———— :
vVt + g+ 2 &
L o— 2 .
y‘HArctgy
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Nous supposons la masse isolée, c’est-a-dire infiniment
éloignée de toute autre masse ou localisation d’énergie. Le
champ gravifique qu’elle induit (dans son voisinage), ainsi que
le ds* d’Univers qui ’exprime seront alors:

10 de révolution autour de Ox;
20 stationnaire, c’est-a-dire indépendant du temps ¢ 1;

3° symétrique relativement au plan z = 0.

Les conditions 1° et 32 ont un sens précis dans la géométrie
euclidienne que nous adoptons ici (c¢f. J. Haag, Le probleme de
Schwarzschild. Mémorial des Sciences mathématiques, fasc. XL VI,

p- 3).

2. INVARIANTS DU GROUPE DES ROTATIONS

La premiére condition implique que le ds®* du champ soit
un invariant du groupe des rotations prolongé statiquement 2.
Prenons § comme paramétre de rotation autour de Oz et
désignons par 27, ¥y, z, t des dérivées, ou des différentielles,
par rapport a une variable non désignée. Ce groupe et son pro-
longement s’écrivent en coordonnées rectangulaires rectilignes:

g ==y g = a,
y = ycos Y+ zsin ¢, () Yy~ =y cos Y + z sin ¢,
<
= —ysin¢g + zcos Y, 77 = —y sin ¢ + 3 cos ¢,
t' —— t’_ =
Les invariants de ce groupe 4 un parameétre s’obtiennent

en annulant ses transformations infinitésimales dont les coeffi-
cients sont ici de deux sortes3. Soit, en adoptant O comme

1 ¢: variable temporelle, sera dit temps cosmique.
2 Cf. J. Le Roux, La Méecanique invariante, p. 19 ou P. DivE,
Le Principe de relativité selon Poincaré et la Mécanique invariante de

Le Roux, p. 33.
3 D’une fagon générale, considérons dans I’espace a 3 dimensions
(a 6 parametres indépendants ¢,) un groupe a m variables x,

x;\:f}\(..xu..; g )

(net w: de 1 & m; h: de 1 4 6). Les valeurs initiales m,b;’l donnent la

transformation identique: Voir la suite a la page suivante.
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valeur initiale du parameétre {:

Ty

uxZO’T :z,r¢z=—4y,1¢t:0,

by
et

T¢x=0, Ty = % Ty =Y 'rM:O.

Le nombre m des variables z, y, 3z, t, 27, ¥y, z, { étant
égal & 8 et la matrice des coefficients:

0 z —y 0 0 =z —y 0,

étant de rang 1, le nombre des invariants indépendants est égal
a7=8—-1

Ce sont les intégrales en F de 1’équation aux dérivées
partielles

20, F —yo,F + 2 by_F—y Oz_F:(). (5)

Elles sont données par les intégrales premieres du systéeme
différentiel
dy _ _dz _dy  dz (6)
z ¥ z Yy

On trouve ainsi les sept invariants:

2 2 2 - -
z, y4+22, t x , Yy +z , ¥z —zy , U. (7\

b i

Le ds? cherché est une forme quadratique des différentielles
2 =dxr, y =dy, 27 =dz, t =dt qui ne dépend que des
invariants ci-dessus.
Suite de la note 3.

’ 0 .
Si I’on pose
Thl(.-xu..) — ]].m Oa‘bh_fk N
'-]J;. == th

les invariants indépendants de ce groupe sont les solutions indépen-
dantes I (.. z; ..) du systéme d’équations aux dérivées partielles

%Thlax)\F = 0.

Si p est le rang de la matrice 7,,: formée avec les coefficients 7,

on sait que ce systéme admet m — p solutions indépendantes (cf.
par exemple GouRrsaT, Cours d’Analyse mathématique, t. 11, p. 640).
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On a done
ds? = Hdx? + K (dy® + dz?) + L (ydz — zdy)?
+ Mdx (ydz — zdy) + Ndzdt (8)
+ P yds — zdy) dt + Qde2,
ou, en vertu des conditions 10, 20, 3¢ (p. 6), les sept coefficients
H, K, L, M, N, P, Q ne peuvent dépendre que de 22 et (y> 4 z?)
et sont indépendants du temps.

3. SYMETRIE RELATIVEMENT AU PLAN 2z = 0

Mais, en écrivant z? au lieu de z, nous ne tenons compte
que partiellement de la symétrie du champ relativement au
plan x = 0. Nous devons exprimer aussi que le ds? est invariant
quand on y substitue simultanément —x et —dz a z et do
respectivement. Ce qui donne la condition:

M (ydz —zdy) + Ndt]de =0
quels que soient dz, dy, dz, dt. D’ou nécessairement M = 0,
N = 0.
Il reste, en ordonnant:

ds® = Hdz® + (K 4 Lz?) dy? 4+ (K + Ly?) dz?
—2Lyzdydzs + P (zdy — ydz)dt + Qdt®.

4. PARITE EN @ DES COEFFICIENTS DU ds?

[’expression du ds?* se simplifie encore, quand on tient
compte de la parité de ses coefficients par rapport a la vitesse
angulaire & de la masse.

Considérons deux points X (z, y, z) et X' (— 2, y, — z), et
deux éléments de parcours dX (dz, dy, dz) et X’ (— dz, dy,
— dz), symétriques deux a deux par rapport a Oy

= _k;(
/
/
I
/
/
i
J
i
/

~
i

=l
’l ’I
'I
i
r [’
\:.-1
,
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Le ds?* doit évidemment conserver la méme valeur quand

- -
on y substitue — w & w et X" a dX, ces deux éléments étant
supposés parcourus dans le méme temps dt.

fx) /

Fig. 3 a. Fig. 3 b.

Les fonctions H, K, L, P, Q étant paires en x et z, cette
condition se traduit par 'identité:

[H (o) — H (— )] da?

+ (K (@) — K(—o) +[L(0) —L(— o))} dy?
+{Kkﬂ——K0—m)+[Lmﬁ—-L&—me}dﬁ

— 2[L(0) — L (— o)]yzdy dz

+ [P(w) + P (—w)]ydsdt — [P (0) + P (— w)]zdydt

+ Q) —Q (—o)ld? = 0,

qui doit étre satisfaite quels que soient dw, dy, dz, di. D’ou
(x, y, z étant fixés):

H(—w) = H(w), L (—o = L (o) ,} (10)
K(—w =K, Q- = Qfu),
tandis que
P heit] = — B ] . (11)

Ainst H, K, L, Q sont des fonctions paires de w, alors que
P est une fonction impaire de o.

Afin que le ds® soit du type hyperbolique normall, nous
imposerons, de plus, que la fonction Q, coefficient de d?, soit
constamment positive.

Ces propriétés sont vraies en toute rigueur.

1 Ce qui permet de mettre en évidence la nature spéciale de la
variable temporelle ¢.
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5. LE ds® ISOTROPIQUE AU SECOND ORDRE PRES EN @

Les fonctions H, K, L, Q étant paires en « sont donc, au
second ordre pres, indépendantes de w.

Imaginons que w décroisse indéfiniment. La forme du fluide
tend vers celle d’une sphére. A la limite, la symétrie sphérique
du champ exige que le ds? soit une forme quadratique ne dépen-
dant que des invariants du groupe prolongé des rotations
autour d’un point, c¢’est-a-dire des combinaisons !:

P=2a4+y?+ 22, t, dB?=dr?®+ dy*+ dz?,
zdr + ydy + zdz , dt.

Ainsi, quand @ = 0, tous les coefficients des termes en da?,
dy?, dz* doivent étre égaux et fonctions de [ seul.

Des lors, H, K, L, Q étant, au deuxiéme ordre pres, indé-
pendantes de w, I'expression (9) du ds® nous donne les condi-
tions nécessaires:

H= K+ Lz2= K + Ly*, quels que soient z, y, z.

Ce qui exige
L

i

0 et H=K. (12)

Au second ordre prés en w, nous pouvons donc poser, a
priori, en coordonnées cartésiennes:

ds?* = H (dz* 4 dy* + dz*) + P (sdy — ydz)dt + Qde* | (13)

ou figurent seulement trois fonctions inconnues:
H{), Plo2%y*+2), Q&+,

Passons des coordonnées cartésiennes z, ¥, z aux coordon-
nées polaires [, 0, §, au moyen de la substitution (1). Il vient:

ds® = H[dI* + I (d 62 + sin? 0d ¢?)] (14)
— P2

I2sin? 0d ¢ dt + Qdt?

1 Cf. par exemple Vox LAUE, La théorie de la Relativité, t. 11,
p. 226.
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ou H et Q dépendent de 1 seul, tandis que P est une fonction
impaire du premier ordre en w et ne dépend que de 1 et sin® .
Les formes (13) et (14) du ds? sont isotropiques. On voit que
les conditions imposées au fluide et le recours aux coordonnées
euclidiennes cartésiennes ou polaires nous y conduisent direc-
tement. Nous dirons que ces coordonnées sont tsotropiques.

6. LES COORDONNEES DE SCHWARZSCHILD

Posons

2 - . (15)

D’on, par inversion,
Il=f(r), H({ = H[]. (16)

Il vient:

Hdz = H[r) {2 (r) dr? (17)
P (e, I, sin? 8) = P[w, r, sin? 0] , (18)
Q) = Qlr]. (19)

Les coordonnées r, 0, ¢, t seront appelées coordonnées géodé-
siques ou coordonnées de Schwarzschild. Ce sont celles qui ont
été le plus souvent utilisées pour intégrer les équations aux
dérivées partielles du champ dans la gravifique d’Einstein.
Nous les noterons aussi

S

1=7T, Ezze: 53:4’, 54:':- (20)

Introduisons trois nouvelles fonctions w, A, v telles que

et = — H[r]f*(r), (21)
M = Qlr], (22)
2w (r,sin? ) = — Plo, r,sin? 0] f2 (r) sin? 6 . (23)
Il vient:
ds? = — e dr? — r? (d 6% + sin? 6d {? (25)

+ 20 nd ydt + e de

ou les fonctions inconnues p. et A ne dépendent que de r, tandis
que la fonction 7 peut dépendre de r et sin? 0.
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§ II. EQUATIONS AUX DERIVEES PARTIELLES
DU CHAMP

1. RAPPEL DES EQUATIONS GENERALES

Désignons par v,q («, B: 1, 2, 3, 4) les potentiels de gravi-
tation en coordonnées de Schwarzschild; par y,, le tenseur de
courbure, ou tenseur de Riemann-Christoffel contracté; par @ g,
le tenseur phénoménal d’énergie. l.es équations générales de la
gravifique tensorielle s’écrivent:

1
Yag = A (@aa — 3 Yap @) (25)

ou A est lié a la constante de la gravitation newtonienne G et
a la vitesse de la lumiere ¢ par la relation

G

(G =6,67.10%¢cgs., A= —1,_87.10%c.gs.)

Représentons par y = [v,q ] le déterminant des compo-
santes covariantes vy,, (potentiels de gravitation) du tenseur
fondamental, et par

Y _1 B
Ias = Y" Toar = 517 (% Ygr + 95 Yaa — 95 Yap) (27)

un symbole a trois indices de Christoffel.
On a2

I = 77 aa F?v T I‘?z I“C:B T O).v L \/_ [ F;v oa L \/__ i (28)

1 Les indices v, &, v ne peuvent étre confondus avec les fonctions
désignées par les mémes lettres.

0yr Oups Oi désignerons respectivement les dérivées partielles

0 0 02

3 o b D u’ == 1! 2’ 3) 4) kd
0%, G;cxoiﬂ 0&; s

v

2 Cf., par exemple, pE DoNDER, Mémor. des Sec. math., fasc. XLITI
p. 2.
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D’autre part, soit en un point du champ, p: la densité
d’énergie (ou d’inertie), p: la pression. Le tenseur phénoménal
pour un fluide parfait est !

— p
82 =209 'Qo: QB ] QI'E ’ (29)
oit Q% = —% est une composante contravariante de la citesse

ds
quadridimensionnelle.

La différence

est la densité substantielle. Elle est égale a la constante ¢ a

I'intérieur (o, = ¢) et a 0 a I'extérieur (o, = 0).

Rappelons aussi 'identité d’Einstein-Cartan:

! 1
LDB (Xg —5 :’2 X) = 0. (30)

Elle entraine, comme conséquence des équations (25), les
quatre équations « de conservation »:

Dy 0F = 0. (31)

Pour expliciter les équations (25) nous aurons donc a
calculer, au deuxiéme ordre pres, en w:

1o le déterminant v et les dérivées partielles
3, LvV—7, 3,sLV—r;

20 les composantes contravariantes y** du tenseur fonda-
mental;

30 les symboles de Christoffel de seconde espece:
T, = 1wk, d d : 32
ap = 37 (% Yan T 08 Vie — 95 Yap) ; (32)

4° les dix composantes y,, du tenseur de courbure;

1 Cf., J. Cuazy, La théorie de la Relativité et la Mécanique
céleste, t. 11, p. 94.
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50 les composantes contravariantes et covariantes de la vitesse
quadridimensionnelle :

dz,

)‘-—'__._.
0 = 7

— & A
Qu - {}\U-Q )

6o les composantes du tenseur phénoménal d’énergie ©,, et
ses composantes mixtes OF;

70 les quatre dérivées partielles (D, OF,

2. LE DETERMINANT ¥

La formule (24) nous donne

R , v o= —r: v = —r2sin20 , Y, = el
‘11 t22 ‘33 44 (33)
~r — “,' = “. = “.' = "‘f == } 5 ":.' = W ‘[} §
‘12 13 14 23 24 34
avec 'YQB — Hx’ﬁa.
D’olt, au deuxiéme ordre pres, en :
v = — rte’ Hgin? 0, (34)
On en tire
- 2 | 1 ’ ’
LLY=7 =< & ¥ + @, (35)
3Ly — v = cot 0, (36)
en posant
dn dy.
K’ = —— ] 4 i —_—
ar’ T dr
Les dérivées partielles en § et ¢ de v et L ;/ v étant

1dentiquement nulles.

n
3. LLES COMPOSANTES CONTRAVARIANTES y"‘“

Nous appliquons la formule

of
r® = (gl (37)
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ou [y]*® est le déterminant mineur du déterminant y, obtenu
en supprimant, dans ce dernier, la o ligne et la [(3° colonne.
Au deuxiéme ordre prés en w, on obtient:

V1= g 22— 1 e _—1 A e pTh
{ = ’ i S 9 1 i T2 ein? d v i
r r? sin? 0
(38)
Qf12 —— \,13 —— ’\(14 — '\f23 — '\,24 — 0 ‘{34 — .—.—m -T)
=S = =TT =X T Y = .

r2 e’ sin? 0’

avec y*® = P
/

4. LEs sYMBOLES DE CHRISTOFFEL

A titre d’exemple, donnons le calcul de I'3; et I'é,.
On a

a

~3 7,
Pog = v Iygy -

D’apres le tableau (38) seules les valeurs 3 et 4 de A donnent
a y** des valeurs non identiquement nulles. Il suffit alors
d’écrire

g :
3T L3
Py = vy3¥ Dy + v 234 >

on, puisque toutes les dérivées partielles en d, et d, sont iden-
tiquement nulles,

3 1 :
Iyy = 9 (%205 v3g + v 05 va4) -
Les composantes 33 et v45 sont d’ordre 0 en w, tandis que

34 et vy, sont du premier ordre. Le produit
Y2 0y Y34

est donc du second ordre en w et peut étre négligé (w? = 0)
devant le premier terme de la parenthése. Il reste donc

T, = cot 9.
On a

4 45
Tog = v " Ty -
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Seules les valeurs 3 et 4 de A donnent a YQ des valeurs non
identiquement nulles. D’ou

4
s S 44
Ths = v F233+! Taaq 5
ou

1
Doy = b} Oy Yay et Tgyy = 9 05 Y34 -
On obtient, au moyen des tableaux (33) et (38)

4
Ty =

e (q — 27 cot 6) ,

ro| €

en indiquant par un point supérieur ° une dérivée partielle
relative & 0 (n = 3, ).

L’application des mémes procédés de calcul nous conduit
au tableau, ci-contre, des quarante symboles de seconde espece
de Christoffel oli, comme il sera convenu dans la suite, un point
supérieur indiquera une dérivée par rapport a 0, et un prime ’
une dérivée par rapport a r.

:%a F?l_ov r?l=0’ 1"';1=O’
1

=0, Thp=—, I =0, I}, =0,

2 1 4 (_04 7})
=0, I, =0, I\, =—, T't, == F s gL

13 13 5 13 28 (7) r)
_ s 3 o N — « N
- 0’ Pl-& — 0’ P14 _i r2 Sinze: Pld- Hé'a

= —re*, T5 =0, To, =0, Ty =0,
. (39)

=0, T3, =0, Iy, = cot 6, I‘:3:~2—e"‘(f;—2nc0t6),
. 2 3 w Tj 4+
—O,I“u*ou F24——§‘m’r24_0’

— —re*sin?@, T = —sin®cosO, Iy =0, Ity =0,

W _ 7 2 w .

1—‘;,‘-—-2—6”7), P(H:E'%a F§4=0, I‘;-L:Ov
N 9 :
—EG,M’ Iy =0, Fj4_0: I‘L“O,

avec I'f, = '},

ARCHIVES DES ScCIENGES. Vol. 11, fasc. 4, 1958. 28
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Remarques. — Les symboles qui contiennent un nombre
impair d’indices 3 et 4 sont nuls. Les symboles qui contiennent
une fois I'indice 3 et une fois I'indice 4 sont de l'ordre de w.

-

5. LE TENSEUR DE COURBURE

Nous donnerons quelques bréves indications sur le calcul,
assez laborieux, mais sans difficulté théorique, des composantes
75, du tenseur de courbure au deuxiéme ordre prés en  (28).

On observera que ce calcul se trouve facilité par les
remarques ci-dessus qui permettent de laisser tomber les pro-
duits tels que

Fsli; Talhioxs

dont les deux facteurs contiennent les indices 3 et 4 une fois
chacun.

On notera aussi qu’il est inutile, le plus souvent, d’expliciter
un terme contenant un meéme indice o« dans deux symboles
différents (opérateur de dérivation ou symbole de Christoffel).
Il suffira d’écrire, en dessous de chaque symbole, les valeurs
de o qui ne lui donnent pas une valeur nulle. Quand ces valeurs
sont toutes différentes, ce terme est nul.

Par exemple,

8. Th =0

Car 'opérateur de dérivation d, ne donne une valeur non
nulle pour le terme étudié que si « est égal a 1 ou 2; tandis que
les valeurs 3 et 4 de cet indice donnent seules (d’apres le tableau
(39)) des valeurs non identiquement nulles au symbole I'{,.

On a:

fu = — 98, T% + T{, T + o, Ly — vy —TH o, LvV—v-
g) 9,T%H = 8,1}, = ar% = 5
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b) P?GI?Q = Fir;a + I‘%I‘fa i F?:s :liB s r?:.ﬁa )

3(3 313
pid 4 {o|2 {4 4 {4'4'
D’ou
T8, T% = (T4)" + (Th)" + (Th)’ + (The)” + 2T T, -
(@) (@)

Le dernier terme, du second degré en «, sera négligé. 1l
vient

2 1 o /i ! ’
I T = 5+ ™.

o) HLV=7 = 0,(2+ )

r 9

d) F?loaL\/—Y:FLOIL\/-—YEE _{_y' |

r ZO‘TM
cx{i |l 1 .
Au total
)\II 7\, ) ) ,
xu E_Q‘rlrz'(}\ —P_)__l'%_
On a
Yy = — 05 T% + T8 T% + O, LvV— v —T%3,LvV— .

e) 8,T% = 8, Ty =

=et(rp —1).
1
oc{ 9 ’ 1
b) lﬂif}al"wa

1y = ré I‘ég + T4 PZQ + T4, F:Q + I%, F;B 3

(3] 3
s{z|2 {1|1 {4‘4 {3]s-
D’ou

2 (T Toe + T3s Tse) + (T3)" -
() (w)

Le second terme de la parenthése, du second degré en w,
sera négligé. Il vient

TS, Th = —26™ + cot? 0.

¢c) BLA =y =sin’0.
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d) T%o,LV— vy =Tyuo LV — 7.

on{l ‘1‘2
D’on
g 'r ’ r
I‘gz()aL‘\/‘{Eﬂ—"Eu[Qﬁ-E()‘ —{»—!_L)‘l
Au total
o r , ,
Zzzzeu[i_}‘g(l_u)]—i-
On a
Lag = O I‘?::f + Fga Fgﬁ + 03 L \/‘“ Y — I‘?:u 0, L '\/*ﬁ Y
a) 0,T% = o, Ty + 0, ;
111
*Ya2!l2
d’ou
0, % = —sin2@[e™(1 —ry)—2] —1.

2

5) T9 T =TTy + I Th + T 5 + TE T, ,

3T
1 111,
2 2127

3|3 313 1

B b | & 4 | 4 2

T}, Ti, T4, I'%, étant du premier degré en w, il reste,
au second ordre prés en o,

8 % = —2[(e™—1)sin? 6 4 1].
¢c) Ly —y =0

d) I‘:Qs‘3 OaL ‘\/“ Y = F:::l o, L '\/_ Y + rj.s 0, IJ\/ Y3

d’ou

55 0y 14 V—y =—e¢* [2 + %(7\’ + p’)] sin? 6 —cos? 6 .

Au total

r
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On remarque que
7_33 = Xzz sin? 0 .

423

(40)

Les mémes procédés nous donnent sans difficulté les autres
composantes distinctes du tenseur de courbure. On obtient

ainsi le tableau ci-contre:

_}‘!I '-)\/ 5 ; {L’
Iy =5 T N —w)——,
% Ee‘“[i Jo e (= u’)li
~29 ! 2 v | 4
xaa = /'22 smgﬁ,
I ) 7\”_ A P 2&_’
ta = — [ T —w + 1]
11221132/14_77-232/-2420’
% :__oi—p. 117_/)‘,_|Ly‘l| ,2\:
Aag = 2 ° l‘fl K 2 Tzqr 2

w7 cot 6 — q

re

On sait de plus que y,, == ¥g,.

6. LA QUADRIVITESSE

Pour un point matériel lié au fluide en rotation, dr = 0,

d) = 0, dy = w dt. Do, daprés (24),

ds® = [¢" — w? (r2sin® 0 — 2 )] de2 .

Au deuxieme ordre pres en o, il reste

dsz = etdi? .

On a donc immédiatement, au méme ordre, les composantes

contravariantes
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et les composantes covariantes 3, = v, Q% de la quadrivi-
tesse tensorielle:

A A
S

Q, =0, O =0, Q —we 2(n—rsin20), Q —e2 | |

7. LE TENSEUR PHENOMENAL

La formule (29) et les expressions ci-dessus, des £ , nous
donnent le tableau des composantes distinctes ©,5 du tenseur
phénoménal:

B = %gu » B = 5,_,2"2 s gy = %"2 sin® 6,

Oy = (p e %) ¢* = ce* (o: densité substantielle), (44)
@12}7@135-9142623E Gy =0,

Oy = w (6 — prtsin? ) .

De plus, on voit que O,; = Qg,.
D’ou les composantes mixtes:

91’7_%1 G)izi_%: ej;_%w @j%d (4‘5)
Et, par contraction, I'invariant
O =30%=,—4s2. (46)
o 82

On en déduit les composantes covariantes du tenseur

1

s = 85— 5 Tug @
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et p r p
My =5 (o—5), Me=5(c—5),
g 7
. E%(c%%)sinzﬁ = [lg, 5I0% 0 ,
g (47)
€
HME§(G+3‘§2),

l
=)

Avee 11 o8

8. LES DERIVEES TENSORIELLES LDBGE

On a
@, 0f = @, (00, Q%) — @, (\i’_z Yg)
oul
@ (00, Q%) = Q,0P 055 + %% (V—=7, 0"
| —£0fa%0, vy,

dp. Q0% =0, o(vV—v.0,0% =0,

113 1|3
B{2|4 B{2|4
Q° o O Tge = (£2°)% 9, Va3 + (@29, Y + 208000, Yas
(w2) () (@)
[3]3 3
Flala’ ®a

D’ou, au deuxiéme ordre prés en :

QP Q%o vy, = O, 1.

By o

1 Cf., par exemple, Vonx LAUE, La théorie de la Relativité, t. 11,
p. 30.
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Ainsi, & ce degré d’approximation,

@g (00, OF) .

I
|

|
>

D’autre part,

P 1
D (? Yg) = ?aqp .

/

Il reste done

9. LES EQUATIONS APPROCHEES DU CHAMP

D’apres les tableaux (41) et (47) les équations du champ,
non identiquement satisfaites au second ordre preés, sont:

= Ally, yee = Allyy, 333 = Allyy, e = Ally,,
ysa = Allg, . (49)

On remarque que la troisieme équation est équivalente a
la deuxiéme; de sorte qu’il reste le systéeme des quatre équa-
tions aux dérivées partielles distinctes:

)\II }\I ; 3 }.L’_Au‘ p

S —w—E =g (L), (50)
2 A

7\'—;1.’—}——-:—e“[1+§r2(c*~%)], (51)

lll )\I ; 5 I_ IJ. p

AT+ = —3e (o+3—2), (52)

1’ 7]’ ! ’ 1 eu

7 3(7\ +u)+2n—-———;(ncot6—n)

A P
= Ae“[2(0+§)r2S1n2ﬁ—n(c+ 3?)]

(01‘1A=—8—f(})-
(4
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Aux équations (49) nous associons les quatre équations de
conservation (32), conséquences des précédentes. D’apres (48),
elles s’écrivent, au deuxiéme ordre pres en w:

c2

%éapz—iéal (a: 1,2,3,4) (54)

ou 'on reconnait la forme classique des équations de la Méca-
nique des fluides 1.
La fonction A ne dépendant que de r, ce systéme se réduit
aux deux équations
2
(55)
11 p="=0.
P

La seconde exprime qu’au deuxiéme ordre pres les surfaces
isobares (p = c'€) sont sphériques.

Dés lors, puisque le fluide supporte une pression uniforme,
on en déduit qu'a ce degré d’approximation (w? ™ 0) la masse
est sphérique.

Remarque. — A 'ordre 0 en o, c’est-a-dire pour une masse
sphérique immobile, nos équations (50), (51), (52) sont les
mémes que celles de Haag dans le fascicule XLVI du Mémorial
des Sciences mathématiques (p. 12). Toutefois, il convient de
noter que la lettre p y désigne la densité substantielle (repré-
sentée chez nous par la lettre ¢) et non la densité d’inertie.

En effet, d’aprés notre formule (29),

_ P
0f = oQaQB—E (v — 0,0,

ce qui s’écrit, avec les notations de Haag 2 (en prenant ¢ = 1):

T = pu; ! — p!

ou
pl=p(gl —wu);
CE

2
* Mémor. des Sc. math., loc. cit., p. 10.

. A y joue le rdle de la fonction des forces.
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et donne bien p; = 0, comme l'indique le troisitme alinéa de
la page 11 du Mémorial.

Au contraire, si p désignait la densité d’inertie, il faudrait
écrire pour un fluide parfait (d’aprés notre formule (29))

p, = p¢l

ce qui donnerait p = pf: # 0, et contredirait 1’alinéa indiqué.

§ 3. APPROXIMATIONS

Dans la théorie classique de la masse fluide en rotation (qui
est une approximation de celle que nous donnons ici), la liaison
entre la vitesse angulaire », la densité ¢ et ’aplatissement &
peut s’écrire 1:

w?2 3

S = T (8 + &%) Arctg k — 3] (56)
ou

Agq d G -

x = =F (Az—Sﬂ:E)- (57)

Il n’existe donc a priori aucune relation univoque entre w
et . Et, sous la seule réserve exprimée par I'inégalité
@7~ 0,168 (58)
| % |c? ’ '
0,168 étant la valeur du maximum du second membre de
I’équation (56), cette équation montre bien qu’on peut attribuer
des valeurs arbitraires a o et x et en déduire un aplatissement £.
Mais, si 'on veut comparer les grandeurs infinitésimales des
termes en w et x du ds?, on doit imposer une relation d’infinitude
entre ces quantités regardées comme infiniment petites. Soit

o =j|x® (59)

1 Cf., par exemple, Paul ApreLL, Traité de Mécanique ration-
nelle, t. 111, p. 174.
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ot j est une fonction (de dimension L2*T-1) qui tend vers une
limite finie, non nulle, quand » tend vers 0, et 8 un nombre
essentiellement positif.

L’inégalité (58) s’écrit alors

72 x |*F 1 < 0,168 ¢ . (60)

Elle est certainement satisfaite quand x est assez petit,
pourvu que l'on ait

B> (61)

De plus, d’aprés (56),
w? k*

Jx]c2ﬁ‘5_'

D’ott 'on tire, au moyen de (59),
. ’
kz\}gf’)’;—”xﬁﬁi. (62)

La condition (61) exige donc que Uaplatissement k soit infi-
niment petit avec x.

Ceci posé, rappelons que, pour obtenir la valeur observée
de I'avance du périhélie de Mercure, il est nécessaire de déve-
lopper le ds? jusqu’a ’ordre de »2*. Adoptons ce degré d’approxi-
mation dans tous les termes du ds? (13) ou (14).

Les coefficients H et Q du ds? étant des fonctions analy-
tiques 2 de w? et %, on remarque que les termes en w? des déve-
loppements de ces coeflicients doivent s’annuler quand » est
nul. En effet, la densité substantielle ¢ étant alors nulle, le ds®
est nécessairement galiléen, quelle que soit la vitesse angulaire w.

I1 en résulte que les termes en w? de H et Q de degré le plus
petit en x sont, au moins, de 'ordre de w?®x, c’est-a-dire de
Iordre de »2*+1,

Nous avons convenu de négliger ces termes. A 'approxima-
tion adoptée, on doit donc avoir 28 + 1 > 2, soit § > %, con-
dition identique a (61). k tend alors vers 0, quand x tend

vers (.

L Cf. pE Si1TTER, Monthly Notices, vol. 76, 1916; et J. CHAzY,
loc. cut., t. 1I, p. 155.
2 Cela se déduit de la forme analytique des équations du champ.
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Si, dans le développement du coefficient P du ds® (14), nous
conservions les termes de 'ordre de wx?, c’est-a-dire de 1'ordre
de P2 on devrait avoir B + 2 < 2, soit B < 0; condition
rejetée d’emblée et d’ailleurs contredite par (61).

Négligeons donc les termes de P de Uordre de wx?. 11 faut alors
B+ 2 > 2, s0it B > 0, ce qui est posé a priori. Dans ces condi-
tions, nous conservons le terme en wx, de l'ordre de %P1
pourvu que 3 4+ 1 < 2, soit

B<1. (63)

Rappelons enfin, qu’a l'ordre de w?® prés, 'équation de

conservation se réduit a (H4).
e 1
— 50 =50,p.

Or, o étant au moins de I'ordre de %, on peut dire que cette
équation est écrite & I'ordre de xw? ~ »2*1 prés, comme le ds?
du champ.

Ainst nous obtenons bien des approximations cohérentes, a
Pordre de »2**1 prés, quand on a

1
1
5 < <1 (64)
lim &2 = — lim ;2 # 0 (65)
=0 " %=0

§ IV. RESOLUTION DES EQUATIONS
EN COORDONNEES GEODESIQUES

1. Les roncTIONS W@ (r), A(r), o (r), p(r)

Les trois premieres équations (50), (51), (52) ne contiennent
que les trois fonctions inconnues w (r), A (r), p (r). Elles peuvent

1
1 Quelques auteurs, J. Chazy, entre autres, ont admis B = 3"

D’aprés (62), cela revient a rejeter le cas d’un aplatissement infini-
ment petit avec ». En effet, pour cette valeur de
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étre résolues indépendamment de la quatrieme (53). Toute-

fois, pour calculer A et p, il est commode d’utiliser I’équation

de conservation (55) qui est une conséquence des précédentes.
Retranchons (50) et (52); on obtient:

N4+ =—Areéyp, (66)

p

c2

Retranchons (51) et (66), il vient:

en substituant p — o &

’ p’
No=—25. 68
; (68)

Nous affecterons les variables r, u, A, p, p de l'indice ; &
I'intérieur et de l'indice , & I'extérieur.

Champ intérieur

a) L’équation (68) donne immédiatement

e)\1 _ S , (69)

o1
C, étant la constante d’intégration dont la valeur sera déter-
minée plus loin par la condition de raccord de A et A, & la
surface (condition de raccord des potentiels v,, & la surface,
posée par Schwarzschild).

b) L’équation (68) ne contient que la fonction inconnue y,
et se résout sans approximation. Son intégrale générale est

—H C A -
eI=1+;l—|—§gr§v (6, = q) - (70)

1% et ' ne dépendant que de r, il en est nécessairement de
meéme de g, d’apreés (66). Si I’on se donnait a priori la densité d’inertie
e (r), (68) donnerait A (r) et (66) donnerait p (r). On tirerait o (r) de
(67) et p de p = ¢2 (p — o). On pourrait, par exemple, choisir la loi
de Roche: o = p (0) — mr2. Dans ce mémoire, nous avons supposé
que la densité substantielle ¢ était constante.
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La constante d’intégration C doit étre nulle. Car, sans cela,

la vitesse de la lumiére suivant un rayon vecteur, donnée par
I'équation ds? = 0, ou df = dy = 0, serait d’aprés (69)

T
ar, ) VG .
dt e

donc infinie au centre comme e*1; ce qui est physiquement
exclu. Ainsi

Pa G + %qr? (71)

¢) En substituant a A4, dans (68), son expression tirée de
(66), on obtient I'équation de Bernouilli en p;:

4 Hy _ A Bp e
Pl =g

rIe Py

Son intégrale générale s’écrit, en utilisant (71)

2
o= —1—, (72)

3+ Cyqe ?

ou C, esi une nouvelle consiante d’intégration a déterminer.
En coordonnées géodésiques, désignons par o le rayon de

la sphere limite du fluide. Si nous supposons que la pression est
nulle sur cette surface, on a

pyla) =0 et

pr (@) = ¢
On tire alors de (72)
U-l('l)
i —

C2 — = Ee 2

D’ou
_ 2q ,
; et (73
8= V 1 + »xoa?
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Et

I/1 +xri—\/1-}—xa2

g ———— — (74)
34/1 +xa2-'/1+ xr:

pp=c*(p,—q) = ¢

Champ extérieur

A Textérieur p = p = 0. Nous affectons les variables r, u,

A, o, p de l'indice
a) L’équation (68), ot ¢ = 0, a pour intégrale générale

La condition de raccord de p, et u_ a la surface donne, au
moyen de (71) et (75)
Cy =% ;

d’ou

ey e B (76)

b) D’autre part, I’équation (66) se réduit a

’ ’

Ay T g = 0.
D’ou

AR =k
g’ = Cue s

Or, a l'infini (r;, = o) le ds? doit étre galiléen; e“E a pour
limite 1, tandis que e*t tend vers c2; ce qui exige C; = ¢2. Ainsi

3
e}‘E = ¢* (1 + x%—) . (77)

E

La condition de raccord de et et e pour r, =r, = «

donne alors immédiatement

Ci=102(1 4+ xa?) . (78)
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. Au total, le champ a U'ordre 0 en & (® ™ 0) est donné par
les formules suivantes:
A lextérieur:

ty 1
e = —-:,
'1—}—}(:';
;'l __C2 » —‘—2 \_)2
e = Z(S\/lﬁ-xa ——I/l—i—xrl)
2q
o= _— (80)
\/1 T B
3 e -
1 + »a?
X V1t 0l — /T T xad
p, = ¢°¢q = e
301 +xa2 — 1 + oy

2. La roncriON 7 (r, 0)

Les fonctions A (r) et w (r), maintenant connues, tant a I'in-
térieur qu’a I'extérieur, il nous reste a résoudre I’équation aux
dérivées partielles en » (53), au premier ordre en x.

Substituons a A" et " leurs expressions (67) et (68) en fonc-
tion de e* et de p; I'équation en % devient:

rtaq’ + %xﬁe”%ﬁ + e* (g — 7 cot 0) -

. [2 (e* — 1) + 3xr26“qﬁ] n = 6y.r4e“§sin2 0,

ou (81)

‘\q
=g
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On remarque que les fonctions e"1 et p,, d’'une part, et e“e
et p., d’autre part, étant analytiques en x, I’équation (81) a,
a l'intérieur comme a 'extérieur, tous ses coefficients analy-
tiques en x. En vertu d’un important théoréme de H. Poincaré
(sur les intégrales des équations dépendant d’un ou plusieurs
parameétres), il en est de méme de sa solution en 7 1.

Observons de plus que, si la gravitation n’existait pas
(G = A = 0), ou si la densité substantielle ¢ était nulle, le ds?
serait galiléen et v serait identiquement nul. Cette fonction est
donc de I'ordre de x au plus d’aprés I’équation (81).

En tenant compte de cette remarque, nous exprimons cette
équation, au premier ordre en x en y portant p et e* a I'ordre 0
en x, c’est-a-dire en y substituant simplement, a ['intérieur
comme a lextérieur, c a p et 1 a e, et en laissant tomber le
deuxieme terme et le quatriéme qui sont de I'ordre de %% On
obtient ainsi 'équation plus simple

r27;”+'r]—{1c0t6—_—By.gr‘*sinzﬁ. (82)

Affectons la variable 7 de I'indice ; & I'intérieur et de I'in-
dice  a I'extérieur, cette équation s’écrit, a I'intérieur (o = q)

P’ 4 % — 7 cot O = 6xrtsin 6. (83)

et, a 'extérieur (¢ = 0),

re Ny 4+ Ny — Mg cot 6 = 0. (84)

a) Conditions aux limites

A lintérieur et a l'extérieur, la fonction v doit étre nulle,
quels que soient r et r,, quand 0 = O et 6 = =.
En effet, en un point quelconque Q (r > 0, 6 = 0, ¢ quel-

—
conque) de I'axe de rotation Oz, un élément d(Q de faisceau
lumineux a pour composantes spatiales:

dr £ 0, d6 = 0, d{ quelconque,

1 H. PoincaRrE, Les méthodes nouvelles de la Mécanique céleste,
t. I, p. 52 et suivantes.

ArcuivEs DES SclEncEs. Vol. 11, fasc. 4, 1958. 29
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et sa durée de parcours dt est donnée par I’équation ds® = 0
qui se réduit ici a

—e'drr + 2w (r,0)dddt + tdee = 0.

Comme cette équation doit admettre la méme racine dt, quel
que soit dy, on voit immédiatement que

n(r,0) = 0", (85)

A Uintérieur, n doit donc aussi, par raison de continuité, étre
nulle pour r = 0, quel que soit 6:

N (0,0) =0.

A Uextérieur, le ds* devant étre galiléen & I'infini, » doit
étre également nul quand r; est infini, quel que soit
e:'flg(ooa G)EO.

b) Résolution de I'équation en 7

La structure de 1'équation (82) et la condition 7 (r, 0) = 0,
nous invite & chercher une solution de la forme

n = »{ (r) sin? 0 . (86)

ou L (r) est une fonction de r seul satisfaisant aux conditions
aux limites précisées 2.

Nous allons montrer que cette solution existe. Nous éta-
blirons qu’elle est unique (§ VI).

1 Cette condition se déduit aussi de la relation
207 = — P[w, r, sin% 6] f2 (r) sin2 0,

ou P doit étre analytique en sin? 0 (23).
2 Si I'on impose aux coefficients du ds? (13) d’étre analytiques en
z, ¥y, z, on voit que la fonction P doit étre analytique en

y? 4+ 22 = [2 (r) sin? 0.

(CI. P. Dive, Ondes ellipsoidales et Relativité, note II, p. 137.
Gauthier-Villars, édit.) On en déduit, d’aprés la relation

207, = — P [e,, r, sin? 0] f2 (r) sin2 0,

qu’il doit en étre de méme en sin? 6 de la fonction .
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La transformation (86) raméne 1'équation aux dérivées
partielles (82) a I’équation différentielle d’Euler en T (r):

g —2¢0 = 6-:77'4 (87)

— G =0, (88)

et a intérieur:
(89)

est

ou Cy et C sont deux constantes d’intégration. Mais, comme &
Vinfini, le ds? doit affecter la forme galiléenne, {, doit tendre
vers 0, quand r;, augmente indéfiniment. D’ou C = 0 et
G
r o s
“E T re ("
L’intégrale générale de I’équation avec second membre (87)

est
" 3 4 2 G
“ﬁI :_5-,"[";—(:8’“1 ':.—;' (rlga)?
I
ou Cg et C sont deux constantes d’intégration. Mais nous ne
conservons que la solution qui reste finie au centre du fluide

(r, = 0); done C = 0, et

Les constantes Cy et Cg4 se calculent en exprimant le raccord
de £, (r,) et L (r,) et de leurs dérivées premieéres { et g, a
la surface du fluide, ot r, = r, = o (Schwarzschild).

1
On a

’ C5 £ 12 3
7 — - 5 L€
e 51[+2C5r1.
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D’ou les deux équations linéaires en Cy et Cg4

2C51~E~S—:f~~!5—20¢3
Csm—%=—~%a3
qui donnent
C5w——§~a5, Cg = — o
et
Cg = a%{ G = zmn— &

La solution en v satisfaisant aux conditions du
est, au premier ordre en x:

X 2 2 .
= 20 g,2 54 2
‘4145"1(3"1 Sa)Sln 0,
2w L
N, = — —»x—sin? 0.
8 5 r,

3.

(90)

probleme,

[.LE CHAMP EN COORDONNEES GEODESIQUES

Les formules (79), (78), (91), (92) nous donnent donec, a

I'ordre de %2, les expressions cherchées du ds?, de la

densité g,

de la pression p, tant a I'intérieur qu’a l'extérieur du fluide.

A Uintérieur :

dsy = — (1 —xry +%ry)dr] —r (@0 +sin?0.d¢?) ]
2 2 3 2 5 9\ o 294ddd

+g°’x";( r,— ac)sm v dt (93)

+02[1#i(3a2——r2)+ 3x2(a2—r)'d12

) 1 16 I
pd 2 9 I/
F[ = q[[ —Z(a-fr)(”l "—*Vl")] s (9‘1)
pp=—xg(a®—r) (1 —xal) (95)
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A Uextérieur :

s’ = 2 e ™\ a2 (26 4 sin® 0d ¢ |
sE——(l-—xr—%—xT) P~ Fg + sin $2)
E re
4 &
S — sin? ! >
5 @x —sin O0dddt (96)

E

3
+ ¢® (1 -+ x;t—‘) di ,

E

pg =0, pp=20.

Avant d’établir I'unicité de la solution que nous venons de
donner, nous traduirons les formules précédentes dans le sys-
teme des coordonnées isotropiques.

§ V. LE CHAMP EN COORDONNEES
ISOTROPIQUES

Les difficultés logiques auxquelles on se heurte quand on
cherche a donner un sens concret aux coordonnées spatio-
temporelles du «mollusque » d’Einstein, sans signification
géométrique préalablement définie, ont souvent été signalées 1.

Le plus souvent les auteurs se sont accommodés de ces im-
précisions en regardant la variable temporelle t comme le temps
universel classique déterminé par I’Astronomie 2 et les variables

v Cf. en particulier: J. Haac, Le probléeme de Schwarzschild,
Mémor. Sc. math., t. 46, p. 2. — S. ZAREMBA, Journ. math. pures et
appliquées, 9¢ sér., t. 1, 1922, p. 105. — H. Evraup, Les équations
de la dynamique de I’Ether (theése, 1926). — J. Lt Roux, Principes
et méthodes de Meécanique invariante. Gauthier-Villars, édit., Paris,
1934. — Ed. GuiLLAUME, Archives des Sciences physiques et naturelles
de Genéve, 1917, XLIII, p. 5, p. 89, p. 185; XLIV, p. 48; 1918, XLVI,
p. 309; 1920, II, p. 125. — Voir aussi H. PoiNcARE, La Mécanique
nouvelle, introduction de Ed. GuiLLaume, p. X. — G. TiErcY, La
théorie de la Relativité dite genérale et les observations astronomiques
(Genéeve et Paris, 1939). — P. DivE, Les interprétations physiques de
la théorie d’Einstein, 3¢ édit., 1948, p. 18. Préface de E. EscLanGcoN
(Dunod, édit., Paris).

2 «temps sidéral»
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r, 0, ¢ de Schwarzschild comme des coordonnées polaires eucli-
diennes. En sorte que, pratiquement, c’est la théorie appelée
semi-einstetnienne par Painlevé qui est, en fait, appliquée
(cf. J. CHazY, loc. cit., t. I, p. 33).

Dans la présente étude, le systeme de coordonnées rectan-
gulaires rectilignes ou polaires, utilisé pour traduire les symé-
tries du champ et son caractére révolutif, est regardé d’emblée
comme un systeme dans lequel les déplacements de solides
1déaux (géométriques) sont représentés par un groupe euclidien
(celul des rotations, par exemple) L.

Grace a cette interprétation précise, nous avons pu expri-
mer, sans ambiguité, la rotation uniforme du fluide au moyen
de la substitution classique ¢ = wt + ¢, 2

Or, nous avons montré, au début de ce mémoire, que ce
systeme ¢euclidien » se confondait au second ordre prés en o,
au moins, avec un systeme de coordonnées isotropiques 3.

(’est donc seulement en coordonnées isotropiques, rectan-
gulaires ou polaires, que les mesures de longueurs d’angles ou
de temps possedent, dans notre interprétation, une signification
concrete immédiate. [La variable [, par exemple, désignant la
distance au centre du fluide directement mesurée au moyen de
I'unité de longueur étalon.

1 1.e groupe euclidien ne s’impose cependant pas (H. Foincaré):
un groupe cayleyien, qui respecte aussi la notion de déplacement
sans déformation pourrait étre plus commode en Astronomie et étre
utilisé. Cf. P. Dive, Ondes ellipsoidales et Relativité, 1950, p. 130.
Gauthier-Villars, édit,

2 Comme d’ailleurs cela a été fait maintes fois, dans plusieurs
ouvrages sur la Relativité:

Dans les Fondements de la théorie de la Relativité générale, Einstein
rappelle que dans ’ensemble des substitutions utilisables «sont en
tout cas contenues celles qui correspondent a tous les mouvements
relatifs des systémes de coordonnées (tridimensionnels) ».

Cf. aussi H. WEyYL, Temps, espace, matiére, trad. Juvet, 1958,
p. 196; von Lauk, La théorie de la Relativité, t. 11, 1926, p. 173;
J. Cuazy, La théorie de la Relativité et la Mécanique céleste, t. 11, 1930,
p. 194; P. Dive, Les interprétations physiques de la théorie d’Einstein,
loc. cit., p. 71.

3 Cf., par exemple, J. Cuazy, loc. cit., t. I, pp. 102 et 249.
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1. PASSAGE DES COORDONNEES GEODESIQUES
AUX COORDONNEES ISOTROPIQUES

Nous connaissons déja la forme générale (14) du ds® dans
le systeme des coordonnées isotropiques polaires I, 0, ¢, ¢:

ds? = H[dlz + [2(d0® + sin? 0 .d )] —
—P2sinz0.dydt + Qde. (97)

Il nous suffira donc de calculer les expressions de H, P, )
en fonction de ces coordonnées.

Désignons par r () la fonction inverse de [ = [ (r) (16).
H (I) et r () doivent satisfaire les deux équations (15) et (17)
(que nous pouvons écrire:

H()r = —r2() (98)
{ H(l) = — e*r? (99)

v i ; dr
ou r est mis pour i

Nous affecterons les variables r, H, P, Q de l'indice | &
I'intérieur, et de I'indice  a 'extérieur.
a) Calcul de r (1)

A Uintérienr substituons a e*! son expression (70). On tire,
par division de (99) par (98)

dr
% N W S (100)
"1 ;/1 + xr;
L’intégrale générale de cette équation s’écrit
2Bl
S e Ty (101)

ou B est une constante d’intégration.
A Ulextérieur, substituons a e"E son expression (69). On
obtient de méme I’équation

dl _ 1 dry (102)

;]

Lo,

/ o3
VAR
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dont l'intégrale générale est

= Biafy o ® “_3)

ou B, est la constante d’intégration.

B et B, se calculeront en exprimant le raccord de r, et r,
et de leurs dérivées r. et r., pour I = a.

[’équation (98) et I’équation dérivée en I:

H 4+ 2Hl=—2rr, (104)

montrent, en effet, que le raccord de H et H’, pour | = «
(a: rayon 1sotropique de la sphere fluide) ne peut étre satisfait
que si r ({) et r’ (I) sont continus pour [ = a.

On tire de (101) et (103)

% — 2B —(11—+KXB}3;2)2 : (105)
et
dFrzE - %( _gB?GF) (106)
D’ou les deux équations:
48%:131(1—%5?—;)- (108)

Par addition de ces équations (107) et (108), on obtient:

N 3
4B :Bl(i . ); (109)

(1 — » Bt a?)2 2 B, a,
puis, par division,
1 [o)\?
9B = — (X} .
2B B, ( ) (110)

/

D’ou, de (109):

4B = B, (1 — xB2a?)? . (111)
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On a d’ailleurs:

2Ba 1_

1T —xB2a? (L)

ra) = a =
On choisira B, de fagon que ! et r soient des infiniment
grands équivalents a 'infini. Ainsi, d’aprés (103), B; = 2.
Deés lors (111) donne

2B = (1 —xB2a?)3 . (113)

Cette équation définit B en fonction implicite de xa?2.
Il vient au deuxiéme ordre en x:
1 3 21

_ —_— 2 w2 4.
B 2(1 L% +16x a) (114)

On tire alors de (101), au troisieme ordre prés en x:

2
ro= l[1 1 %(12—3&) + %(l"—Qale + 210,4)] (115)

Et, de (103), au méme ordre d’approximation

» ad %2 ab

mais que

dg"E 3 Ko
PE. T (119)
l=a

I

1 Remarque: Les relations (110), (111), (112) ne sont pas indé-
pendantes: (112) et (111) donnent (110), (110) et (112) donnent (111).
Les relations (111) et (112), par exemple, entrainent (107) et (108),
quel que soit B,. Il fallait s’y attendre, car si r () est continue, les
dérivées " et I’ = r”! sont continues aussi, d’apres (100) et (103).

2 On peut la résoudre par itération en partant de By,= -;— .
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(115), (116) et (119) montrent que r, et r, n’appartiennent
pas a un méme systéme (repere) de coordonnées spatiales !

Cette remarque fait ressortir le caractére abstrait et pure-
ment analytique des coordonnées géodésiques.

b) Calcul de H (1)
On a (98)

\2
-

A Vintérieur, on tire de (115), au troisieme ordre pres en x:

3 9 9 719 -
H = —i —%(12 —3a¥) — ot (0 — 8a2l + 17aY) - | (120)

A Textérieur, on tire de (116), au méme ordre:

,o_al 3 ,a o,
On vérifie que
b4 J
H (a) = H_(a) = — 1 4 %;_,—,42, (122)
et que
dH aH 9
i - B Y T .0 123)
(dl)tﬁa (dl )tﬁa xa 4 priad. (123}
¢) Calcul de P (1)
Dans la relation (23)
P2 = 2wx?, (124)

nous devons exprimer £ au degré 0 en %, en fonction de la dis-
tance isotropique ! et du rayon isotropique a de la sphere
fluide.

L pg (1) n’est pas le prolongement analvtique de r; (). Pour la
sphere immobile, cf. b DoNDER, Mémor. des Sc. math., fasc. XLIII,
pp- 9 et 21. (Au second membre de la formule (134) (p. 21), il manque

3
le facteur —2-)
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A lintérieur, on a obtenu, en coordonnées géodésiques (90):

2
’I

g, = (31-‘;)—-5a2)~

5

Il suffit donc de substituer a r, et « leurs expressions en
fonction de [ et @, a 'ordre 0 en x, ¢’est-a-dire d’écrire simple-
ment [ au lieu de 7, et @ au lieu de «:

2
g, = %(312— 5 a?) . (125)

D’oli, au premier degré en %, donc a l'ordre de x»P'!
1 \ X .
(; <p <! ), c¢’est-a-dire a l'ordre de »2 au plus

By = ——%mx(3l2— 5a?) . (126)

A Ulextérieur on a, en coordonnées géodésiques (90):

Il suffit encore de substituer @ & « et [ & r, pour obtenir, en
coordonnées isotropiques a 'ordre O en x:

e oo sy 1927
Et, a lordre de %2, au plus,
4 a’
P = TOR (128)
On vérifie que:
4
P (a) = P, (a) = gmxaz. (129)

et que

(d_FE) = (f{&) — wgmxa. (130)
dl ] _q dl [y _q
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d) Caleul de Q (1)

On a (22)
Q = M

A Uintérieur, en coordonnées géodésiques (80)
A e/, s /——— 5\ 2
e 57;(3\/1+xm—— 17-:41'])-

En exprimant « et r, en fonction de @ et I, au premier degré
en %, on obtient, a 'ordre de »?2:

(22— 3a2) — = (I8 —6a2i® + 21 aﬂ- (131)

A Uextérieur, en coordonnées géodésiques (79)

o )‘E_ 2 a3
Qsze :c*(1+xr—)

E

ou o3 et 7! seront exprimés en fonction de a et [, au premier
degré en %x. On trouve:

3 2 3
Qy ;cz[i—i—za——%as(T—%)]' (132)

On vérifie que

Q, (@) = Q la) = (1 + na® —x*al) (133)

(d_Q‘) = (C&) = Ac2xa(1 ——%az)- (134)
dl l=a dl l=a -

e) Calcul de p (1)

A Uextérieur: o, = 0.
A Uintérieur on a, en coordonnées géodésiques (73):

et que

o = e
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ou, au troisiéme ordre prés en x:

or =4 [1 — —Z— (1 — xo?) («® — ’f)] : (135)

Dans le deuxiéme facteur du crochet, il suffit d’écrire a
. o wy 2 ‘2 . ,
au lieu de «. Dans le troisiéme, «® et r; seront exprimés, en
fonction de a et [, au premier degré en x. Il vient

1
x, ., %
" ﬁq[laz(a"*lg)—{—g(l"—Sazlz%—/{a‘)]- (136)
Remarque. — Au deuxiéme ordre prés en x, la variation de

la densité d’inertie est conforme a la lot de Roche.

f) Calcul de p (1)
A Uintérreur :
op=q+cPp;

d’oll, en coordonnées géodésiques [(70) et (136)], au troisieme
ordre prés en x:

2
p, = — E{;xq (1 — » a?) (a2 — r?) . (138)

Et, au méme ordre prés, en coordonnées isotropiques:

c? X s 2 2 2

A UVextérieur; p, = 0.

1 A titre de vérification, cette formule peut étre obtenue a partir
de la relation (69):

et des formules (131) et (133). En remarquant que
Pr ((I) =4q —i— ("-2 P1 (G) = g, on a, en eHEtv

,Q, (@)
— QU

D

2
e |

L ®



448

CHAMP TENSORIEL D'UNE MASSE FLUIDE

2. LLE CHAMP EN COORDONNEES ISOTROPIQUES POLAIRES

Au moven des formules (120), (121), (126), (128), (131), (132)

nous pouvons écrire le ds* du champ en coordonnées isotro-

piques polaires, au degré d’approximation que nous venons de
préciser.

A Uintérieur:

ds® = —

ro|

[1 o % (3 a? — [l) - -%xg (l‘ — 8 a?l? —+ l;(?“‘)]
[

X [dI? + I*(d6® + sin? 0. d §?)]

. (1
wx?2(30% —5a? sin?0.dydt

o

+ &

1 -+

ro| X

(3 a2 — 12) — ’l'—b (18— 6a22 - 21 a“‘)] ez .

A lextérieur :

' a’ 3 .ab ..
dS; = li — Z'l— -Jr -§K“ ']Tz (11 -T (1.)]
X [diz + 12 (d 62 + sin? 0. d L))

A ab

B B (141)
= == L ad g dt
z @ sin Y

3 1,2 5
Lot [1 4 x%—%%(iﬂlﬁ—— a;]dﬂ.

Nous avons obtenu aussi:

A

Uintérieur (136) et (139):

/

4

0)



EN ROTATION 449

: ; 0 Ao
Remarque sur la dimension nulle de la quantité xa? = o a?,

pour le contrdle de 'homogénéité des formules obtenues.
On sait que

ou G est la constante newtonienne de la gravitation universelle
(G = 6,67 x 1078 c.g.s.).
La formule de dimension de G est L3T*M™; celle de A

?

est LM™: celle de ¢ est ML™®; on voit que xa? est sans dimen-

:
sion, donc indépendant du systeme d’unités choisi.

3. LE CHAMP EN COORDONNEES ISOTROPIQUES RECTILIGNES
RECTANGULAIRES

La formule (13), d’ot nous sommes partis, nous donne
immédiatement, au moven des expressions ci-dessus (120), (121),
(126), (128), (131), (132) de H, P, Q:

A Uintérreur :

2 A 3
21— Egar ) - 22— 8 g2l 417 gt
ds, = [1 2(3(1 # ]6/.(1' 8 a2l 1/(1)]
X (dx? + dy? 4 dz?)
L %mx(S 2 —5a% (yds — zdy) dt (144)
b . »>
1 — 2302 —— 1t 6212 L 21 aM | c2di2
| [1 2([ 3 a?) 16([ 6 a®l® _la}]c dt
ou [? est mis pour 2* 4 y* + z2.

A Uextérieur :

3 2 5
ds® = __[1 _,caT L %xz%(u + a)}(dﬁ 4 dy? + dz?)
[t 5
4 gmx(;—a(;dy — ydz) dt (145)
3 2 5
+[1 + Z“T_A%(u a)%]cgdﬁ
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§ VI. UNICITE DE LA SOLUTION 1

a) Exprimons d’abord I’équation en 7 (82) dans le systéme
des coordonnées isotropiques, ou la méme variable I mesure, a
I'intérieur comme a l'extérieur, la distance au centre.

On a

, 1
= 0o, (146)
dl
’ 1 2 d*r -

(@)

D’ou I'égquation isotropique en x:

2 ; 2p
F _([) (afﬂ_aln%) -+ Oz'q—cotﬂ.bon = 6xr‘%sin20.

dr\2
(@)

Mais, v étant de I'ordre de x, il suffit, pour obtenir 'expres-
sion de cette équation au méme ordre, de réduire les fonctions

9 dar\? d?r , ., " L g .
r2 (1), Ef) T I’ordre O en %, c’est-a-dire de leur substituer
respectivement [2, 1, 0, a l'intérieur comme a l'extérieur. Il

vient,

2Ojq 4+ Y q—cot0.93n = 6xl4%sin26. (148)

On voit qu’au premier ordre en %, ’équation en 7 conserve
la méme forme dans les deux systémes de coordonnées.
Le changement de variable

L = Log ! (149)

donne ensuite & cette équation la forme canonique des équa-
tions aux dérivées partielles du type elliptique 1:

Vn—0, n—cot.dyn = exe“%sinze, (150)

1 E. GoursAT, Analyse mathématique, t. 111, 1942, p. 83.
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ou
2
Vy=0,7n+097.
La fonction inconnue 7 (L, 0) devant ici satisfaire aux
conditions aux limites suivantes:

(L, 0) =0, n{L, =) =0, quel que soit L;
7 (— @, 0) =0 (au centre du fluide, quel que soit 0), (151)
7 (4 o, 0) = 0 (& linfini, quel que soit 0) .

b) La solution 7 obtenue satisfait bien aux conditions ci-
dessus. Supposons qu’il existe deux telles solutions: =n; et 7,.
Leur différence w = 7, — 7, satisferait aux mémes conditions
et serait une intégrale de ’équation homogeéne:

[

Vw-—0 w—cot6.0jw = 0. (1

(&)}
(3]
—

Opérons la substitution

/ L
W o= (\1 - e;‘,) W. (153)

L’équation (152) devient

1 1 e

VW — 0, W — cot 0.9y W — =

[=1h

ou le coefficient de la nouvelle fonction inconnue W est essen-
tiellement négatif.

D’apres (153), W doit satisfaire aux mémes conditions aux
limites que .

L unicité de notre solution v sera donc établie si nous démon-
trons que la seule intégrale de I'équation (154) satisfaisant &
ces conditions est W = 0.

Imaginons que W ne soit pas identiquement nulle dans la
bande infinie B comprise entre les droites 6 = 0 et 6 = =.

Cette fonction qui doit étre continue dans B, comme 7, 7,
et «w, admettrait alors nécessairement une borne inférieure
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W,, < 0, ou une borne supérieure W, > 0, ou a la fois une
borne inférieure < 0 et une borne supérieure > 0 L.

L.£
B
+1 ":m—« 7 TR ’ZJ
(@)
0 T ’
.
-1 W/ =
B
Fig. 4.

De plus, W étant nulle a I'infini, ces bornes ne pourraient
étre atteintes qu’en des points intérieurs de B a distance finie 2,

! En établissant la correspondance biunivoque

e
I =thl. ou L = log \/: I o (155)

on substitue a4 la bande infinie B, le domaine fermeé [¢3] limité aux

droites 6 =0, 6 ==, =1, £ = —1. La fonction continue

W[, 8] dans [¢3] est bornée dans ce domaine.

2 Voici une démonstration de cette proposition intuitive utilisant
les propriétés des ensembles:

Supposons que ’ensemble des valeurs de W admette dans B une
borne supérieure Wy > 0.

Pour chaque valeur de L, la fonction W (L, 6) continue en 6
dans l'intervalle fermé [0, =] atteindrait, dans cet intervalle une
borne supérieure W (L) = 0 et ’ensemble des valeurs W (L) admet-
trait encore Wy comme borne supérieure.

Soit € > 0, tel que

e< W, . (156)

Par définition de la borne supérieure Wy, il existerait des valeurs

L telles que
4

WiL) > Wy i - (157)

Voir la suite a la page suivanle.
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Pour montrer que W est nécessairement identiquement nul
dans B, il nous suffit d’examiner le cas ou cette fonction
admettrait une borne supérieure Wy > 0. Le cas d’une borne
inférieure W, < 0 se ramenant au premier par la substitution
de — W a W.

Soit done Py un point intérieur de B a distance finie, de ou
W atteindrait sa borne supérieure Wy, > 0. Je dis d’abord que
W serait un maximum de W.

Considérons un domaine fermé [Dy] contenu dans (B) et
dont P,; est un point intérieur. Dans [D] tous les coefficients
de I'équation (154) sont analytiques en L et 6 (cot 6 £ 0). Il
en résulte, d’aprés un théoreme de E. Picard, que I'intégrale W
de cette équation est aussi analytique en L et O dans le méme
domaine 1.

Suite de la note 1.

Or W (L) tendant vers 0, quand | L | augmente indéfiniment, on
peut choisir un nombre N > 0, tel que | L | > N entraine

€

WL <3

(158)
Dans ces conditions, je dis que I’ensemble des valeurs | L | est borné
par N. B

En effet, s’il existait une valeur | L | > N, on aurait, pour cette
valeur, d’aprés (158)

ou
€ el €

-

Ce qui, d’aprés (157), entrainerait

W, — =< =

- 2 —2‘* ou e >W

M ?

en contradiction avec (156).
Ainsi I'ensemble des valeurs | L | de | L | telles que

W, —WI() < 3 (159)

est certainement borné par N. On en déduit que la borne supérieure
Wy, si elle existe, est atteinte a distance finie dans B.

La démonstration est semblable dans le cas d’une borne infé-
rieure W,, << 0.

1 Cf. E. GoursaTt, Analyse mathématique, t. 111, 1942, p. 230.
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On est alors certain de l'existence et de la continuité des
dérivées partielles 3, W, 3, W, df W, 23 W dans [D].
W,; est donc bien un maximum de W (L, 0), et I'on a en
Py:
W, >0, 3 W[P,] =0, 0W[P,] = u} oo,
NWIP, <0, ogW[P,]<0.

Or ces conditions ne satisfont pas 'équation (154). On en
conclut que W est identiquement nul et que 7, = 7, dans B L.

CONFRONTATIONS

1. TERME EN wx

Dans La Théorie de la Relativité et la Mécanique céleste (t. 11,
p. 173), J. Cuazy a donné le terme correctif & ajouter au ds?
galiléen extérieur induit par une masse sphérique tournante,
de tres faible densité et dénuée de pression, pour tenir compte
de sa rotation, au premier ordre en w:

Ce terme, qui s’écrit

gf}[%;m (xdy — ydx), (161)

(ou M est la masse de la sphere, R, son rayon; f, la constante
de la gravitation universelle; r; la distance au centre du point
(x, y, z); la vitesse de la lumiére étant prise pour unité; et
I'axe Oz étant placé sur ’axe de rotation) est égal au terme
correspondant de notre formule (145). Au degré de nos approxi-

. o 1 :
mations (coz‘/.~w 0, »? 20, w~x" ({3 > 5)) I'influence de la

pression interne sur la morphologie de I’Ether extérieur est done
négligeable.

1 Cette démonstration étend au domaine infini B et a I'équa-
tion (150) a coefficients non tous analytiques dans B, une démons-
tration de Paraf pour les domaines bornés et les équations a coeffi-
cients tous analytiques dans ces domaines.
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2. TERME EN dtf2 POUR LA MASSE AU REPOS

Dans le méme ouvrage, J. Chazy a donné, pour le champ
extérieur d'une sphére au repos, le ds? isotropique approché
suivant, obtenu en poussant, dans le coefficient de dt?, les
approximations jusqu’au carré de la constante de la gravita-
tion. On a, en désignant par r la distance isotropique au centre
et V la vitesse de la lumieére !:

P
2 , B 2 2 »2
ds? = — (kl Ty ;‘) (dx* + dy* + dz?) +
2ot 4 o !‘La 2 )
(V8 — 8 2 )de,  (162)
ou
4
w = grpfR (163)

est le coefficient attractif klépérien; o désignant ici la densité
substantielle; f, la constante de la gravitation; R, le rayon
de la sphere 2.

Le coefficient de dt? dans (162) devrait donc étre équivalent
(aux notations pres) a notre coefficient Q, (132) correspondant,
puisque w, qui est ici nul, n’y figure pas.

Avec nos notations, le coefficient attractif dans le repere
isotropique s’écrit

I/
%ﬁan:" = --—%xcf*. (164)

/ ad  x?g® 3
02(1 %~z—+j)~m), (165)

V' J. Cuazy, loc. cit., t. 11, p. 157. Ce ds? coincide avec le ds?
approché de de Sitter (Proceedings, Amsterdam, vol. XIX, 1916,
p- 371) obtenu en substituant, dans le ds? bien connu de Schwarz-

. .y ; o = 5
schild, exprimé en coordonnées géodésiques, la somme r -+ Ve

la variable géodésique r, et en négligeant les termes en el
2 Cf. Cuazy, loc. cit. t. II, p. 119.
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et identique & notre coefficient Q_ [(132) et (145)]

3 “5] - (166)

2 a®
c [1 +A—l-—~?(31ﬁa)l—2

Or la quantité entre parentheses (165) excede la quantité
entre crochets (166) de la quantité

5
%ﬁ%, (167)

de I'ordre de l'approximation considérée et, par suite, non
négligeable.

Cet écart vient de ce que, dans le ds? isotropique de Chazy,
w est encore la valeur du coefficient attractif dans le repere
géodésique de Schwarzschild, alors que r y désigne bien, comme
il convient, la nouvelle mesure isotropique de la distance au
centre.

L’expression de ce ds* présente donc une incohérence.

Pour la faire disparaitre, 1l suffit, dans (163), de substituer
a la mesure géodésique R du rayon de la sphére, son expression

en fonction de sa mesure R en coordonnées isotropiques:
R=R+<L; (168)

puis de substituer & p dans (162) son expression en fonction de

R et de la nouvelle mesure p au coeilicient klépérien, aux
infiniment petits d’ordre supérieur prés, on a

_ = 3l
b= u(i + 2 Vz) (169)
Le coefficient de dt® dans (162) devient ainsi
112

.25 em . _d
2_ - I reres .
v > Twvr T SR,

(170)

On vérifie bien, en effet, qu’en substituant, dans cette

expression, [ aret « a R, ¢ 4 V, on retrouve I'expression exacte
du coefficient Q. de d? dans notre dsy, (145).
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