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5. Wevw, H., Zs. f. Physik, 56, 330 (1929). L’équivalence entre les
théories de Weyl et de Majorana a été démontrée par
J. SERPE, Physica, 18, 295 (1952), et indépendamment par
M. Fierz. Voir aussi J. A. McLEnNAN, Phys. Rev., 106, 821

(1957).

6. TouscHEK, B. F., Nuovo Cimento, 5, 1281 (1957). Cet article traite
le groupe (12) et en déduit la conservation de la charge
léptonique. Il ne nous est parvenu qu’apres la préparation
de cette note. Il nous semble pourtant intéressant de signaler
que dans notre exposé les tenseurs T( ), S( jresp. J( ) sont
formés par la moitié de la somme, resp. de la différence, de
I’expression habituelle et de sa conjuguée de charge.

Université de Genéve.
Institut de Physique.

G. Wanders ! et H. Ruegg. — Distribution de charge d’un
état lié dans le formalisme de Bethe-Salpeter.

En théorie relativiste des champs quantifiés, un état lié de
deux particules scalaires est décrit par une amplitude @ (z,, z,),
fonction de deux points de l'espace-temps z;, = (El, t;) et
T, = (g, 1,). Cette amplitude est solution d’une équation de
Bethe-Salpeter [1]. Si I'état lié est un état-propre de 1'énergie-
impulsion totale, on a:

O (z,, z,) = @, (P, 2) PV )

ou r= (xr, —z,) et X = E(ac1 + x,), si les deux particules

liées ont la méme masse m. P est le quadrivecteur énergie-
impulsion du systéme: P = (_15, E), E = (_ﬁz + 1 3)%, M: étant
la masse du systeme lié, valeur-propre de 'équation de Bethe-
Salpeter (M, = 2m — B,, B, = énergie de liaison (B, > 0)).

L’amplitude ® (x,, z,) caractérise complétement I’état lié
et permet de calculer toutes les grandeurs physiques associées
au systéme (Nishijima [2], Mandelstam [3]). Ainsi, si la liaison
entre les particules est d’origine non-électromagnétique, due
par exemple a I'interaction avec un champ mésonique scalaire,
et s1 une. seule des deux particules liées est électriquement

1 Bénéficiaire de 1’aide financiére de la Commission suisse de
I’énergie atomique.
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chargée (comme dans le cas du deuton), I'élément de matrice
de la densité de courant ], (2), due & la particule chargée, est
donnée, en premiére approximation 2, par:

. 1 — Y
<a | Ju (z,) l b> = 9 f(dx2)4 (Da (@, o) 3 2" (s — m?)
(Db (1, z4) - (2)

Le symbole de différentiation™d est expliqué par:

19 g =108 —0Ne

| a> et ‘ b> sont deux états liés décrits par les amplitudes
D, (2,, z,) et Dy (2, 75). P, (27, 2,) se construit a partir de
®, (z,, x,) par inversion temporelle et conjugaison complexe
[2], [3]. Cette note est consacrée 4 I'étude d’un élément diagonal
de la densité de courant (‘ a> = \ b> dans (2)), représentant
la distribution de courant dans I'état lié ‘ a>.

Si |a> est un état-propre de 1'énergie-impulsion totale,
la densité de courant obtenue en insérant (1) dans (2) ( | a>
= [ b>) est un vecteur constant, paralléle & P,. Cela vient de
ce que dans un tel état, le centre de gravité X, porté par I'onde
plane €PX) n’est pas localisé et les particules composantes
peuvent étre observées avec la méme probabilité en tout
point de '’espace. Pour obtenir une distribution de charge qui
caractérise de maniére significative 1'état lié, il faut donc
localiser le centre de gravité dans un paquet d’ondes d’extension
finie. Soit y (X) ce paquet d’ondes:

2 (X) = (2 [ @Pp[E ()] ¥y B0 @)

avec P = E (P) = (P2 + sz} (ayant affaire dorénavant a
un seul état lié, nous laissons tomber I'indice a et écrivons M

2 (Cette approximation est consistante avec la «ladder approxi-
mation » de I’équation de Bethe-Salpeter en ce sens que le courant

(approché) (2) satisfait I'équation de continuité 3, {a|j* (z) | 4> =
= 0, si ®p et Py sont solutions de la « ladder approximation » de
I’équation de Bethe-Salpeter.
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pour M,). ¥ (X) est une solution normée de I’équation de Klein-
Gordon:

(O — M%) ¢ (X)=0. ()

Nous demandons que pour T = 0, ¥ (X) = ¥ (;(, 0) soit
a4 symétrie sphérique, fonction lentement variable et unifor-
mément décroissante de R = ‘ )_E , sensiblement différente de
zéro pour R < R, seulement. Dans ces conditions, le centre de
gravité est pratiquement localisé dans une sphere de rayon R,
au temps T = 0. D’autre part, nous demandons que y (p) soit
centrée autour de F[; = 0 (centre de gravité pratiquement au
repos).

L’état lié dont le centre de gravité est porté par y (X), est
décrit par I’amplitude:

® (z;, @) = (27) 2 [(dP)[E D) Y5 0) o, 2) @0 (5)
) (€1, 2,) est donnée par:
) (xy, x5) = (2 T':)"3I2J' d P)a[E {—fi)]_%z (_15)5 (P, z) cUP.X) . (6)

Si, comme nous le supposons toujours dans la suite, ’état
lié considéré est un état S (moment angulaire nul), et si la
théorie est invariante par rapport a la réflexion temporelle:

o(P,z) =@ (P,—12z) . (7)
Avec la représentation de Fourier:
2 (P,z) = (277 [(dp)* 3 (P, p) €. (8)

(2) donne, compte tenu de (5), (6) et (7):

jule) = (257 [(dp) [ ahi? (@2 — ) E

ou:
w=pt>0,v=FK,

1 2 - 1 —>\2 1 2
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et:

B, (P, k f(dq)“*”(p—— (phgff)+q)¢(p+
- %k,%(p + 5;«) + q) (¢* + m?*) (p, + q,) - (11)

Il est aisé de voir que:
7, (P, k) = p, % (p, k) (12)

ou 7(p, k) est, dans ’hypothése d’un état S, une fonction
invariante des quadrivecteurs p et k, qui peut donc étre expri-
mée en termes de p2, (p, k) et k2 seulement. Or il résulte de (10)
que (p2 + -1—152) = — M2et (p, k) = 0. Ceci permet d’éliminer
p? et (p, k), 1 (p, k) devenant fonction de la seule variable %2
(0 (p, k) — 7 (k?)).

I1 convient d’introduire la fonction:
7 (@) = (2m)7" [ (dk) 7 (k2) B (13)

et le « courant du centre de gravité »:

1 S _ 1\
J, (x) = EX* (x)ﬁx(r) = (2 ) 3f(dp)3f(d’f)3 (“’2_1”2) §
’_> 1->" 1-> i(k,x)
o (F—gk)a(F + k)™ )
Cela permet de donner a (9) la forme:

(@) = (gt (@ —9) T, (v) - (15)

Cette formule montre clairement comment la densité de
courant de la particule chargée dépend du paquet d’ondes
choisi, par 'intermédiaire du courant (fictif) J, (z), la fonction
invariante v (z) étant la méme pour tout état lié de masse M.
S’il était possible de fixer a tout instant le centre de gravité a
Porigine (J,, (z) - 3 3 (), I'intégrale en (15) se réduirait a la
moyenne temporelle de 7 (x) et donnerait la distribution de
charge stationnaire:

! Dans ce cas, ¢ (P, p) est en effet une fonction invariante de P
et p.
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7@F) = dnl) = @m0 [(@nr 5 () 6

v =00

- =

k,x) . (16)

Toutefois, il est bien connu qu’une localisation aussi stricte
est impossible avec un paquet d’ondes y (X) solution de I'équa-
tion de Klein-Gordon (4). Une diffusion du paquet d’ondes est
inévitable, d’autant plus forte que la localisation au temps
T = 0 est plus précise.

Pour poursuivre notre discussion, nous devons faire cer-

-

taines hypotheses sur la forme de y (P). Nous supposons:

-

I. 7 (P) est une fonction uniformément décroissante de | P,
de largeur 1/R,, avec 1/R, « M (c’est-a-dire la largeur R,
du paquet d’ondes est, pour T = 0, beaucoup plus grande
que la longueur d’onde de Compton d'une particule de
masse M);

II. y (P) est lentement variable, sensiblement constante dans
Uintervalle | AP | < 1/R," » 4p avec p? = m? — %MZ =
= (mB) s1 B « m.

On a nécessairement 1/R," << 1/R,, et les hypothéses (I) et
(IT) ne sont compatibles que si 4p « M. Cette condition est
réalisée dans la limite non-relativiste, ou statique: m — oo,
B — 0, p2 > (mB) restant fini.

Les formules (10) déterminent w et v comme fonctions de p
et Z Avec I'hypothése I on obtient:

1-—>_’_ s 72
LE B =7

o ™>E; v

li¢

—v k. (17)
D’autre part, on peut montrer que 7 (k%) est une fonction
décroissante de k2%, de largeur 16 p2. Ce résultat et I'hypo-

these (II) permettent de négliger k dans 1* (}; —%;c) et
5((5 < %;c) 1. (9) donne dans ces conditions:

! La discussion qui précéde n’est pas rigoureuse, en particulier
—_
I’énoncé «y (P) est sensiblement constante dans Dintervalle...»

devrai étre précisé. Bien que cela ne présente pas de difficultés de
principes, nous n’entrons pas ici dans ces détails.
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-—bz)

jle) & (2m) 7" [ (dp)® [ (k)| % (B) 2 3 (K

e M (18) 1
—_ — t >
; 2 t i| k,x-
@) = 2m)~* [ (ap) [ (k25 7) lza(kﬁ)”ﬁe( )
Pour ¢ = 0, on obtient:
FE,0) 5 (F) (cf (16) 5 j(F, 000, (19)
compte tenu de la condition de normation
[@pPla@ pP=1.
Par contre, pour ¢t — oo,
o o M\s|_ (Mo\P2. . o M\s|_ /M. [zt
f s (32 (F2) [ i@ o= (3|2 (F)[L
' (20)

Nous avons ainsi établi que pour ¢ = 0 la distribution de
charge est approximativement donnée par i(g), indépendante
du choix du paquet d’ondes vérifiant les hypothéses (I) et (II).
Par contre, pour ¢ — oo, la distribution de charge se déduit de

la transformée de Fourier ¥ (5) du paquet d’ondes, la charge
étant contenue dans une sphére de rayon R (1) > ¢/(M R,). Ces
résultats deviennent exacts dans la limite non-relativiste. Voir
figure 1.

D’autre part, nous avons établi que dans le cas d’une
liaison assurée par des photons scalaires (mésons scalaires de
masse nulle), la limite non-relativiste de la fonction 7 (;:) corres-
pondant a l'état fondamental (caractérisé par les valeurs
n=1=m = x =0 des nombres quantiques usuels n, [ et
m, et du nouveau nombre quantique x) est donnée par:

(2 P)3 e—-lpr . (2,1)

(2, 0) = 7(Z) —> =

1 Cette forme approchée vérifie 1’équation de continuité
9,/ (z) = 0.
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Cette limite est identique & la distribution de charge prévue
par le formalisme non-relativiste de Schroedinger. Nous obte-
nons ainsi une nouvelle confirmation de I’équivalence des for-

-

Cl

Fig. 1.

Représentation schématique du comportement spatio-temporel
de la distribution de courant dans un état lié.
Le centre de gravité est localisé dans le domaine hachuré, limité par
les courbes AB et A’ B’, de rayon R (¢) (R (0) = R,). Les lignes CD
et C’ D’ indiquent la largeur de la distribution de charge. Cette
largeur est de ’ordre (R (t) + 1/4 p), ce qui vaut environ 1/4 ¢ pour
t=0-et R(t) pour t > o0,

malismes de Schroedinger et de Bethe-Salpeter dans la limite
non-relativiste et si 'on se borne aux états caractérisés par
» = 0 (Wick [4], Cutkosky [5], Wanders [6]).

Pour calculer la limite (21) nous utilisons lareprésentation
intégrale de Wick [4] des solutions n =1 =m = 0:
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+ )
3(P.p) = dug(wlp®+u(P,p) + M2 —ie)” (22

avec:
gu—-C(1—|u|) pour x=0. (23)

L’insertion de (22) dans (11) et I'utilisation de (23) donnent,
aprés un calcul assez laborieux basé sur la technique des
représentations de Feynman, le résultat suivant:

8 m3 1 .
M p (k? + 16 p?)2

7 (k%) - — G2 (24)

Ce qui donne (21) si C = { w™* (2p)”* M"2. Ce coefficient de
normation est identique a celui obtenu par Nishijima [2].
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