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Séance du 17 février 1955

E. C. G. Stueckelberg et G. Wanders *,

taire et particule composée.

Particule élémen-

1. — La découverte d’un nombre croissant de nouvelles
particules, de masse supérieure ou inférieure a celle du proton
(mésons d’une part et hyperons de I'autre), souléve la question
suivante: lesquelles parmis les anciennes particules (photon,
électron, proton et neutron) et les nouvelles, sont des particules
élémentatres ?

Les particules instables montrent par leur dissociation spon-
tanée qu’elles ne sont pas indivisibles; par exemple, le méson
lourd 67 ** se désintegre selon:

O —> m + (1)
Cependant, le proton p ™' et le neutron n: peuvent aussi

étre décomposés, sous I'action d’'un agent extérieur x
(par exemple; un photon » = ¥):

0 1 0 1
x0+p:' —-———»nl+1t;*'

(2)

0 0 +1 -1
xu‘*‘"l_’Pl + T

comme 1l est possible de dissocier le deuton d:‘, I’atome
d’hydrogeéne H; et la molécule d’acide chlorhydrique HCI’ :

36
% + dft — p™ + n]
g + H —> p*' + & (3)
%y + HCl3, — CI, + H}
* Recherche subventionnée par la Commission suisse de 1’énergie
atomique (C.S.A.).

** L’indice supérieur indique la charge électrique et I'indice
inférieur le nombre de masse de la particule.
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Remarquant ’analogie de (2) et (3), 'on peut demander
pourquoi le proton n’est pas considéré comme une particule
composée, de composants nz et 7::1, a méme titre que le deuton
est concu comme composé d’un proton et d’un neutron. Cette
distinction vient de ce que le théoricien est conduit a décrire
différemment des processus du type (2) et (3), dont la forme
générale est la suivante:

’ ” ” '
Al A, A Ay A,
“ ,+X,—ra .+ b, +c.+ ...% (4)
B, 2 B, B, 3

La particule X est une particule composée, de composants
a, b, ¢, ... lorsque 'amplitude de probabilité de (4) se calcule a
I’aide de l'action que x exerce sur les particules a, b, c, ...
« contenues » dans X, et de leurs intéractions mutuelles. Par
contre, X est une particule élémentaire si la description de (4)
exige que x exerce une action directe sur X.

Ainsi, la distinction entre particules élémentaires et com-
posées résulte d’un principe d’économie; s’il n’est pas possible
de décrire les propriétés d’'une nouvelle particule comme celles
d’un composé, a l'aide d’intéractions entre x, a, b, ¢, ..., on
doit concevoir X comme une nouvelle particule élémentaire.
Le principe d’économie exige donc un nombre minimum de
particules élémentaires.

2. — Alors que la théorie des champs quantifiés donne une
description covartante des processus entre particules élémen-
taires (tels que (2)), un traitement relativiste de processus
auxquels participent des particules composées (tels que (3))
n’a pas encore été présenté. Un équivalent relativiste de I'équa-
tion de Schroedinger (non-relativiste) a été proposé par Bethe
et Salpeter . L’évaluation par approximations successives des
niveaux d’énergie de I'atome d’hydrogéne, valeurs-propres de
Iéquation de Bethe-Salpeter, a fourni des corrections aux

* La conservation de la charge électrique et de la masse lourde
entraine:

’ ’

Al 4+ A, = A] + A; + A) + ...

’

B, + B, = B + B; + B; + ...
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valeurs propres de I’équation de Schroedinger, que I'expérience
a confirmé avec une trés grande précision (Lamb-shift 2).

Cependant, l'ignorance de la signification physique de la
fonction d’onde, solution de I'équation de Bethe-Salpeter, a
empéché, jusqu’a présent, son utilisation dans une évaluation
covariante de probabilités de transitions relatives a des pro-
cessus du type (3). Nous esquissons dans la suite une tentative
de solution de ce probléme.

La fonction d’onde ¢ (x, y) de Bethe-Salpeter, d’un com-
posé (ab) de deux particules a et b, se distingue de celle de
Schroedinger, ¥ (z, 7, ), en ce qu'elle dépend de deux points
de 'espace-temps, x = (z, t,) ety = (y, t,), (univers de c«lnﬁg_zi-
ratton a 8 dimensions) et non de deux points de 'espace, x et y,
(espace de configuration 4 6 dimensions), et d’un temps t. Nous
interprétons ¢ (z, y) comme amplitude d’annihilation des par-
ticules a et b en z et y, et nous en déduisons une description
covariante de la dissociation:

% + (ab) —> a + b (5)

que nous comparons avec le traitement non-relativiste. (x est
un agent extérieur agissant sur b seulement.)

3. — L’équation de Schroedinger * relative & (5):

(0, (2,y, 1) = [(Ipe I + my)™ +

—>

(2 P+ m)% + 2y ) + Viz—y] ¥ @50 (6)

peut étre résolue par un développement de ¥ (.71;, _g;, t) en

. . & e s — =
solutions stationnaires ¥, ¢ (z,y,t) et ¥ (x,_y,t) de

I'équation (6) sans potentiel extérieur » (5,’, t). P = (P, E) est
le quadrivecteur impulsion-énergie d’un état lié, caractérisé par

-

un ensemble de nombres quantiques symbolisé par n; E; et ¢

* (6) différe de I’équation de Schroedinger classique par le fait
quelle contient D’expression relativiste (|p |2 + m?)% de I'énergie
des particules libres; elle est non relativiste parce que I'intéraction
entre a et b est instantanée, décrite par le potentiel V (Z—7). Nos
unités sont telles que i = ¢ =1, m, m, sont les masses des par-

ticules a et b, p_et p, leur impulsion.
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sont les impulsions des particules « et b dans un état de diffusion.
L’amplitude de probabilité de trouver, au temps ¢, les par-
ticules a et b dissociées, en T et Tz;, est alors donnée, en premiére
approximation, par:

‘(1) - = N - - =
‘* P (‘1’ Y, ) ‘,_jl}pfab(xry!t) *
» 4

f a [larp [y ¥as @502 00 ¥, 5 @50 ()

si le systéeme était dans l’état (n, P) au temps t = —w.

“ )

Introduisant la fonction P " (z, ), telle que:

(1) [T (1) n.r.
lP.n r (@, y,t) = d ot . = (‘F’y)1x=iy=l (8)

n, P
on trouve, en négligeant l'intéraction des particules dans
I’état de diffusion (_[;,_g}) * et en passant a la limite d’un
agent extérieur spatio- temporellement localisé en un événement

2 (2 (Y, ) — €3 (Y —2) S (t —1)):

1 7 ’ ’ —_ ’ =
o p " (@,y) = —4e D (y -—3),['(0’z 2D, (& —2) ¥y, 5 (@, 5,1,) ¥
it (9)
z z
tx, ty > tz'

L’équation de Bethe-Salpeter de particules a et b de spin
zéro s’écrit:

[Dx — mZ] [Dy —m J (z,y) = T (x—y) o (x,y) (10)

* (C’est-a-dire en posant:

- > SR
Y ) = (@r)° HadHdi—Hp,g0

& DZ (x—2") et DZ (y — y’) sont les propagateurs causaux

invariants, des particules a et & [3], caractérisés par leur comporte-
ment asymptotique:

r \3/ m . o
DZ(x—x)m——-—l—<2n> *a gimgs

TJ"Z

- -
lorsque = —(@@—a)2=(t,—t ) —|z2—2 | —> o .
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Si b est dans le potentiel extérieur x (y), nous proposons
de remplacer (10) par:

[0, —ma] [0, — (my + W) o (0, 9) =1z —y) o(zy (11)

dont le role est équivalent a celui de (6). Avec les mémes
approximations que précédemment, on trouve:

1 . ¢ 7 ’ s ’
o0 (2 y) = —2my [y D5y —y) %) e, 3 y) (12)

et, dans la limite d’'un agent extérieur localisé en z:

1)r. .
S p (@ y) = —2myeDy (y — ) o, 3 (€, 5)  (13)

Selon notre interprétation, ¢, bty cp::)—f: (z,y) est 'amplitude
de probabilité d’observer @ en x et b en y, dissociés. L’agent
extérieur a annihilé en z la particule b du composé (ab) et a
réémis une particule b libre. L’amplitude (13) est le produit de
'amplitude d’annihilation ¢, 3 (, z) de a de (ab) en z lorsque
son partenaire b est annihilé en z, de 'amplitude ¢ de 'agent
extérieur et de 'amplitude DZ (y — z) d’observer en y une
particule b libre émise en z.

4. — Dans ce qul suit, nous nous placons dans le cas ou
V (z —_g;) est un potentiel coulombien (V = — Z/r) et ou
I (x — y) décrit une intéraction entre a et b par I'intermédiaire
de photons scalaires. Nous nous proposons de comparer les
formes asymptotiques de (9) et (13) lorsque z et y sont
dans le futur lointain de z (v = (t, —1,)? — [2 — zf — 0 ;
*:Z = (t, —1,)* — I}; "—EP —> 0 ), et lorsque n est I'état fon-
damental 18S.

Utilisant la solution Vg p (;,_?;’ t) de I’équation de Schroe-
dinger, on trouve, pour la forme asymptotique de (9):

(Hn.r. rY 1 . ¥ )
?ls’_ﬁr (;1;’ y) ~ C € i o 1maTx_3_ ¢ tmb“ryet(P,z) (

[sthz ¥ + 2ner]2 Tl/a Ty/2

ou V' est I'angle hyperbolique entre les vecteurs temporels
(x —2z) et P (chY = (x — z, P)/my, 7,y P2 = ‘Pl2— E2 =

14)
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— m,,?), B Ténergie de liaison dans I'état 1S (m,, =
mg, 4+ m, — B), m, la masse réduite (m, = m_m,/(m, + m,)).
La formule (14) et les suivantes sont valables s1 B « m,.

Les résultats de récents travaux de Wick 4 et Cutkosky 3
nous ont permis d’évaluer la forme asymptotique de (13).
Elle contient trois termes, dont le premier est:

N e
c?IS—};u Y

LI ]

1 1 —imgre 1 —impyry i(P,2)
el aTx — bT 1 32
Clamg(hT — 1) T 2m, B R ¢ ve (15)

L’onde hypersphérique isotrope 1-;3"2 exp (—wm,t,) appa-
raissant dans (14) et (15) pilote la particule b libre, dissociée
par x en z. Le résidu a se propage selon une onde hypersphérique,
d’amplitude variable avec ¥'; ainsi, la probabilité d’observer a
en x dépend de la vitesse nécessaire pour atteindre x a partir de z
(8 = thY est en effet la vitesse relative de a par rapport au
composé (ab)) (cf. fig. 1). Pour de petites vitesses relatives
(B ~Y¥ « 1), Pexpression relativiste (15) est identique a l'expres-
sion non-relativiste (14). L’amplitude, maximum pour 8 = 0,

est réduite a la moitié de sa valeur maximale pour f§ = 0,41 {3,

E = I/Zm,. B/m, étant la vitesse moyenne de a par rapport a b
dans 'orbite de Bohr de I'état 1S de (ab).

Le deuxiéeme terme de la forme asymptotique de (13)
s’écrit:
(1)2;
18,P,b

3
C (I_Jli)) 2 1 _l_e—imb Tx Le—imb Ty ei(P,J‘) (1()}
mg)  [2my (R + 1) — 2m B]" <2 <l

® (@, y) ~

(16) ne posséde pas d’équivalent non-relativiste; x crée une
paire (b + 3) en z; la particule b est pilotée par 'onde hyper-
sphérique isotrope 'c;a“‘ exp (—im, 1,), alors qu’une onde
hypersphérique anisotrope porte l'antiparticule b de z en xz,
ou elle s’annihile avec le composant b dans (ab), laissant
subsister a (fig. 2). L’impulsion-énergie disponible en z est
(P + p) (’ _;;[ = m, sh¥', p* = m,chY). La dissociation (5)
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est ici le résultat de deux réactions couplées, localisées en z et x:
% 4+ (ab) —> b+ b + (ab) —>a + b . (17)

Le troisieme terme de la forme asymptotique de (13):

0. m;\ /s
2% (@Y ~—C (—1) 2y,

-
1S, P,i m,

F (%) G (x,, ¥, Am,) ﬁeimi(\l‘)rx ﬁe—imb:y S ST
x v
contient une onde hypersphérique portant une masse m; (V")
fonction de ', d’amplitude variant avec V" selon F (') et amortie
par le facteur G (7, ¥, Am,) *. Une description formelle de (18)
est la suivante: sous 'action de » une particule b est annihilée
en z, avec un défaut d’énergie w,B (n, = m,/(m, + m,))
(dans le référentiel de repos de (ab); - 0); une particule b,
libre, et un « pseudoquantum » v, de masse m; (V') sont émis.
Ce « pseudoquantum » est annihilé en x, ou I'énergie disponible
est (mg—w, B+ m; (¥) chY) (n, = m,/(m, + m,)). On par-
vient a une interprétation du mécanisme de ce processus en
admettant I'existence de composés fractionnaires ., (ab) et
w, (ab), d’énergie-impulsion w, P et p, P, tels qu’on ait 'équi-
libre:
(ab) T u, (ab) + Ly (ab) (19)

et en considérant le « pseudoquantum » ¢ comme un composé

(wy @, u, b). La dissociation (5) serait alors le résultat des
deux réactions (fig. 3) **:

% 4wy (ab) — (wya, u, b) + b en z

(tpa wab) + u,(ad) —ra en x (20)
* Lorsque a et b ont des masses égales (m; = myp = m), on a:
1 sin (Am; 7, ch'Y)
F(¥) o G(r, ¥V, Am;) - :

m: ch?¥ Tk ’

m; (2mi,.B)V2 ; Amg«my .

. Ky Ar

™ 8ia= Ay b = by,, i porte les charges A, = u, A; —p A,

Bi =y, By — u By, u (ab) les charges u (A; + A,), ... et la
conservation des charges est assurée dans (19) et (20).
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Si la vie finie Am;! du «pseudoquantum » i exclut son
observation directe, il devrait pouvoir étre mis en évidence par
les corrections qu’il apporte aux sections efficaces des collisions
a haute énergie.

Institut de Physique
de I’ Université de Genéve.
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LA W=

D. Rivier.

transformation de jauge en électrodynamique.

Sur la définition d’un groupe tnfinitésimal de

1. — Le probleme de l'invariance de jauge en électro-
dynamique n’a pas encore trouvé de solution définitive a
I'heure qu’il est. En effet, I'électrodynamique quantique =2,
forme la plus satisfaisante de la théorie des phénomeénes
électromagnétiques, dépend d’un choix préalable de la jauge,
c’est-a-dire de la maniére dont on décide de mesurer les poten-
tiels électromagnétiques A" (z) dont se déduisent les champs
électriques et magnétiques F* = d“A¥ — d*A%. Cette situa-
tion s’explique principalement par deux raisons. La premiére
est lexistence d’une condition supplémentaire d A* = 0 a
laquelle doivent satisfaire les potentiels A*; la seconde réside
dans le fait que seules des transformations de jauges finies,
du type

A* (z) — A™ (z) = A% (2) + d*f (2) (1)

ont été jusqu’a ce jour bien définies pour les potentiels électro-
magnétiques.

2. — Une condition nécessaire pour une bonne théorie
physique exige que la forme de ses équations ne dépende pas du
systéme particulier de Lorentz choisi par |'observateur:
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