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100 SEANCE DU 21 FEVRIER 1957

Séance du 21 février 1957

Paul Rossier. Théorie élémentaire de la construction des
polygones réguliers de 3, 5, 7, 13, 17 et 19 cités, au compas et au
trisecteur.

En se basant sur des propriétés de théorie des nombres
et sur celles des équations du type

a1 a2 4 2x+1=0,

Gauss a montré que la construction d’un polygone régulier
d’un nombre premier n de cotés se ramene a la décomposition
du nombre n — 1 en facteurs premiers et a la solution d’autant
d’équations algébriques qu’il y a de facteurs dans ce nombre;
le degré de chacune de ces équations est égal au facteur consi-
déré. Les procédés de Gauss s’écartent beaucoup des méthodes
élémentaires, d’autant plus que, dans les cas considérés, toutes
les racines de I'équation ci-dessus sont complexes.

Nous nous proposons de montrer qu’'une équation équiva-
lente 4 celle de Gauss peut étre obtenue par des procédés élé-
mentaires. Le théoréme d’addition du cosinus permet de mon-
trer que le compas suffit dans les cas ou » vaut 3,5 et 17, tandis
que le trisecteur d’angles donne, avec le compas, les polygones
de 7, 13 et 19 cotés.

Soient C le centre, 0, 1, 2, ... n — 1 les sommets d’un poly-
gone régulier de n cétés. La résultante des vecteur CO, Ci,
... Gn — 1 est nulle. En effet, si cette somme n’était pas nulle,
elle tournerait de 1/n de tour en faisant tourner la figure de
cet angle. Projetons ces vecteurs sur le rayon CO. Posons
« = 2x/n. Il vient

Deosje=0 (j=01,.,n—1).

Mais cos (n — j) « = cos ja. On a donc

; 1 i n—1
ZCOS’“:_'_Q" (121,2,... = )

4
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Cette équation est équivalente a celle de Gauss, car on
montre en trigonométrie que cos jo est une fonction entiére
de cos «. L’équation est bien algébrique.

Examinons les cas particuliers les plus simples. Le cas de
n = 3 est immédiat:

cos o0 = — — -
2

Pour n = 5, en tenant compte de cos 2a = 2 cos? — 1, il

vient
bcos?a +2cosa—1=0.

Ces expressions sont évidemment constructibles au compas.
Faisons n = 7. 1l vient, en remplagant cos 3a et cos 2a par
leurs expressions en fonction de cos «,

8cosa + bcosPa—4bcosa—1=20. (1)

Au lieu de «, on pourrait déterminer 2«. Il viendrait alors

cos 6a. 4 cos 3a 4 cos 20 = — % Cette équation est iden-

tique & I'équation de départ. L’équation (1) a toutes ses
racines réelles, puisque deux le sont. Or on peut résoudre
graphiquement toutes les équations cubiques dont les racines
sont réelles au moyen du compas et d’'un trisecteur. L’hepta-
gone est donc constructible au moyen de ces deux appareils.

L’équation fondamentale correspondant a n = 13 est

1

c05cx+c052a+...+cosﬁa=—§-

Posons
&y = cos o + c0s 3 o« + CcosS & a,

Ty = COS 2 ¢ + COS 6 o + CcOS 5 o .

Au signe ou 4 un tour preés, chaque angle de chacune de ces
sommes est le triple du précédent et ceux d’une ligne le double
de ceux de 'autre.

On a évidemment

1

.1'1+I2=—§'

Formons z; . z, et appliquons la formule

2cospcosqg=cos(p+gq) +cos(p—gq.
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On obtient un polynéme de 18 termes en a; cos jo. S1 T'on
remplace « par 2a ou 3«, les 2 se permutent ou ne varient pas.

On a donc a; = ay; = ay; et tous les coefficients a; sont
égaux entre eux. Il y a six cosinus et dix-huit termes. Il vient

donc

x1x2=3200sja=—% (= 1,2, . 6).

La somme et le produit des deux z sont connus; ils sont
constructibles au compas.
Formons I’équation qui a cos «, cos 3a et cos 4« pour

racines, soit
Y3+ AY2 +BY +C=0.
On a

A=——-.’L‘1.

Un calcul facile montre que B, égal a la somme des produits
des racines deux & deux, vaut la moitié de la somme des six
cos jo; done

: q_

Le calcul de C est un peu plus compliqué. On a

-

—Cw——‘COSO((COS30c-COSQGc):ECOSCI(COSOC—{—COSGIZ)=
(1 4+ cos? o + cos 5 a + cos 6 «)

(1 + cos?23 a + cos 2 & + €0Ss 5 a)

(1 + cos?4 a + cos 2 a 4 cos 6 a .

R S S

Additionnons ces trois expressions. On voit apparaitre la
somme des carrés des trois racines de l’équation cherchée.
D’aprés une formule due & Newton, cette somme est exprimable
en fonction de A et B. Tous calculs faits, on trouve

| 5

1
-

— i 3
C = 5+ %

7
24

[
(S5

L’équation est déterminée; ses trois racines sont réelles;
elle est justiciable du trisecteur. Donc le polygone de 13 cotés
est constructible avec un compas et un trisecteur.
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Avec n = 17, posons

T, = C0S & 4+ COS 2 o + CcoS 4 oo + cos 8 «

Ty = C0S 3 & + €cos 6 o + COS S ot + cos 7 o .

Chaque angle de chaque somme est double du précédent
et si 'on multiplie par trois chacun des angles de I'une des
sommes on trouve un angle de I'autre (au signe ou a un tour
prés). On a

1

Un calcul de méme type que celui relatif & n = 13 montre
que z, r, est un polyndme de 32 termes a coefficients égaux
entre eux en cos ja. Il vient ainsi

Ty, = —1,

d’ou une construction de r; et x, au compas.
Posons ensuite

Yyp = cos o 4 cos bk a ,
Yy = C0S 2 o + cos 8 a
Y3 = €0S 3 a + CcOS D a ,

Yygo = cCcos 6 o« + cos 7 o .

Onay, +y, =2 et ys + y, = 7,
Comme plus haut, on voit que y; - y, et y; - y, valent la
moitié de la somme des cosinus de 'équation fondamentale,

soit — % On en conclut les quatre y par une construction du

meme type que celle qui a donné les .
Il vient enfin

COStx.COSfuxE-;—(cos:;a-{-005505)=%3.

Une troisieme application de la méme construction donne cos .
Dans le cas n = 19, on a

. 1 .
'ZCOS]az_-?'- j=1,2,..9)-
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On pose
r, = cos & + cos 7o + cos 8a ,

Ty = €0S 2o 4 €OS Sa + Co0s 3u ,
xrg = COS 4a 4 cos 9a + cos 6a .

Comme plus haut, on calcule les coefficients de ’équation dont
les trois x sont les racines. On trouve sans difficulté

1, 3 7

Cette équation est soluble graphiquement au trisecteur, car
ses racines sont réelles.
Déterminons enfin les coefficients de I’équation

Y? + AY2 +BY 4+ C=0,

qui a pour racines cos a«, cos 7o et cos 8a. On a A = — z,.

Un calcul simple donne B = — % — f; Quant a C, sa déter-

mination est analogue a celle faite & propos de n = 13. En
additionnant trois expressions différentes du produit des trois
racines, on voit apparaitre la somme des carrés des trois racines
et x,. Il vient enfin

1, ¢ 1
C=—-§(.’E1+2.’L’2+§).

L’équation en Y est justiciable du compas et du trisecteur,
car elle a ses trois racines réelles.

La forme donnée ici & la théorie de quelques polygones
réguliers a les avantages suivants: pour les polygones de 3, 5
et 17 cotés, elle ne fait appel qu’a des théoremes élémentaires;
pour ceux de 7, 13 et 19 cotés, elle exige en outre le théoréme
de la constructibilité au trisecteur et aun compas des racines
d’une équation cubique a racines réelles et une forme réduite
du théoreme des fonctions symétriques des racines d’une équa-
tion algébrique; il apparait immédiatement que les racines de
ces équations sont réelles; elle donne explicitement les équa-
tions a résoudre. On pourrait I’étendre aux polygones & nombres
premiers de cotés de la forme 2P 37 4 1, tels que 37, 73, 97,
109, 577, 1153, 18439. Par les méthodes élémentaires, les
calculs sont trés lourds. Elle a le grave inconvénient de manquer
de généralité, qualité qui est I'apanage de la théorie de Gauss.
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Cependant, I’équation fondamentale F est générale et toutes
ses racines sont réelles. C’est elle que I’on obtient en cherchant
les parties réelles des solutions de celle de Gauss. Dans la
théorie de Gauss, le passage par I'imaginaire permet une grande
généralité, ce qui est fréquent dans les problémes algébriques.

Ch.-Albert Baud et Peter W. Morgenthaler. — Etude micro-
radiographique de tissus osseux primatres ( da propos de la man-
dibule préhistorique de Farincourt, Haute-Marne).

La microradiographie constitue un moyen d’apprécier
quantitativement le degré de minéralisation dans des coupes
de tissu osseux. Elle présente sur les méthodes de dosage
chimique I'avantage de permettre une localisation précise des
différences de concentration en substance minérale dans des
territoires microscopiques.

On soumet & la microradiographie des tranches relativement
minces (70-80 w environ) obtenues par usure et polissage sui-
vant le procédé habituel des minéralogistes, sans décalcification
préalable, bien entendu. Le rayonnement X doit étre choisi
suffisamment mou pour qu’il soit absorbé d’une maniére satis-
faisante malgré la faible épaisseur de substance minérale
traversée, et assez dur pour ne pas étre absorbé par la matieére
organique. Le rayonnement K, émis par I’anticathode de Cu
d’un tube alimenté sous 30 kV, dont la longueur d’onde est de
1,54 A, convient parfaitement. La surface sensible doit étre
une émulsion pratiquement sans grain, comme celle du film
Lippmann de Gevaert, de facon a permettre I’observation
microscopique & de forts grossissements.

Pour une étude quantitative, on radiographie en méme
temps que la coupe et sur le méme film un étalon constitué par
des feuilles d’aluminium d’épaisseur connue, superposées et
légérement décalées. Les microradiographies sont ensuite
analysées au photometre. On détermine d’abord les déflexions
du photomeétre pour chaque échelon d’étalon, ensuite on
effectue les mesures pour le plus grand nombre possible de
points sur la préparation. Les déflexions correspondant a
chaque point de la coupe sont exprimées en épaisseur d’étalon.
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