Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 9 (1956)

Heft: 5: Colloque Ampère

Artikel: Une nouvelle interprétation théorique de la résonance électronique d'un

monocristal de Diphenyl-Picryl-Hydrazil faisant intervenir l'effet

Overhauser

Autor: Gabillard, R.

DOI: https://doi.org/10.5169/seals-739016

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Une nouvelle interprétation théorique de la résonance électronique d'un monocristal de Diphenyl-Picryl-Hydrazil faisant intervenir l'effet Overhauser

par R. Gabillard

Les faits expérimentaux que nous nous proposons d'expliquer sont les suivants:

- 1. Le Diphenyl-Picryl-Hydrazyl (DPPH) en solution dans le Benzène donne un spectre de résonance électronique à 5 raies espacées l'une de l'autre d'environ 10 oersteds [1, 2].
- 2. A fréquence fixe le champ de résonance d'un monocristal de DPPH varie avec l'orientation du cristal, et l'amplitude maxima de cette anisotropie est proportionnelle au champ expérimental H_0 . A 24.000 Mcs $\Delta h = 2.5$ Oe à 9000 Mcs $\Delta h = 10e$ [3, 4]. Enfin, nous avons vérifié que vers 280 Mcs l'anisotropie n'est plus mesurable $\Delta h \leqslant 0.10e$.

Nous proposons pour expliquer ces divers faits une théorie faisant seulement intervenir l'interaction de l'électron de valence libre avec les deux noyaux d'azote qui sont ses plus proches voisins dans la molécule.

Dans une molécule isolée l'électron de valence tourne autour de chacun des deux noyaux d'azote en passant en moyenne autant de temps sur l'un que sur l'autre. Il produit donc un nuage de charge dont le maximum de densité se situe entre les deux noyaux. En localisant l'électron à cet endroit, nous voyons que les moments magnétiques μ des deux noyaux produisent à son niveau un champ dont la composante h dans la direction du champ expérimental H_0 est:

(1)
$$h = \frac{\mu}{r^3} (3 \cos^2 \theta - 1) (\varepsilon_1 + \varepsilon_2)$$

 ε_1 et ε_2 ont respectivement les valeurs (+ 1) (0) et (— 1) suivant que le noyau auquel ils se rapportent possède l'orientation parallèle, transversale ou anti parallèle par rapport au champ H_0 (fig. 1).

I. Solutions de DPPH dans le Benzène

La molécule est isolée et peut présenter par rapport au champ H₀ toutes les orientations possibles.

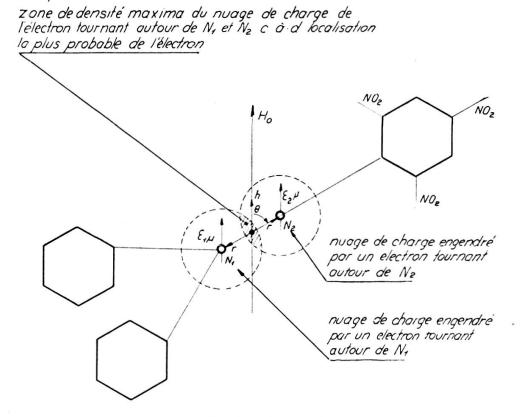


Fig. 1. Molécule de DPPH

Il faut alors remplacer $(3\cos^2\theta - 1)$ par sa valeur moyenne. $(3\cos^2\theta - 1)$ = $\frac{1}{2}$. h peut alors avoir 5 valeurs qui donnent naissance à la structure fine observée (fig. 2).

 $h_2=10$ oersteds, ce qui donne avec $\mu=+$ 0,403 magnétons nucléaires : r=0,45 Å.

II. Monocristal de DPPH

Dans un monocristal l'axe de la molécule reste fixe par rapport au champ H_0 . L'angle θ de la formule (1) est celui que l'on fait varier lorsque l'on tourne le cristal autour d'un axe perpendiculaire à H_0 .

$$\begin{cases} h_1 = \frac{\mu}{r^3} & \text{engendr\'e par} & \varepsilon_1 = +1 \\ h_2 = \frac{1}{2} \frac{\mu}{r^3} & \text{engendr\'e par} \end{cases} \begin{cases} \varepsilon_1 = 0 & \varepsilon_2 = +1 \\ \varepsilon_1 = +1 & \varepsilon_2 = 0 \end{cases}$$

$$\begin{cases} h_3 = 0 & \text{engendr\'e par} \end{cases} \begin{cases} \varepsilon_1 = +1 & \varepsilon_2 = -1 \\ \varepsilon_1 = +1 & \varepsilon_2 = -1 \\ \varepsilon_1 = 0 & \varepsilon_2 = 0 \\ \varepsilon_1 = -1 & \varepsilon_2 = +1 \end{cases}$$

$$\begin{cases} h_4 = -\frac{1}{2} \frac{\mu}{r^3} & \text{engendr\'e par} \end{cases} \begin{cases} \varepsilon_1 = -1 & \varepsilon_2 = 0 \\ \varepsilon_1 = 0 & \varepsilon_2 = -1 \end{cases}$$

$$\begin{cases} h_5 = -\frac{\mu}{r^3} & \text{engendr\'e par} \end{cases} \begin{cases} \varepsilon_1 = -1 & \varepsilon_2 = -1 \end{cases}$$

Fig. 2.

D'autre part, les molécules sont rapprochées et l'électron peut sauter rapidement de l'une à l'autre. Ce faisant, il se trouve successivement soumis au cours d'un temps très court à toutes les cinq valeurs possibles du champ h. Le champ qui agit effectivement sur lui est donc la moyenne des cinq composantes du champ h. C'est pour cela que la raie observée est fine et unique.

L'idée nouvelle que nous introduisons est que ce champ moyen \overline{h} n'est pas entièrement nul, car il faut tenir compte de l'effet Overhauser qui produit une nette orientation des noyaux d'azote dans la direction parallèle ($\varepsilon = +1$). S'il y a n (+) noyaux d'azote parallèle et n (—) noyaux antiparallèle le champ \overline{h} sera:

(2)
$$\overline{h} = \frac{\mu}{r^3} \left(3 \cos^2 \theta - 1 \right) \left(\frac{n (+)}{n (-)} - 1 \right)$$

La théorie de l'effet Overhauser donne:

(3)
$$\frac{n(+)}{n(-)} - 1 = 2 \frac{\mu_e H_0}{kT} s$$

s= saturation de la résonance électronique, $\mu_e=$ moment magnétique de l'électron.

Qualitativement les formules (2) et (3) expliquent très bien la proportionalité de l'anisotropie au champ H_0 et le fait que celle-ci augmente quand on réduit la température [5]. Mais quantitativement l'effet Overhauser semble être trop faible d'environ un facteur 5 et il n'est pas exclu qu'il n'intervienne que partiellement dans la production de l'anisotropie du monocristal.

Il est possible de prévoir que dans la mesure où l'effet Overhauser joue vraiment un rôle on doit observer expérimentalement une variation de l'amplitude de l'anisotropie avec l'intensité du champ haute fréquence.

Nous proposons cette expérience à ceux de nos collègues qui disposent d'un appareillage de résonance électronique hyperfréquence.

- 1. Hutchison Jr., Clyde A., Ricardo C. Pastor, Arthur C. Kowalsky, Jour of Chem. Phys., 20, 534, 1952.
- 2. JARRET Howard S., Jour. of Chem. Phys., 21, 761, 1953.
- 3. Kikuchi, C. et V. W. Cohen, Phys. Rev., 93, 394, 1954.
- 4. BERTHET, G., C. R. Acad. Sci. Paris, 240, 57, 1955.
- 5. SINGER, L. S. et C. KIKUCHI, Jour. of Chem. Phys., 23, 1738, 1955.