Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 11 (1958)

Heft: 3

Artikel: Étude de l'absorption interstellaire dans une région obscurcie du Cygne

Autor: Golay, M.

DOI: https://doi.org/10.5169/seals-738820

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

de plus faible intensité, on découvre qu'il est possible d'attribuer n'importe quel type HD à une étoile de type MK compris entre B0 et B2. Il existe ainsi une importante dispersion horizontale. Le tableau 3, relatif aux supergéantes des catalogues [1] et [2], fait ressortir que la dispersion se présente sur un côté seulement de la diagonale du tableau à double entrée. Ce dernier effet est encore bien plus marqué quand on utilise seulement les supergéantes généralement brillantes de [1]. Ainsi, pour un type spectral de MK, il y a moins de dispersion dans le cas des supergéantes que dans celui des naines. Vu le petit nombre d'étoiles, il n'a pas été possible de trouver la raison de cette distribution différente des supergéantes et des naines. On peut admettre que pour les étoiles faibles, les difficultés techniques introduisent une plus grande dispersion mais ceci n'explique pas la différence des dispersions constatées. Il n'a pas été possible de mettre en évidence un effet de la matière interstellaire, cependant les erreurs très grandes (qui n'ont pas pu être portées sur ces tableaux) ont toujours lieu avec des étoiles très rougies.

BIBLIOGRAPHIE

- 1. Johnson, H. L., W. W. Morgan, Ap. j., 117, 313 (1953).
- 2. HILTNER, W. A., Supplément nº 24 des Ap. j.

M. Golay. — Etude de l'absorption interstellaire dans une région obscurcie du Cygne.

Résumé. — Mesures d'excès de couleur au voisinage de NB 144 dans le Cygne. Le nuage de matière interstellaire débute aux environs de 850 ps. et l'excès de couleur varie entre 0,3 et 0,65 magnitude. Le milieu interstellaire paraît présenter une absorption très variable aux environs des amas NGC 6871, NGC 6883.

1. Introduction.

La région examinée est celle qui est occupée par le nuage obscur NB 144 du catalogue de Barnard compris entre 19 h. 55 et 20 h. 07 en ascension droite et 32° 30-37° en déclinaison. Ce nuage obscur se trouve au sud du nuage d'étoiles du Cygne. La région étudiée comprend aussi des étoiles brillantes comme η Cygni, χ Cygni, 57 Cygni, b³ Cygni et l'amas galactique NGC 6871. Nous avons mesuré photoélectriquement, d'une part la magnitude apparente V, les indices de couleur U-B, B-V dans les systèmes de Johnson et Morgan [1] pour toutes

Fig. 1.

les étoiles signalées de type spectral 0 à B₉ dans le *Henry Draper Catalogue* et se trouvant au voisinage immédiat de NB 144 et, d'autre part, des étoiles mesurées par J. Stebbins, C. M. Huffer et A. E. Whitford [2]. Quelques étoiles de type spectral inconnu ont été mesurées car elles se trouvaient très près d'étoiles bien

classées (ce sont des étoiles comprises dans le champ de l'amas NGC 6871). La photographie — figure 1 — montre la région étudiée et le contre-type — figure 2 — situe les étoiles mesurées.

2. Instruments.

Nous avons utilisé le télescope de 120 cm de l'observatoire de Haute-Provence sur lequel était monté le photomètre de

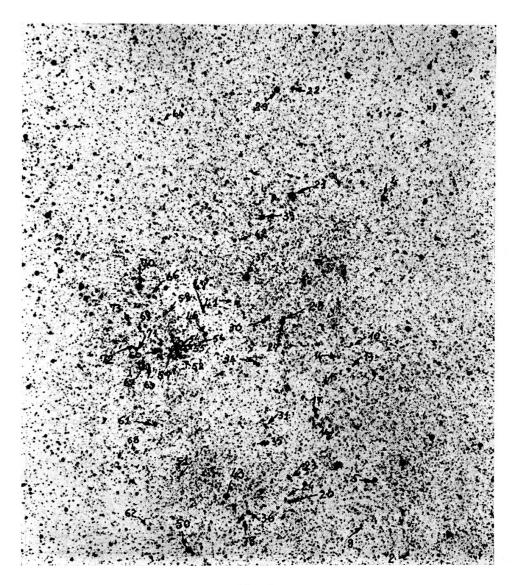
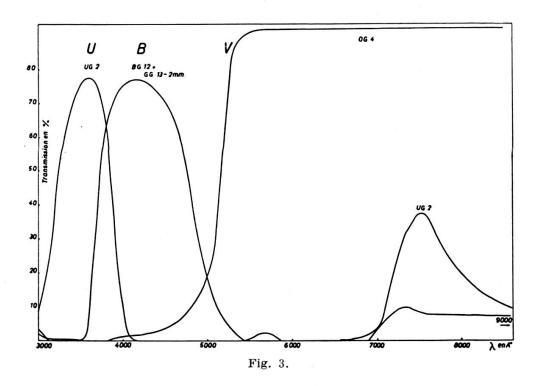



Fig. 2.

F. Lenouvel [3] équipé avec une cellule de Lallemand, à multiplicateur d'électrons. La photocathode était constituée par une couche d'antimoine-caesium non oxydée dont la réponse spectrale se trouvait dans [4]. La figure 3 donne la courbe de transmission des filtres relatifs aux trois couleurs U, B, V et le tableau 1 donne la désignation de ceux-ci. Avant de parvenir

à la cellule, les rayons lumineux devaient subir deux réflexions sur des surfaces aluminées, l'une sur le miroir parabolique, l'autre sur le miroir secondaire.

TABLEAU 1.

Couleurs .	Filtres
V	OG 4 1 mm
B	BG 12 1 mm + GG 13 2 mm
U	UG 2 1 mm

3. Conduite des observations.

Chaque nuit, deux étoiles d'indices de couleur différents, appartenant au champ stellaire étudié (à l'exception de λ Ceph), servaient à déterminer le coefficient d'absorption atmosphérique et le coefficient d'absorption différentielle. Les deux étoiles

choisies appartenaient à un groupe de quatre étoiles. Les deux étoiles non utilisées à la détermination du coefficient d'absorption étaient cependant enregistrées plusieurs fois chaque nuit afin de pouvoir appliquer la méthode des coefficients conditionnés [5].

N° interne	N° HD	Nom	α 1950	δ 1950	v	B-V	Type spectral
8 21 —	165908 187640 188892 210839	99 Her — 22 Cyg λ Ceph	18 h 5,2 19 h 45,9 19 h 54,3 22 h 9,9	30° 33′ 28° 12′ 38° 22′ 59° 11′	5,04 6,38 4,93 5,00 ¹	$egin{pmatrix} + & 0.52^{-1} \\ - & 0.06 \\ - & 0.08 \\ + & 0.26 \end{matrix}$	F ₇ V (MK) B ₈ (HD) B ₃ (HD) O _{6f} (MK)

TABLEAU 2.

4. Rattachement des magnitudes et des indices de couleur au système standard de Johnson et Morgan.

Nous avons mesuré les magnitudes apparentes et les indices de couleur d'étoiles prises parmi celles données dans [1]. Le choix a été dicté par la nécessité d'avoir une répartition uniforme des types spectraux et de pouvoir effectuer les mesures avec de petites valeurs de sec z.

Soient: Cu et Cy les indices de couleur observés, m la magnitude apparente observée, U-B, B-V les indices de couleur selon [1], V la magnitude apparente selon [1], n le nombre de mesures.

Le tableau 3 réunit les résultats obtenus et les valeurs trouvées dans [1].

a) Rattachement des indices de couleur. — Les figures 4 et 5 montrent les relations entre Cu et U-B d'une part, Cy et B-V de l'autre.

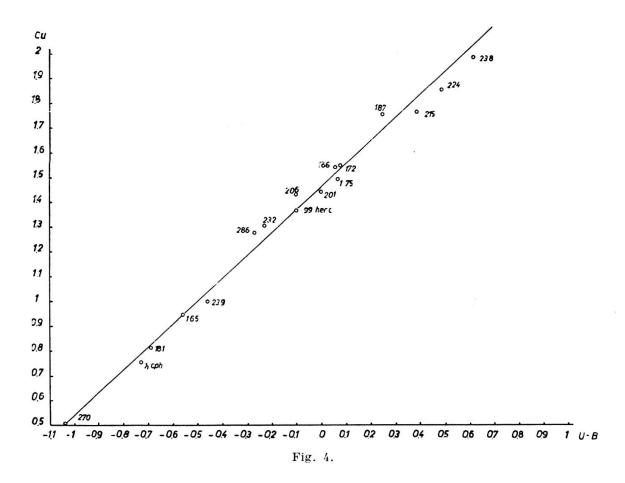
L'application de la méthode des moindres carrés nous conduit aux expressions:

$${\rm B-V} = 1{,}003 \, + \, 0{,}939 \; {\rm Cy}$$
 erreur probable $~\pm~0{,}018 \, \pm \, 0{,}010 \, \pm \, 0{,}010$

¹ Valeurs tirées de [1].

$$\begin{array}{c} {\rm U\text{-}B} = -\ 1{,}604\ +\ 1{,}102\ {\rm Cu} \\ {\rm erreur\ probable} \\ \pm\ 0{,}04\ \pm\ 0{,}03\ \pm\ 0{,}03 \end{array}$$

L'erreur sur B-V est du même ordre de grandeur que notre erreur interne tandis que l'erreur sur U-B est trop élevée par


TABLEAU 3.

N° Mor- gan	Nº HD	Nom	Type Yerkes	Cu	Су	m	U-B	B-V	v	n
165 172 175 181 186 187 201 206 232 224 239 270 286 191 261 215 238	147394 156164 157214 160762 161868 163506 173667 176437 196867 188512 198478 214680 222439 165908 210839 185144 198149	τ Her δ Her 72 Her ι Her γ Oph 89 Her 110 Her γ Lyr α Del β Aql 55 Cyg 10 Lac κ And 99 Her λ Ceph σ Dra η Ceph	B5 IV A3 IV G0 V B3 V A0 V F2 Ia F6 V B9 III B9 V G8 IV B3 Ia O9 V — F7 V O6 f K0 V K0 IV	0,944 1,544 1,492 0,813 1,537 1,749 1,441 1,428 1,303 1,851 — 0,509 1,274 1,365 0,756 1,762 1,978	- 1,249 - 0,967 - 0,419 - 1,274 - 1,011 - 0,664 - 0,576 - 1,115 - 1,109 - 0,203 - 0,670 - 1,307 - 1,113 - 0,525 - 0,826 - 0,205 - 0,066	2,329 3,087 0,795 2,408 2,443 0,730 1,967 2,930 2,402 2,398 1,262 1,985 1,130 1,119 1,522 2,762	$\begin{array}{c} -0.56 \\ +0.08 \\ +0.07 \\ -0.69 \\ +0.06 \\ +0.25 \\ 0.00 \\ -0.10 \\ -0.23 \\ +0.49 \\ -0.46 \\ -1.04 \\ -0.27 \\ -0.10 \\ -0.73 \\ +0.39 \\ +0.62 \end{array}$		3,89 3,14 5,39 3,80 3,75 5,46 4,20 3,25 3,77 3,71 4,82 4,88 4,13 5,04 5,00 4,68 3,43	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

rapport à cette dernière. L'étude des résidus montre que ceux-ci dépendent de la discontinuité de Balmer. Nous pouvons alors établir les relations suivantes:

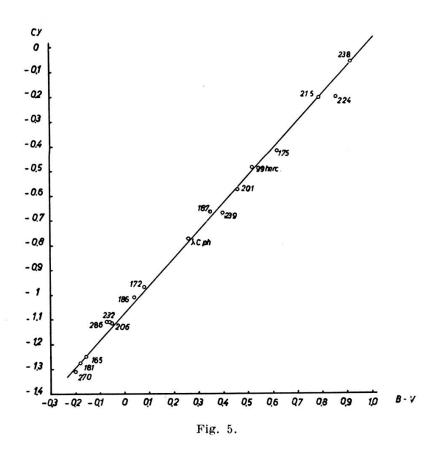
$$\begin{array}{c} \text{U-B} = -\ 1,603\ +\ 1,129\ \text{Cu}\ +\ 0,003\ \text{D}\ -\ 0,325\ \text{D}^2\\ \text{erreur probable}\\ \pm\ 0,09 & \pm\ 0,028\ \pm\ 0,04\\ \text{B-V} =\ 1,002\ +\ 0,894\ \text{Cy}\ -\ 0,134\ \text{D}\\ \text{erreur probable}\\ \pm\ 0,016 & \end{array}$$

La relation entre U-B et Cu se trouve donc nettement améliorée et l'erreur probable devient ainsi compatible avec notre erreur interne. Cet effet de la discontinuité (ce n'est pas seulement un effet de la température de couleur, car il est le même que l'étoile soit rougie ou non) provient de notre filtre B qui transmet plus d'énergie pour les longueurs d'onde inférieures

à 3700° que celui utilisé dans [1]. On peut exprimer U-B et B-V par des relations ne comportant que des indices de couleur Cu, Cy. En effet, nous avons montré [6] que pour les étoiles de type spectral compris entre 0 et B₉, la discontinuité de Balmer pouvait être obtenue par l'expression:

$$D = 0.487 + 0.494 \text{ (U-B)} - 0.391 \text{ (B-V)}$$

et la relation correspondante avec Cu et Cy:


$$D = 0.672 + 0.535 \text{ Cu} - 0.336 \text{ Cy}.$$

D'où les relations suivantes pour passer du système Cu, Cy à U-B, B-V:

$$B-V = 1,090 + 0,939 \text{ Cy} - 0,072 \text{ Cu}$$
 (1)

$$U-B = 1,750 + 1,363 \text{ Cu} - 0,147 \text{ Cy} - (0,305 \text{ Cu} - 0,190 \text{ Cy})^2$$
 (2)

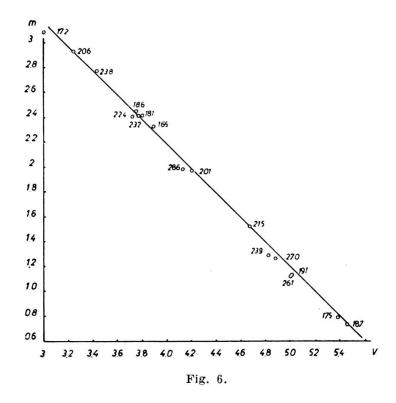
limitées cependant aux étoiles de type spectral compris entre 0 et B_9 . Cette restriction ne nous touche pas car toutes les étoiles mesurées satisfont à cette condition.

b) Rattachement des magnitudes. — La figure 6 donne la relation entre nos magnitudes et celles de [1]. La droite de régression satisfait à la relation:

$$V = + 6,146 - 0,986 \text{ m}$$
 erreur probable $\pm 0,02 \pm 0,015 \pm 0,01$ (3)

5. Résumé des observations.

Le tableau 4 donne les indices de couleur obtenus et les magnitudes apparentes. Les indices U-B et B-V ont été établis avec les expressions 1 et 2, la magnitude V avec l'expression 3.

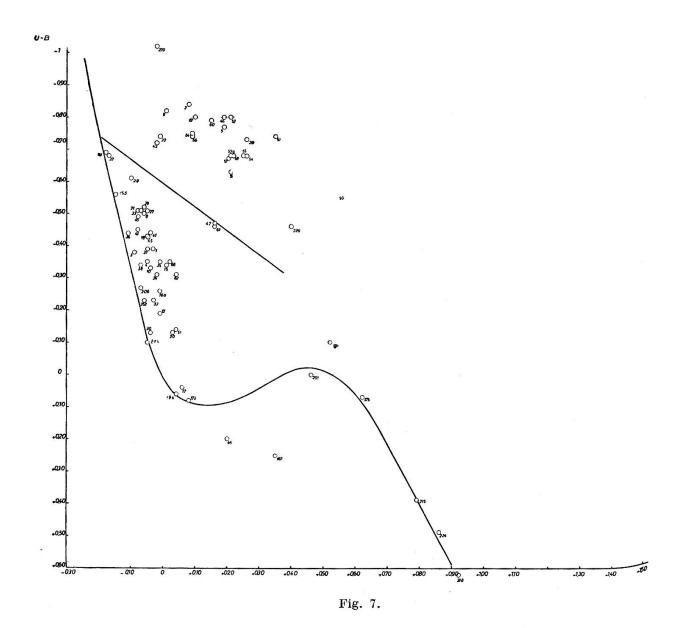

Les types spectraux sont ceux du HD et nous reviendrons plus loin sur cette question. La précision interne des mesures est caractérisée par une erreur probable de: 0,01 pour Cu0,015 pour Cy0,01 pour m.

6. Détermination de l'excès de couleur et de la magnitude absolue.

Les mesures des tableaux 3 et 4 sont reportées sur un diagramme (figure 7) ayant B-V en abscisses et U-B en ordonnées. La ligne continue représente le contour de la séquence des étoiles non rougies ainsi qu'il en résulte de [1]. Une droite de pente

$$\frac{\mathbf{E}u}{\mathbf{E}y} = 0.72.$$

(Eu est l'excès de couleur sur U-B et Ey celui sur B-V) représente le parcours que tracerait une étoile d'un type donné au


fur et à mesure que croît le rougissement interstellaire. Ey est la longueur de la projection sur B-V du segment de droite de pente 0,72 reliant la position de l'étoile rougie à celle non rougie de même type spectral.

ε .	64 64
Λ	7,7,7,9,6,8,8,8,6,6,6,4,7,7,6,6,7,7,7,8,7,7,7,7,9,8,7,7,7,7,9,8,7,7,7,7
B-V	+ + + + +
U-B	
m	48,48,48,48,48,48,48,48,48,48,48,48,48,4
Cŷ	- 1,112 - 1,128 - 1,130 - 1,130 - 1,130 - 1,130 - 1,113 - 1,11
Cu	1,096 1,134 1,110 1,1384 1,1384 1,1384 1,1384 1,1384 1,292 1,2987 1,351 1,100 1,100 1,254 1,353
Type Sp HD	BB
81950	31° 18′ 18′ 18′ 18′ 18′ 18′ 18′ 18′ 18′ 18′
α1950	#4444444444
8 11:	
HD on BD	186777 186980 187235 187459 187459 187640 187640 E 226107 E 226428 E 226428 188992 188891 188991 188994 189906 189906 189355 189335 189432 189432 189432 189529 189529 189529 189529 189529
°Z	28 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25

- 0	٦ +		٠.	6	10	7.	1	1	2	5	5	2	23	2	13	67	2	1	1	1	1	-	1	1	1	1	1	1	-	61
6,86	0,00	00,1	0,00 0,00 0,00	2,0	0,00	8,03	5,56	8,56	7,70	8,73	8,69	7,27	7,84	8,77	8,18	7,87	7,19	6,07	7,41	8,34	10,05	6,36	8,26	7,90	9,35	4,97	7,69	9,87	7,99	92'9
0,08	40,0	20,0	0,00	0,0	0,10	+ 0,16	+0.57	+0,0,0	+ 0,21	+ 0,21	+0,35	+ 0,26	+0,25	+ 0,21	+ 0,21	+ 0,22	+ 0,15	+ 0,16	+0.04	+0.09	+ 0,20	+0,09	+ 0,10	+ 0,02	+0.27	-0,16	+ 0,30	+ 0,12	+0.08	+ 0,19
6,49	44,0 -	0,72	0,40	0,45	0,00	75,0 -	-0.54	-0,14	0,80	-0,68	-0,74	-0.68	-0,68	-0,63	-0,68	-0,68	-0,79	-0,46	-0,31	-0,75	+ 0,20	-0,74	08'0 —	-0,35	-0,72	-0,71	-0,72	-0.53	-0.49	0,78
1,36	7,0,1	0,21	1,62	1,65	0,44	0,11	2,66	-0,37	0,20	-0.54	-0,50	76,0	0,37	-0.58	0,01	0,33	1,02	2,16	0,29	-0,15	-1,87	1,86	-0,07	0,30	-1,14	3,27	0,51	-1,70	0,21	1,45
- 1,174	-1,123	1,120	1,162	0.000	0,300	0,915	-0,482	-2,102	-0.887	-0.876	-0,728	-0.822	-0,831	-0,867	-0.872	-0,862	-0.946	806,0 —	-1,030	-1,012	-0.821	-1,009	-0.998	-1,054	-0.817	-1,275	-0,780	-0.961	-1,002	006,0 —
1,001	1,053	0,783	1,039	0.119	4,040	1,010	0,945	1,343	0,715	0,817	0,760	0,818	0,815	0,860	0,821	0,815	0,719	1,017	1,171	0,757	1,660	0,766	0,715	1,130	0,784	0,799	0,782	0,956	766,0	0,727
B3	Б С 7	д С	Д С	200	e C	R2	B0	B9	В		В			B5	B2	B5	B0	B8	B9	B_2		B3	B_2	B9	В	B2p	B_2	B3		
31° 05′	36° 27′	37 34	32° 56°	30 38 95° 59'	50 03	36° 17′	$32^{\circ} 05'$	33° 21′	$35^{\circ} 29'$	35° 29′	35° 46′	35° 41′	35° 38′	35° 38′	35° 36′	$36^{\circ} 16'$	35° 34′	34° 17′	32° 27'	39° 37′	35° 59′	$36^{\circ} 32'$	35° 23'	33° 45′	35° 54′	38° 42′	35° 35′	35° 37′	$36^{\circ} 2'$	35° 38′
59,0	59,1	59,3	59,1	0,00	0,1	7,0	2,8	3,8	3,8	3,8	4,0	4.2	4,3	4,3	8,4	5,3	5,6	5,9	6,1	9,9	6,3	6,9	7,1	7,4	7,4	7,8	7,7	7,9	8,5	4,3
19 h	19 h	19 h	19 h	20 H	70 H	70 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h	20 h
189847	189864	189901	190001	190047	190429#	190467	190603	190813	E 227586			BD+35° 3955*	BD+35° 3956*		E 227696*	191139	191201	191243	191292	191395	E 227836	191456	191495	191530	E 227960	191610	191612	E 228007	191765	1
04	41	7.5	£,7	45	40	47	20	51	52	52a	53	54	55	56	57	58	09	61	62	5 9	65	99	67	89	69	70	71	72	73	74

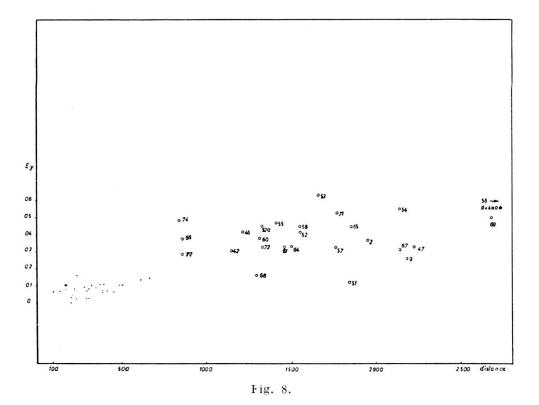
Etoile 46: composante brillante. Un astérisque désigne les étoiles susceptibles d'appartenir à l'association I Cygni [7]. Remarques:

La séquence des étoiles non rougies ne comporte que des éléments de classe V. Pour l'instant, les indices de couleur intrinsèques des supergéantes bleues sont mal connus. Il est de

coutume de prendre des indices identiques ou presque à ceux des étoiles de classe V de type spectral équivalent. Pour les supergéantes bleues et les étoiles 0 nous avons pris B-V=-0.28 comme indice de couleur intrinsèque ainsi que le suggère W. W. Morgan dans [8]. Vue l'incertitude sur l'excès de couleur qui se présente du fait que nous ignorons souvent la classe de luminosité, nous n'avons donc pas tenu compte de la variation

du rapport $\frac{\mathbf{E}u}{\mathbf{E}y}$ avec le rougissement et la température de l'étoile.

Le tracé de la droite de rougissement nous permet de déterminer le type spectral approché de l'étoile considérée si nous admettons qu'elle est de classe de luminosité V. Nous faisons l'hypothèse que, parmi toutes les étoiles de la région considérée et dont la magnitude apparente est inférieure à 8,5, celles qui sont des supergéantes bleues ont été repérées et se trouvent dans les listes des types spectraux de Morgan, Johnson, Hiltner, Fehrenbach, etc... Nous admettons que toutes les autres sont de classe V et nous leur attribuons le type spectral déterminé en traçant la droite de rougissement. Dans le tableau 5 (colonne 4), il n'est pas fait mention de la classe de luminosité supposée V lorsque le type spectral a été déduit graphiquement. La colonne des types spectraux donne parfois deux types complètement déterminés. Nous avons tenu à les signaler car ils font ressortir l'incertitude qui peut régner sur le type et la classe de l'étoile considérée. Lorsqu'il y a ainsi incertitude, nous avons choisi le premier type indiqué pour l'attribution d'une magnitude absolue. Les magnitudes absolues sont celles qu'ont publiées Keenan et Morgan [9] pour les classes de luminosité III, Ia, Ib et celles publiées par Fehrenbach [10] pour les classes V. L'attribution de ces magnitudes absolues à des étoiles prises individuellement est loin d'être satisfaisante et dans ces conditions nous n'introduiront pas d'erreurs importantes en adoptant pour l'absorption totale la relation:


$$Av = 3 Ey$$
.

Le tableau 5 réunit les résultats tirés des observations assemblées dans le tableau 4.

7. Structure de la région étudiée.

En portant les distances en fonction de l'excès de couleur ainsi que le montre la figure 8, nous pouvons constater qu'une absorption se manifeste à partir de 850 parsecs. Les mesures ne permettent pas d'établir avec précision la distance à laquelle le nuage commence. Nous pouvons seulement affirmer que l'ab-

sorption est négligeable à 500 parsecs, prend toute sa valeur à 850 parsecs et ne croît plus pour les distances plus élevées. Nous remarquerons que la plupart des étoiles présentant une absorption élevée se trouvent dans un cercle de 1° ½ de diamètre dont le centre est au voisinage de l'étoile n° 58. Or la photographie montre que ces étoiles se trouvent en dehors du

contour apparent du nuage obscur. Ainsi la présence des amas NGC 6871 et 6883 modifie la répartition statistique des étoiles dans cette région et dissimule l'existence du nuage obscur. Selon Barhatova [12], la distance de NGC 687 serait comprise entre 850 et 900 parsecs, celle de NGC 6883 entre 960 et 1000 parsecs, donc ces deux amas se trouveraient derrière l'écran de matière interstellaire car à l'intérieur du cercle de 1°½ nous n'avons aucune étoile présentant une faible absorption et il est fort probable que plusieurs des étoiles comprises dans cette zone appartiennent à l'un ou l'autre de ces amas. Ceci confirmerait donc le début d'absorption vers 850 parsecs.

Pour terminer, je tiens à remercier particulièrement M. J. Dufay, directeur de l'Observatoire de Haute-Provence,

TABLEAU 5.

N°	N° HD	Type spec- tral HD	Type spectral adopté	Ab- sorp- tion totale 3 Ey	Magni- tude abso- lue M	Magni- tude appa- rente V	Indice de dis- tance	Dis- tance (pc)
	406777	B5	В7	0,30		7,37	6,97	169
$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$186777 \\ 186980$	B0	O7,5	1,08	$\begin{vmatrix} + & 0,1 \\ - & 5,1 \end{vmatrix}$	7,43	11,45	163 1949
3	187161	B9	B7	0,07		7,43 $7,62$	7,45	309
4	187235	B9	B7	0,19		5,77	5,48	124
5	187459	B0	B0,5 Ib	1,41	$\begin{bmatrix} + & 0, 1 \\ -6, 0 \end{bmatrix}$	6,48	11,07	1600
8	187640	B8	B5	0,3	$\begin{bmatrix} -0.0 \\ -0.7 \end{bmatrix}$	6,38	6,78	226
9	187688	B8	B0	0,75		8,14	11,69	2177
10	E 226107	B9	B7	0,78	+0.1	8,55	8,27	450
13	E 226130	B9	B9	0,18	+ 0,1 + 0,8	9,92	7,90	380
15	E 226356		B7	0,41	+0.0 + 0.1	9,46	8,95	616
16a			B8	0,31	+0.5 + 0.5	8,68	7,87	374
17	E 226428	В9	A0	0,19	+1,1	9,23	7,94	387
18	188651	B9	B6-7	0,26	+ 0,1	6,52	6,16	170
20	_	_	B9	0,30	+0,8	9,55	8,45	489
21	188892	В3	B5	0,22	-0,7	4,93	5,41	120
22	188891	B3	B1	0,84	-3,2	7,30	9,66	855
23	188894	B8				7,48		
24	188948	B9	В7	0.30	+ 0,1	8,41	8,01	399
27	189016	B9	В3	0,42	1,7	7,82	9,10	660
28	189066	В3	B3	0,25	-1,7	6,00	7,45	309
29	189178	Вз	B3-5	0,31	-1,0	5,41	6,10	165
30	189315	B9	B9	0,00	+ 0.8	7,31	6,51	200
31	189335	B9	B7	0,28	+ 0,1	7,63	7,25	281
32	189395	B8	B8	0,17	+0,5	5,48	4,81	91
33	189432	B5	B5	0,25	-0,7	6,29	6,74	222
35	189529	B9	B7	0,31	+ 0,1	8,94	8,53	508
36	189596	B9	B7	0,06	+0,1	7,54	7,38	299
37	189687	B3	B3	0,06	-1,7	5,18	6,82	231
38	189689	B9	B8	0,12		7,27	6,65	213
40	189847	B3	B5	0,22	-0,7	6,86	7,34	293
41	189864	B9	B7-5	0,30	+0,1	6,65	6,25	177
42	189901	B5	B1	0,90	-3,2	7,99	10,29	1142
43	196001	B9	B6 V	0,21	0,4	7,88	8,07	411
45	190047	B8	B5-7	0,31	0,0	6,53	6,22	175
46	190429	Oe	O5 f	1,25	- 5,1	6,56	10,41	1207
47	190467	B2	B5 II:n	0,96	-4,6	8,09	11,73	2218
50	190603	B0	B1,5 Ia+	2,55	 7,0	5,56	10,01	1004
51	190813	B9	B6 III	0,34	- 3,1	8,36	11,32	1836
52	E 227586	В	BO III	1,25	4,5	7,70	10,95	1548
52a			B1	1,32	- 3,2	8,73	10,61	1324
53	E 227611	В	B0 pe	1,89	-4,3	8,69	11,10	1659
							1	

N°	N° HD	Type spec- tral HD	Type spectral adopté	Ab- sorp- tion abs totale lu 3 Ey M	le tude o- appa- e rente	Indice de dis- tance	Distance (pc)
54	BD+35°3955		B1 lb	1,62 - 6	5,0 7,27	11,65	2138
55	$BD + 35^{\circ} 3956$		B0 V	$\begin{vmatrix} 1,02 \\ 1,40 \end{vmatrix} - 4$		10,74	1406
56	E 227634	B5	B0 Ib	1,47 - 6		13,30	4571
57	E 227696	B2	B0,5 IV/B2 V	$\begin{vmatrix} 1,17\\0,96 \end{vmatrix} - 4$		11,22	1753
58	191139	B5	B0,5 III	$\begin{vmatrix} 0,30 \\ 1,32 \end{vmatrix} - 4$		10,95	1548
60	191201	B0	B0 III/09 V	1,11 - 4	250	10,58	1306
61	191243	B8	B5 Ib	0,96 -5	155	10,81	1452
62	191292	В9	B7	0,48 + 0		6,83	232
64	191395	B2	B0,5 V	0,97 - 3		10,87	1492
65	E 227836		B2::pne	1,32 -2	850	11,33	1845
66	191456	В3	B0,5 III	1,11 - 4		9,65	851
67	191495	B2	B0V	0,91 - 4	(5)	11,65	2138
68	191530	B9	B7 III	0,45 - 3	,1 7,90	10,55	1288
69	E 227960	В	B0	1,48 - 4	$,3 \mid 9,32$	12,14	2679
70	191610	B2p	B3 V	0,09 - 1	,7 4,97	6,58	207
71	. 191612	B2	08/B2 Ia	1,56 -5	,1 7,69	11,23	1762
72	E 228007	В3	B3	0,96 -1	,7 9,87	10,61	1324
73	191765		WN 6	_ _ 3	,9 7,99	_	1300
74			B0	1,46 - 4	,3 6,76	9,60	831

TABLEAU 5 (suite).

Remarque: L'étoile nº 73 a été classée par Ondelicka [11].

qui m'a autorisé à utiliser le télescope de 120 cm de l'O.H.P. durant l'été 1954 et M. F. Lenouvel qui a laissé son installation photoélectrique à ma disposition.

BIBLIOGRAPHIE

- 1. Johnson, H. L. et W. W. Morgan, Ap. j., 117, no 3, mai 1953.
- 2. Stebbins, J., C. M. Huffer, A. E. Whitford, Ap. j., 91, no 1, janvier 1940.
- 3. LENOUVEL, F., C. R. Académie des Sciences, 232, 1951, 385.
- 4. Surugue, Technique générale du laboratoire de physique, t. 1, p. 308.
- 5. Weaver, H. F., Ap. j., 116, no 3, novembre 1952, Appendix p. 638.
- 6. Golay, M., «Memorie» della Società Astronomica Italiana, vol. XXVI, 4.

- 7. Morgan, W. W., A. E. Whitford, A. D. Code, Ap. j., 118, no 2, septembre 1953.
- 8. Morgan, W. W., The large-scale Structure of the galactic system, p. 57.
- 9. KEENAN, P. C., W. W. MORGAN, Astophysics Hynek, p. 12.
- 10. FEHRENBACH, Ch., Handbuch der Physik Astrophysik, I, p. 59.
- 11. Ondelicka, Colloque de Liège, 1957.
- 12. BARHATOVA, Journ. astr. Russ., 27, no 3, 180, 1950.

Pierre Bouvier. — Sur l'extinction par un nuage interstellaire à symétrie sphérique ou cylindrique.

Nous avons étudié récemment l'influence possible d'un grand nuage de matière interstellaire diffuse sur la stabilité d'un amas galactique placé à proximité du nuage ¹. Ce dernier était considéré comme étiré à la façon d'un filament de bras spiral, le long de la trajectoire qu'il décrit sous l'effet de la rotation galactique et l'on pouvait procéder à certains calculs en remplaçant le nuage par un cylindre de matière homogène. L'hypothèse d'homogénéité, simplification motivée par notre ignorance de la répartition de matière diffuse, implique pour le nuage un rayon fini (nuage à bord net).

Envisageons maintenant un nuage qui ait encore une symétrie axiale (ou centrale) mais dont la matière diffuse soit répartie selon une loi de densité de la forme

$$\rho = \rho_0 f(r) \tag{1}$$

où f(r) est une fonction de la distance r à l'axe (ou au centre), monotone décroissante, telle que f(0) = 1 et tendant vers $f(\infty) = 0$ plus vite que $1/r^2$. Un tel nuage n'a pas de rayon fini (nuage à bord flou); l'extinction qu'il produit, maximum sur l'axe (ou au centre) ira en décroissant lorsqu'on s'éloigne de celui-ci, sans jamais s'annuler complètement.

Examinons de plus près l'influence d'un seul nuage à bord flou sur l'extinction de la lumière venue d'étoiles situées derrière lui; une étoile d'éclat E₀ en l'absence de nuage aura en présence

¹ P. Bouvier, Publ. Obs. Genève, A 56 (1958), noté par la suite I.