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5. Weyl, H., Zs. f. Physik, 56, 330 (1929). Inequivalence entre les
theories de Weyl et de Majorana a ete demontree par
J. Serpe, Physica, IS, 295 (1952), et independamment par
M. Fierz. Voir aussi J. A. McLennan, Phys. Rev., 106, 821

(1957).
6. Touschek, B. F., Nuovo Cimento, 5, 1281 (1957). Cet article traite

le groupe (12) et en deduit la conservation de la charge
leptonique. II ne nous est parvenu qu'apres la preparation
de cette note. II nous semble pourtant interessant de signaler
que dans notre expose les tenseurs T( S( j^p. J( sont
formes par la moitie de la somme, resp. de la difference, de
l'expression habituelle et de sa conjuguee de charge.

Universite de Geneve.

Institut de Physique.

G. Wanders 1 et H. Ruegg. — Distribution de charge (Van

etat lie dans le formalisme de Bethe-Salpeter.

En theorie relativiste des champs quantifies, un etat lie de

deux particules scalaires est decrit par une amplitude O (xv x2),
fonction de deux points de l'espace-temps x1 (xv tj et

x2 (x2, t2). Cette amplitude est solution d'une equation de

Bethe-Salpeter [1], Si l'etat lie est un etat-propre de l'energie-
impulsion totale, on a:

<t> (Xj, x3) <pa (P, x) e!(P'X) (1)

1
oü x (aq — x2) et X — (xx + x2), si les deux particules

Hees ont la meme masse m. P est le quadrivecteur energie-

impulsion du Systeme: P (P, E), E (P2 + M2)^, M2 etant
la masse du Systeme lie, valeur-propre de l'equation de Bethe-

Salpeter (Ma 2m — Ba, Ba energie de liaison (Ba > 0)).

L'amplitude $ (ajj, x2) caracterise completement l'etat lie
et permet de calculer toutes les grandeurs physiques associees

au Systeme (Nishijima [2], Mandelstam [3]). Ainsi, si la liaison
entre les particules est d'origine non-electromagnetique, due

par exemple ä l'interaction avec un champ mesonique scalaire,
et si une seule des deux particules Hees est electriquement

1 Beneficiaire de l'aide financifere de la Commission suisse de

l'energie atomique.
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chargee (comme dans le cas du deuton), l'element de matrice
de la densite de courant / (x), due ä la particule chargee, est

donnee, en premiere approximation 2, par:

<a | /'n (*i) | by \ J[dxtf ©a {xt, x2) — m2)

(«1. xi) (2)

Le Symbole de differentiation est explique par:

/V g f (ö g) — (df) g

| a> et | b> sont deux etats lies decrits par les amplitudes

®a (ij, x2) et Ob x2). <Da (xlt x2) se construit ä partir de

(xx, x2) par inversion temporelle et conjugaison complexe
[2], [3]. Cette note est consacree ä l'etude d'un element diagonal
de la densite de courant (| a> | b> dans (2)), representant
la distribution de courant dans l'etat lie | a>.

Si | a> est un etat-propre de l'energie-impulsion totale,
la densite de courant obtenue en inserant (1) dans (2) (| a>

| b>) est un vecteur constant, parallele ä P^. Celä vient de

ce que dans un tel etat, le centre de gravite X, porte par l'onde

plane et(P,X) n'est pas localise et les particules composantes

peuvent etre observees avec la meme probabilite en tout
point de l'espace. Pour obtenir une distribution de charge qui
caracterise de maniere significative l'etat lie, il faut done

localiser le centre de gravite dans un paquet d'ondes d'extension
finie. Soit (X) ce paquet d'ondes:

x(X) (2:t)-3/2J (d P)3 [E (P)]~^ y. (P) e^P.X) (3)

avec P4 E (P) (P2 + M2)^ (ayant affaire dorenavant ä

un seul etat lie, nous laissons tomber l'indice a et ecrivons M

2 Cette approximation est consistante avec la «ladder approximation

» de l'equation de Bethe-Salpeter en ce sens que le courant
(approche) (2) satisfait l'equation de continuite <a | j* (x) \

0, si et C>a sont solutions de la «ladder approximation » de

l'equation de Bethe-Salpeter.



SEANCE DU 20 JUIN 1947 249

pour Ma). x (X) est une solution normee de l'equation de Klein-
Gordon:

- M«) x (X) 0 (4)

Nous demandons que pour T 0, x (X) x (X, 0) soit
ä symetrie spherique, fonction lentement variable et unifor-

mement decroissante de R | X |, sensiblement differente de

zero pour R < R0 seulement. Dans ces conditions, le centre de

gravite est pratiquement localise dans une sphere de rayon R0

au temps T 0. D'autre part, nous demandons que x (p) soit
centree autour de p 0 (centre de gravite pratiquement au

repos).
L'etat lie dont le centre de gravite est porte par x (X), est

decrit par l'amplitude:

©fo.x,) (2TC)-3/2J(dP)'[E(P)]^x(P)9(P, x)el<p'x> (5)

O (Xj, x2) est donnee par:

Ö(x„ xs) (2 7t)~3'2 J (dP)3 [E (P)]~ ^
x (P> 9 (P. x) e~l(P'X) • (6)

Si, comme nous le supposons toujours dans la suite, l'etat
lie considere est un etat S (moment angulaire nul), et si la
theorie est invariante par rapport ä la reflexion temporelle:

9 (P. x) <p (P, — x) (7)

Avec la representation de Fourier:

9 (P, x) (2 tu) 'J (dp)* 9 (P, p) (8)

(2) donne, compte tenu de (5), (6) et (7):

/,*(*) (2n)-3J(dp)3J(dk)3^<o2 — jv*j~l

X* (p - i *) X (p + I *) ^ (p. *) e,(k'X) (9)

ou:
to p4, > 0 V /l4

(p ± ^)* ± it)2- (« ± iv)2 M2 (10)

Archives des Sciences. Vol. 10, fasc. 2, 1957. 17
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et:

\ ip> *) i J(d?)4 9 (p — \ *> \ (p — j *) + 9 (p +

+ T*' l{p + ^*) + q) '?2 + m2) ^ + ?ll> '

II est aise de voir que:

\ (P. k) P» % (P. k) (12)

oil 7)(p, A) est, dans l'hypothese d'un etat S 1, une fonction
invariante des quadrivecteurs p et A, qui peut done etre expri-
mee en termes de p2, (p, k) et k2 seulement. Or il resulte de (10)

que ^p2 + ^-A2) — M2 et (p, k) 0. Ceci permet d'eliminer

p2 et (p, k), (p, k) devenant fonction de la seule variable k2

(yj (p, A) - vj (A2)).

II convient d'introduire la fonction:

7) (x) (2 tz)-* J (dk)< 7) (k2) e'terf (13)

et le « courant du centre de gravite »:

(2*)-3J (dp)3 J («»)'(«

y* (p— -J a) X (p' + J a) eiih-x)

Cela permet de donner ä (9) la forme:

'a W J^ <x — 2/) Ja • <15)

Cette formule montre clairement comment la densite de

courant de la particule chargee depend du paquet d'ondes

choisi, par l'intermediaire du courant (fictif) (x), la fonction
invariante 7) (x) etant la meme pour tout etat lie de masse M.

S'il etait possible de fixer ä tout instant le centre de gravite ä

l'origine (J^ (x) -* 8 (x)), l'integrale en (15) se reduirait ä la

moyenne temporelle de i] (x) et donnerait la distribution de

charge stationnaire:

1 Dans ce cas, 9 (P, p) est en efTet une fonction invariante de P
et p.

-rt4
(14)
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T) (~x) 1 dt T) (a:) (2 n)
3 f [dk)3 Y) k2) k' (16)

c - » %J

Toutefois, il est bien connu qu'une localisation aussi stricte
est impossible avec un paquet d'ondes x (X) solution de l'equa-
tion de Klein-Gordon (4). Une diffusion du paquet d'ondes est

inevitable, d'autant plus forte que la localisation au temps
T 0 est plus precise.

Pour poursuivre notre discussion, nous devons faire cer-

taines hypotheses sur la forme de x (P). Nous supposons:

I. z (P) est une fonction uniformement decroissante de | P |,

de largeur 1/R0, avec 1/R0 « M (c'est-ä-dire la largeur R0

du paquet d'ondes est, pour T 0, beaucoup plus grande

que la longueur d'onde de Compton d'une particule de

masse M);

II. x(P) est lentement variable, sensiblement constante dans

l'intervalle | A P | < 1/R0' » 4p avec p2 m2 — ^-M2

(/wB) si B « m.

On a nccessairement 1/R0' < 1 /R0, et les hypotheses (I) et

(II) ne sont compatibles que si 4p « M. Cette condition est

realisee dans la limite non-relativiste, ou statique: m -* oo,
B -» 0, p2 ^ (mB) restant fini.

Les formules (10) determinent w et v comme fonctions de p

et k. Avec l'hypothese I on obtient:

to cv E ; v^i(p, ~k) ; k3 P — v2 (17)

D'autre part, on peut montrer que yj (k2) est une fonction
—

decroissante de k2, de largeur 16 p2. Ce resultat et l'hypothese

(II) permettent de negliger k dans x* (p—"^) et

(^) donne dans ces conditions:

1 La discussion qui precede n'est pas rigoureuse, en particulier
I'enonce «•/ (P) est sensiblement constante dans l'intervalle...»
devrai etre precise. Bien que cela ne presente pas de difficultes de

principes, nous n'entrons pas ici dans ces details.
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i* (X) ^ (2 TT)-3 J (dp)*$ (dk)* I X I2 1) (*')

e
V M * (18) 1

(x) ^ (2 7r) "3J(dp)*J (dk)* X p f) (*2) g ; " •X "M p
_

Pour £ 0, on obtient:

j' (x, 0)^7, (cf. (16)) ; f* (x, 0) ^ 0 (19)

compte tenu de la condition de normation

J {dp)3 | X I2 1 •

Par contre, pour t -> <*>,

(20)

Nous avons ainsi etabli que pour t 0 la distribution de

charge est approximativement donnee par r\(x), independante
du choix du paquet d'ondes verifiant les hypotheses (I) et (II).
Par contre, pour t -* oo la distribution de charge se deduit de

—
la transformer de Fourier x (P) du paquet d'ondes, la charge
etant contenue dans une sphere de rayon R (t) ^ tj(M R0). Ces

resultats deviennent exacts dans la limite non-relativiste. Voir
figure 1.

D'autre part, nous avons etabli que dans le cas d'une
liaison assurer par des photons scalaires (mesons scalaires de

masse nulle), la limite non-relativiste de la fonction tj (x) corres-

pondant ä l'etat fondamental (caracterise par les valeurs
n l m y. 0 des nombres quantiques usuels n, l et

m, et du nouveau nombre quantique x) est donnee par:

=ij(S)—(21)
1 Cette forme approchee verifie l'equation de continuity

^i^ix) o.
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Cette limite est identique ä la distribution de charge prevue
par le formalisme non-relativiste de Schroedinger. Nous obte-

nons ainsi une nouvelle confirmation de l'equivalence des for-

Representation schematique du comportement spatio-temporel
de la distribution de courant dans un etat lie.

Le centre de gravite est localise dans le domaine hachure, limite par
les courbes AB et A'B', de rayon R (R (0) R0). LeslignesCD
et C D' indiquent la largeur de la distribution de charge. Cette
largeur est de l'ordre (R (t) + 1/4 p), ce qui vaut environ 1/4 p pour

t 0 et R (t) pour t -* oo.

malismes de Schroedinger et de Bethe-Salpeter dans la limite
non-relativiste et si Ton se borne aux etats caracterises par
x 0 (Wick [4], Cutkosky [5], Wanders [6]).

Pour calculer la limite (21) nous utilisons la representation
integrale de Wick [4] des solutions n I m 0:
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9(P ,P) r+1dug(«)[p2 + u[P,P) + W-izY3 (22)
J -l

avec:
g (u) ->• C (1 — | u |) pour x 0 (23)

L'insertion de (22) dans (11) et l'utilisation de (23) donnent,

apres un caleul assez laborieux base sur la technique des

representations de Feynman, le resultat suivant:

^2>--C2hwtWP' (24)

Ce qui donne (21) si C i 7i~3'2 (2p)5/2 M1/2. Ce coefficient de

normation est identique ä celui obtenu par Nishijima [2].
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La forme des courbes de resonance obtenues lorsque la

largeur de raie est de l'ordre de grandeur du champ H0 peut etre
etablie dans le formalisme classique de Bloch en ecrivant que
la magnetisation globale de l'echantillon se fait suivant la
resultante des deux champs appliques, c'est-a-dire en ne negli-
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