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CALCUL DES FONCTIONS-SOURCE EN
DIFFUSION DE RAYLEIGH-THOMSON

PAR

Pierre BOUVIER

Les fonctions-source qui mesurent le rapport du coefficient
d’émission a celui d’absorption dans le transfert du rayonne-
ment & travers une atmosphére stellaire, sont évaluées ici en
suivant un procédé de M. V. Kourganoff, pour le cas ou le trans-
fert s’effectue suivant une diffusion régie par la loi de Rayleigh-
Thomson.

1. CAS SIMPLIFIE OU L'ON NEGLIGE LA POLARISATION.

En considérant un rayonnement non polarisé, diffusé
d’apres la loi correspondant a la fonction de phase

p(cos ®) = %(1 + cos? 0)
I'intensité émergeant a la surface v = 0 de I'atmosphére stra-

tifiée en couches plan paralléles (7 étant la profondeur optique)
et dans la direction 6 = cos™! p a pour expression

"1 (3 —uya,L,
1 Tat

3

o=

+u + Q} (1.1)

dans ’approximation d’ordre n de la méthode de Wick-Chan-
drasekhar 1. F désigne le flux net (constant), L, et Q sont n

1 S. CHANDRASEKHAR, Ap. J., 100 (1944), 117.
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constantes arbitraires & déterminer par la condition d’absence
de rayonnement venant de 'extérieur et z, sont les n — 1
racines positives de I’équation caractéristique
(3 — u¥)

n
_}_J'_2—-——_=O

%) ==
1

coloa

nl

ou les p; sont les n racines positives du polynéme de Legendre
de degré 2n et les a; les poids relatifs & la formule de quadra-
ture de Gauss, basée sur la subdivision par les p; de Pinter-
valle (0, 1).

Introduisant la fonction H, (1) définie & 1’aide des racines
u; et z, par

. II (e + )

H, \/03n

II(F‘+“’)

nous pouvons transformer ’expression (1) en

n—1
]n(O, w) = 731'F \/ﬁ (1 - 2 L Lo’.) Hn () (1.2)

a=1

3 -
- ZF(3ZLOL + Q)Hn(p)

a=1

D’autre part, la fonction-source du probléme a pour valeur,
en n-iéme approximation,

n T

Folriw) = 2F i B—ut) S Lee %+ T+ Qf (13)
a=1

Reprenant ici 1’élégante méthode appliquée par V. Kour-

ganoff a la diffusion isotrope !, nous remarquerons d’abord, en

comparant les formules (1.1) et (1.2) que (3 — :cz) z,L, peut

étre regardé comme le résidu de la fonction (prolongée analy-
n-1

tiquement dans le domaine complexe) (3 > L, + Q) H, (1)

1 V. KouRGANOFF, Basic methods in transfer problems (Oxford,
1952), § 27.3.
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T
au péle u = — x_; en conséquence, L e *x qui apparait dans

(1.3), sera le résidu en u = — z_, de la fonction

= H, (u)e*
P (1) = (3 Lo+ Q) (— ) B —u?)

a=1

En vertu du théoréme des résidus de Cauchy, la somme
n-1 T

> L, e = pourra s’exprimer par une intégraile dans le plan

a=1
complexe
n—1 =
O Xy 1 ;
> L,e = E/ on (u) dp
a=1 c

pour toute valeur de n. Le contour C doit englober tous les
poles — z, lesquels se trouvent dans I'intervalle (0, — 1) de

I'axe réel, et exclure les singularités p = 0 et p = — |/§ de
@, (). Alors que I’exclusion du point —I/é_ est en quelque
sorte automatique, il convient d’entourer ’origine par un petit
cercle de rayon ¢ inférieur au plus petit des modules |z, |.
Eliminant H, (u) a I'aide de I'identité de Chandrasekhar

nous aurons

n—1
3> L, +Q =
W) = — — -
q’n'P' - ”(3 —_— “2) Hn("_ P-) Tn(uz)

et passerons ensuite a la limite n — oo. Alors ¢ — 0, et
I, (0, u) devient?!

F
Hbu = 5 H (u)

1 S. CHANDRASEKHAR, Radiative transfer (Oxford, 1950; abrégé
R.T. par la suite), § 45.
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ou a, est le premier moment de la fonction H (w), définie main-
tenant comme la solution (unique) de I’équation intégrale

1

H(u)=1+uH(u)./.%’ldu’ (1.4)
0
, 3
ou ¢ () = (8 —u.

En outre, la forme limite de T, (u?) s’écrit:

1

, 3 . (38— ?)ds
T (2 =1 + gmbl e (1.5)

Envisagée comme une fonction de la variable complexe p,
la fonction (1.5) apparait multiforme et il faut en choisir une
détermination particuliére afin d’écarter toute ambiguité dans le
passage a la limite n — oo. Il est naturel d’adopter, avec
V. Kourganoff, la détermination de (1.5) pour laquelle cette
fonction est réelle sur ’axe réel en dehors de I'intervalle (— 1, 1).
Posant alors

arg (1 + @) = 0 arg (1 —y) = 07
nous trouvens, apres intégration,

3 3
2y — s e —_ 2
T(u?) =1 s -|-16p.(3 p.){log

1__Z"LI s ’ }
6" — 6
1+yl+t( + m)
(

6)

[N

et la forme limite de ¢, (u) devient

T A

2

P =~ e —wH

—

— ) T(p?

ou T (p2) est la détermination (1.6).

Intégrons donc ¢ (@) le long d’un contour allant de — e a
— 1 par le bord supérieur de la coupure (0, — 1), contournant
le point — 1 dans le sens positif et revenant & — ¢ par le bord
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inférieur de la méme coupure. Nous obtenons, en écrivant

@ = — u, une expression de la forme:

o] T B

SL e = J ud” (1.7)

oy " 3a;J/ Hu) Z(uw)
ou

3 3 1 4+ ul? 3m\2? 2
— — 2 i — 2 i 2 — 2

Z (u) [1 g ¥ +16u(3 u)logl_u] +(16)u(3 u?)

et nous parviendrons finalement a la valeur exacte de la fonc-
tion-source en substituant (1.7) dans (1.3) ou la constante Q
aura été remplacée par le rapport ay/a; des moments d’ordre 2
et 1 de la fonction H (u).

2. REMARQUES SUR LA DIFFUSION ISOTROPE
AVEC ABSORPTION PURE.

Nous savons que I’équation caractéristique de ce probléme,
ou ’albedo @ est inférieur a 'unité, a pour expression !

n

T, (@) =1—wa2> —L =0 (2.1)
ey

et qu’elle posséde n racines positives distinctes. Chassant les
dénominateurs de (2.1), nous avons un polynéme de degré n en
7= X
R(X) —oX D ¢R;(X) =0
]
ou

= J[x—M), RjX) =][X—Mpy, M=y
1 h#j

Ecrivant explicitement le premier et le dernier terme de ce
polyndme ordonné suivant les puissances de X,

1—e) X"+ oo + (—1)"M;|M,...M_ =0

1 RT., § 26.4.

ARCHIVES DES ScIENCES. Vol. 7, fasc. 4, 1954. 20
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nous tirons de la une relation entre les racines X de (2.1) et
les racines p; & savoir

MM, ... M,
XX, . X, T° (2.2)

Le probléme d’intérét physique majeur, lorsque w << 1, est le
plus souvent celui de la réflexion diffuse; I'intensité diffusée
par réflexion a la surface T = 0 de ’atmosphére vaut:

Il‘eﬂ. (0 —_ 9_ F §1 xa La + Y y‘o

a=1

e G to
= 3 ol e H,, (o) Hy (1)
s1 I'intensité incidente forme avec la normale aux plans de
stratification I'angle cos™ p,.

La fonction-source s’écrit ici:

n T T
Tnlr) = 9F{ S Lye Ta+ vye } (23)

a=1

Son rdle physique est moins important qu’il n’était dans le
probléme a flux net constant, mais ceci ne nous empéche pas
de rechercher la forme exacte de (2.3) quand n—— o, par la
méme méthode qu’an § 1.

En particulier, la constante v s’obtient immédiatement en
écrivant

. — résidu en uw = — yu, de la fonction —°— H H (w).
Y o 1du en u Ko T (o) H ()

= poH (o) H (— o) = ﬁﬂ

Parmi les n racines positives de (2.1), 'une d’entre elles,

soit z,, peut devenir, contrairement aux autres, supérieure a
n T

P'unité. En exprimant alors la somme > L,e *; comme une
1

intégrale complexe, nous devrons ajouter a4 une intégrale prise

sur le contour entourant les points — x,, ..., —z,_, et excluant
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I’origine, le résidu relatif au péle isolé w = — z,. Nous n’allons
pas reproduire ce calcul ici, car il se révele identique a celui
qu’avait effectué V. Kourganoff pour le probléme, mathéma-
tiquement équivalent, de la formation des raies d’absorption !
selon Eddington et Milne; nous nous bornerons a quelques
remarques.

Démontrons que (1 — w)™! est une limite supérieure des
racines de (2.1). En effet, les @; étant tous > 0 et tels que

n
a; =1, les _u.J? étant d’autre part tous << 1, nous pouvons

écrire 'inégalité

" a " a; o
N\ 7 } N\ _
1—m> 2>1—-m'> 1_1— 1
1 My 11— 1——
— z

Or la valeur £2 = (1 — w)~! annule le second membre de cette
inégalité, de sorte qu’elle en rend positif le premier membre
T, (E?). Cependant, la fonction (2.1) est monotone croissante
au-dela du dernier de ses poéles (soit w,) et jusqu’a I'infini; elle
passe, dans cet intervalle (u,, o) de la valeur — o0 4 la valeur
positive 1 — @, de sorte qu’elle ne s’annulera plus, avant méme
que z® n’atteigne la valeur £2.
Il résulte de la et de la relation (2.2), que nous aurons

MM, ... M
X, X, ... X

n

<1

n-1

inégalité qui est a rapprocher du cas ou le premier membre
vaut 1/3, lorsque @ = 1.

3. CAS GENERAL DE LA DIFFUSION RAYLEIGH-THOMSON
AVEC FLUX NET CONSTANT.

Ce probléme, qui a été résolu complétement par S. Chan-
drasekhar en ce qui concerne les lois d’assombrissement 2, nous

1 V. Kourcanorr, Ap. J., 113 (1951), 4£19.
2 RT., § 68.
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met en présence de deux intensités, I,(t, ) et I (7, ) rela-
tives aux radiations polarisées dans des directions respecti-
vement paralléle et perpendiculaire au plan méridien contenant
la direction d’émission. A la surface de l'atmosphére, nous
avons en n-iéme approximation les valeurs

[ = "M
1;(0,u)=~g- iu+Q+( Ex—(x —y«)}
(3.1)
8 o 4
____"_F‘\/§H(P')
n M 2
Ir(O,LL):%F{quQ ég—ﬁi‘;} 3.2
3 . p+ec
::_F vz

ou ¢, ¢, Q sont des constantes a exprimer finalement en termes
des moments des fonctions H,(w), H, (u), lesquelles seront
solutions d’équations intégrales du type (1.4) d’Ambarzumian-
Chandrasekhar avec

Y (u) = %(1 — u?), respectivement ¢ (u) = %(1 — u?).
Dans les formules (3.1) et (3.2), les L; et M, sont des cons-

tantes arbitraires, les £; sont les n — 1 racines positives de
I'équation

T[(E_L2) = 1 — -32— \ﬁ ———(2 f“‘, = 0 (3.3)
j=1 ¥ T

ces racines, séparées par les pdles y,, sont toutes < 1 (a; > 0).
Quant aux x,, qui sont les racines positives de

n
3 o 41—
T, (u) =1— ‘,;P-z }_J e e ) (3.4)
j=1 % Ty

les n — 1 plus petites d’entre elles sont, pour la méme raison
que tout & I’heure, inférieures & 1 et il en va de méme pour la
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derniére, soit x,, contrairement au cas de la fonction (2.1),

; 5§ : 1
puisqu’ici T, (u?) est croissante monotone de T, (1) = 7 2
T 1

Les fonctions-source ont pour expression
3 n- _"l'_ n M __1
o T "V o
,lj(r,u)=§F{r+Q+(1—u }_J % Z,;;(wi—u”)exa
=1 a=1"a

( M T
i'r-{—Q 11?(1—-—3:)exa}

a=1

co|w

Jrltopm) =

Procédant comme § 1, nous mettrons leurs valeurs exactes sous
la forme

. 3 1 — p? p
Jilm ) = gF[TJr Q + QW:L / oy (3)dz +

51

ZELJ‘PI:ZdZ+ Jcph,(zdz](

Ca

‘Ir(T;E-L):%F{ +Q+—J q’rr }

2L
ou
oulp) = — \;i Mle_” o5 Hilw)

£

Wil = £ L, )
L

o () = — “jjp(l"’i 77 1 ()

o

ory (1) = — LT, o)

Le contour C,; englobera tous les poles — &g de I, (0, u) et
le contour C, tous les péles — x, de I (0, u); tous deux doivent
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exclure les points 0 et — 1. Comme précédemment, nous
éliminons H, (u) et H, () non définies en (0, — 1) a I'aide des
identités

H, () H, (— v) = rm’m H,(w By (— o) = 5z

ou les fonctions T désignent maintenant les déterminations
particuliéres uniformes

(0 < # < 2m, 0< — 6” < 2m)

3 3 s o
Tl(pﬁ)=1—§p.2+zu(1-—p.2){log|1+t‘+t(9 By +1r)}

1—~u| oy i
| + i —o +n)}

I

T (W) =1—4u*+ %u(i — 12 {log~

qui sont réelles sur l'axe réel en dehors de Iintervalle
(—1, + 1)

Isolant les singularités O et — 1 dans des cercles de rayons «,
respectivement v suffisamment petits, nous adoptons pour
C, et C, un contour longeant le bord supérieur de la coupure
(0, —1) de — e & — 1 + =, traversant cette coupure (I’argu-
ment de log (1 + p) passe alors de fa¢on discontinue de 0 & 2,
tandis que celui de log (1 — p) reste nul) et revenant a — ¢
par le bord inférieur.

On trouve un résultat de la forme

1 -=
3 e “(e— u) (u? — u?
J H(wz @ %

0

_ 3 3 'e"?‘-(c——u) (1 — u? ]
Jrinp) = gFys+Q—2 \/'2'6/ H, (u) Z, () d“[
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L)

ou
ey Bay 2 5 loe L= %] 1 (37) e -
Z;(u) = [1 5 U + 4u(1_"u)10g1 u] +(—1—) u?(1 — u?)
— _iz E — 1—up? §E22 — 2
Zr(u)_[i 4u—i—8u(1 u)log1+u]+(8>u(1 u?)

Les constantes ¢ et ¢, qui apparaissent dans les lois d’assom-
brissement, ont d’aprés Chandrasekhar les valeurs !

G = 24(A1 + 20;) — 3 Ay + A )
3(Ai+2ai)

8(Ay —oy) + 3 (205 p — AO‘A].)
3(Aj + 20{)

cC =

en fonction des moments d’ordre 1 et 2, a; et a, de H; (u), A
et A, de H, (w).

Pour obtenir la valeur exacte de la constante Q, nous mul-
tiplions les deux membres de (3.2) ot w == u, par a; (1 — u))
et sommons sur ¢t de — n a + n. Tenant compte de I’équation
(3.4) et de ce que

+n %
L.(0,u; <0) =0, a1 —pp) = 3

i=-n

nous trouvons sans peine

LA . 1 \n? 1—z,
Z‘ia,‘ (1 — P-,') Ir(O,P-j) = F gQ — Ma 5
j=

et, passant finalement & la limite » — o0, aprés quelques
réductions,

3 2
= —— (A + cAy — A, —cAy) + cvV2
Q 4 ’\/2 ( 3 2 1 0) \/
ce qui achéve de résoudre le probléme.

1 R.T., éq. (99), ch. X.
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