Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 10 (1957)

Heft: 6: Colloque Ampère

Artikel: Intéractions indirectes de spins en R.N. dans les champs faibles

Autor: Roux, D.

DOI: https://doi.org/10.5169/seals-738782

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Intéractions indirectes de spins en R. N. dans les champs faibles

par D. Roux Institut de Physique expérimentale, Genève

I. COUPLAGES INDIRECTS DANS LES CHAMPS FAIBLES.

Gutowsky et ses collaborateurs [1] ont été les premiers à mettre en évidence le phénomène du couplage indirect spin-spin; ils ont prouvé que cet effet est indépendant du champ extérieur appliqué H_0 en obtenant des

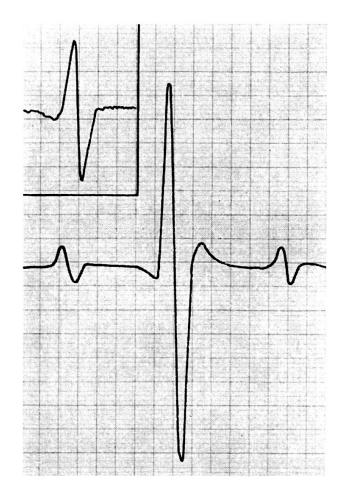


Fig. 1. Résonance de H à 150 Kc/s, avec couplage indirect H_2 -P de H_2 PO (ONa) en solution dans H_2 O.

218 D. ROUX

valeurs de J identiques à 6365 et 4180 gauss. Quinn et Brown [2] ont eu l'idée de reprendre ces expériences en champs nettement plus faibles et ont opéré à 550-160 gauss. Leurs valeurs vérifient celles de Gutowsky, à l'exception de celle de la liaison F-P de F₂ PO (OH). Dans ce dernier cas, ils obtiennent un singlet à 165 gauss, laissant supposer la disparition du couplage indirect pour un champ H₀ de l'ordre de 10³ fois supérieur à J.

Ceci nous a décidé à observer les couplages indirects à 35 gauss correspondant à 150 Kc/s pour le proton, en utilisant le spectromètre que nous avions construit pour étudier la résonance électronique dans la bande 250-50 Kc/s. En choisissant une modulation BF de 23 c/s et en réglant nos phases de façon à obtenir un signal de « dispersion d'absorption » [3] nous avons une inhomogénéité apparente de 3 mGauss.

Avec un échantillon de 4 à 15 cm³, nous obtenons un rapport signal/bruit pour le proton dans H₂ O de 1000 environ, nous donnant une sensibilité largement suffisante pour nos expériences (fig. 1). Le tableau 1 donne nos valeurs obtenues en regard de celles de Gutowsky et Brown.

Tableau 1. Valeurs comparées des splitting dus au couplage indirect pour les différents champs H_0 appliqués.

Substance	Rés.	Liaison	Splitting en mGauss			
			Gutowsky 6365- 4180 gauss	Brown 165 gauss	Roux 35 gauss	Roux 15 gauss
1 F ₂ PO (OH) 2 FPO (OH) ₂ 3 FPO (ONa) ₂ 4 HPF ₆ 5 HPO (OH) ₂ 6 HPO (ONa) ₂ 7 H ₂ PO (OH) 8 H ₂ PO (ONa) 9 H ₂ PO (OLi) 10 H ₂ PO (OK)	F F F H H H H H H H	F_{2} -P F-P F-P H-P H-P H ₂ -P H ₂ -P H ₂ -P	244 238 195 * 178 166 — 137 —	singlet 240 — 177 — 133 — — — —	$egin{array}{cccccccccccccccccccccccccccccccccccc$	

^{*} Schoolery [4] a obtenu à 7500 gauss J = 214 mGauss en concordance avec nos mesures.

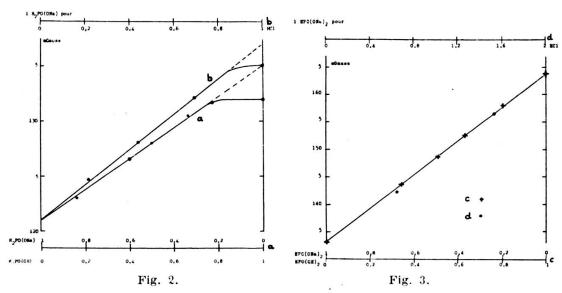
Nous pouvons conclure qu'à 15 gauss encore la valeur de J est indépendante de H_0 . Rocard [5] a mesuré récemment à 2 gauss un J=122

 \pm 2 mGauss pour H₂ PO (ONa) qui confirme nos résultats. Pour le F₂ PO (OH), nous avons trouvé une valeur similaire à celle de Gutowsky qui nous prouve que le singlet observé par Quinn et Brown ne s'explique pas en fonction de la valeur de H₀ [6].

II. Causes de variations de la valeur des couplages indirects H_2 -P et H-P

(sans rapport avec le champ Ho appliqué).

Dans le tableau 1, en comparant les trois valeurs pour H₂ PO (OH), on remarque que les valeurs de Brown et la nôtre divergent nettement de celle donnée par Gutowsky. Cette divergence nous a incité à étudier les liaisons H-P et H₂-P en détail et nous a amené à faire les observations suivantes:


- 1. L'écart de l'acide phosphoreux (une liaison H-P) est de 31 mGauss supérieur à celui de son sel de Na correspondant. Celui de l'acide hypophosphoreux (deux liaisons H-P) est de 16 mGauss valeur donnée par Gutowsky pour H₂ PO (OH) supérieur à celui de H₂ PO (ONa), soit une différence environ deux fois plus faible.
- 2. En mélangeant en proportions (fig. 2 et 3):
 - a) H_2 PO (ONa) et H_2 PO (OH)
 - b) H_2 PO (ONa) et HCl
 - c) $HPO(ONa)_2$ et $HPO(OH)_2$
 - d) HPO (ONa)₂ et HCl,

on obtient pour chaque mélange une valeur unique du « splitting » qui se situe entre celle du sel et de l'acide correspondant en lieu et place à deux « splitting » d'amplitudes variables. Dans les quatre cas, les valeurs s'alignent très bien suivant les proportions de mélange.

Dans le cas a), la concentration de H₂ PO (ONa) est nettement plus forte que celle de H₂ PO (OH). Les valeurs s'alignent sur une droite qui, dans son prolongement donnerait une valeur pour H₂ PO (OH) supérieure de 3 mGauss à celle mesurée.

Dans le cas b), la présence du ion H^+ de HCl a presque le même effet que celui de H_2 PO (OH). A cause de la forte concentration de H_2 PO (ONa) et de celle de HCl, on mesure un splitting de 3 mGauss supérieur à celui de H_2 PO (OH) quand on a les proportions $1H_2$ PO(ONa)

220

Variation du splitting de H₂-P pour un mélange:

Variation du splitting de H-P pour un mélange:

- a) de H₂ PO (ONa) et de H₂ PO (OH);
- b) de H₂PO (ONa) et de H₂PO (ON),
- c) de HPO (ONa)₂ et de HPO (OH)₂;
- d) de HPO (ONa)₂ et de HCl.

pour 1 HCl. Le prolongement de la partie rectiligne de la courbe donne exactement la valeur trouvée par Gutowsky pour H₂ PO (OH)! Il y a donc un effet de concentration acide sur le splitting.

Dans les cas c) et d) tous les points s'alignent sur la même droite reliant la valeur de HPO $(ONa)_2$ à HPO $(OH)_2$ car aussi bien HPO $(OH)_2$ que HCl que HPO $(ONa)_2$ sont très concentrés et l'on n'a plus deux courbes différentes comme pour les cas a) et b) mais une seule.

- 3. L'écart de l'acide phosphoreux varie suivant la concentration: concentration initiale 11 molaire, écart 164 mGauss, dilution dans un volume d'eau écart 159 mGauss. Par contre, l'acide hypophosphoreux en concentration 6 m a un écart de 0,6 mGauss supérieur à celui en solution 3m. Cette différence est beaucoup plus faible et correspond à notre erreur expérimentale: la précision du splitting pour une série de 10 mesures est de 0,5%, soit ± 0,6-1,0 mGauss. Les variations sont donc beaucoup plus sensibles quand on dilue les acides en forte concentration.
- 4. En saturant H₂ PO (ONa) avec HCl environ 2 HCl pour 1 H₂ PO (ONa) on obtient un splitting de 136,8 mGauss. En ajoutant HCl à H₂ PO (OH) en concentration 6 m adjonction de 1 HCl par H₂ PO (OH) le splitting remonte de 132, 1 à 137, 1 mGauss. Dans les deux cas on retrouve une valeur identique à celle de Gutowsky.

- 5. En mélangeant NaF ou KF avec H₂ PO (ONa), nous n'observons aucune influence du ion F⁻ (grand moment magnétique) sur le splitting H-P.
- 6. Le tableau 1 montre que nous obtenons de faibles différences, mais cependant deux fois supérieures à la précision de nos mesures pour les sels hypophosphites de Li, Na et K. La présence de LiCl en solution dans H₂ PO (OK) fait accroître l'écart de 119,1 à 120,6 mGauss produisant un effet identique bien que beaucoup plus faible du mélange sel-acide.

En fonction des observations que nous avons faites, nous pouvons tirer les conclusions suivantes: Les fortes différences de valeur de splitting sont spécialement dues à la présence de l'hydrogène sous forme de ion dans la solution ou liés indirectement à P par l'intermédiaire de l'oxygène. Le mélange de NaF et H₂ PO (ONa) montre que l'anion F⁻ n'a pas d'effet sur le splitting; nous n'avons donc pas affaire à un effet de charge. Ce phénomène est plutôt produit par les variations de dissociation des différentes molécules. Il y a trois raisons qui permettent de l'affirmer: 1° la variation du splitting des acides phosphoreux et hypophosphoreux en fonction de leur concentration; 2° le splitting de HPO (OC₃ H₇)₂ observé par Muller et al. [7] a une valeur de 161,5 mGauss, presque identique à celui de l'acide phosphoreux. Bien que la répartition des H liés à la molécule par l'intermédiaire des deux oxygènes soit différente, la dissociation est nulle pour HPO (OC₃ H₇)₂ et très faible pour l'acide phosphoreux très concentré; 3° l'influence du ion NH₄⁺ en solution avec HPO (ONa)₂ est presque nulle.

Quand H se trouve sous forme de ion, la répartition des charges est alors différente pour l'anion. L'oxygène devient alors plus « négatif », il a tendance à éloigner de P le ou les électrons produisant le ou les couplages indirects H-P et J diminue. Comme la valeur de J est proportionnelle à $1/r^3$ (r= distance noyau-électron), une petite variation de r est déjà très sensible. Toutes les expériences montrent l'influence de la concentration, donc de la dissociation de H^+ ; dissociation totale, splitting minimum, dissociation nulle, splitting maximum. La présence d'un splitting unique dans tous les cas et ses variations s'expliquent par un échange rapide des H de la liaison ionique O-H, d'où une valeur moyenne de l'écart. Si la différence des splitting sel-acide phosphoreux est double de celle des sel-acide hypophosphoreux, c'est parce que l'acide phosphoreux a deux liaisons O-H possibles alors que H_2 PO (OH) n'en a qu'une seule.

Deux résultats peuvent confirmer nos conclusions:

- 1º Muller et al. [7] ont observé un splitting de 161,5 mGauss pour HPO (OC₃ H₇)₂ presque identique à celui de HPO (OH)₂ très concentré. Dans les deux cas, la dissociation est nulle ou très faible. La répartition spatiale des H liés à la molécule par O est très différente, mais la répartition des électrons de O est presque la même;
- 2º Le splitting de F dû à la liaison F-P est de 26 mGauss plus grand pour FPO (OH)₂ que pour FPO (ONa)₂ (voir tableau 1). On retrouve une différence dans le même sens presque égale à celle de HPO (OH)₂ et HPO (ONa)₂ bien que H et F soient de charges opposées. Ceci exclu toute explication se basant sur l'électronégativité.

Les différentes valeurs pour les sels hypophosphites apparaissent comme un effet du deuxième ordre, Li, Na et K ayant un effet beaucoup moins fort que H. Il est possible qu'avec une dissociation totale nous aurions une valeur de splitting commune.

Je tiens à remercier M. le Professeur Béné qui m'a proposé d'étudier les couplages indirects des liaisons du phosphore dans les champs faibles et le Dr P. Frank qui a collaboré à ces recherches.

- 1. Gutowsky, McCall et Slichter, J. Chem. Phys., 21, 279 (1953).
- 2. Quinn et Brown, J. Chem. Phys., 21, 1605 (1953).
- 3. ROCARD, J.-M., Archives des Sciences, Genève, 9, 237 (1956).
- 4. BLOOM et Schoolery, Phys. Rev., 97, 1261 (1955).
- 5. ROCARD, J.-M., présente communication à ce colloque.
- 6. Roux et Béné, J. Chem. Phys., en cours de publication.
- 7. Muller, Lauterbur et Goldenson, Journal of Am. Chem. Soc., 78, 3557 (1956).