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CALCUL DES FONCTIONS-SOURCE EN

DIFFUSION DE RAYLEIGH-THOMSON

PAR

Pierre BOUVIER

Les fonctions-source qui mesurent le rapport du coefficient
d'emission ä celui d'absorption dans le transfert du rayonne-
ment ä travers une atmosphere stellaire, sont evaluees ici en
suivant un procede de M. V. Kourganoff, pour le cas oil le transfert

s'effectue suivant une diffusion regie par la loi de Rayleigh-
Thomson.

1. Cas simplifie ou l'on neglige la polarisation.

En considerant un rayonnement non polarise, diffuse

d'apres la loi correspondant ä la fonction de phase

pfcos 0) -^-(1 + COS2 0)
4

l'intensite emergeant ä la surface t 0 de 1'atmosphere stra-
tifiee en couches plan paralleles (t etant la profondeur optique)
et dans la direction 0 cos-1 p. a pour expression

3 1 'hi1 (3 — p.2) x L ]

-lF{g + ; +- + "}
dans l'approximation d'ordre n de la methode de Wick-Chan-
drasekhar F designe le flux net (constant), La et Q sont n

1 S. Chandrasekhar, Ap. J., 100 (1944), 117.
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constantes arbitraires ä determiner par la condition d'absence
de rayonnement venant de l'exterieur et sont les n — 1

racines positives de l'equation caracteristique

8
j=i * ^ J

oil les (Aj- sont les n racines positives du polynöme de Legendre
de degre 2n et les a3- les poids relatifs ä la formule de quadrature

de Gauss, basee sur la subdivision par les p3- de l'inter-
valle (0,1).

Introduisant la fonction Hn (p.) definie ä l'aide des racines

Pj. et jra par

II + M-i)

H"w
II + XJ

1

nous pouvons transformer l'expression (1) en

!„(<>. f) |F VP (* - f1-2*
\ a= 1 /

lF(35L* + Q) H»M
\ a l '

D'autre part, la fonction-source du probleme a pour valeur,
en «-ieme approximation,

3b(T,P) =|F (3-^)y;Lae-^ + t + Q| (1.3)
* '

a=l '

Reprenant ici l'elegante methode appliquee par V. Kour-
ganoff ä la diffusion isotrope x, nous remarquerons d'abord, en

comparant les formules (1.1) et (1.2) que (3 — a:aLt peut
etre regarde comme le residu de la fonction (prolongee analy-

n-1
tiquement dans le domaine complexe) (3 2 La + Q) Hn (P1)

a= 1

1 V. Kourgaxoff, Basic methods in transfer problems (Oxford,
1952), § 27.3.
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T

au pole p — xa; en consequence, La e x<* qui apparait dans

(1.3), sera le residu en p —xa de la fonction

«-1 / <- ^ (3 - ^
En vertu du theoreme des residus de Cauchy, la somme

n-1
_ t

12 La e x* pourra s'exprirner par une integrale dans le plan
0t= 1

complexe

a l c

pour toute valeur de n. Le contour C doit englober tous les

poles — xa, lesquels se trouvent dans l'intervalle (0, — 1) de

Taxe reel, et exclure les singularites p 0 et p — |/3 de

cpn (p). Alors que l'exclusion du point —[/3 est en quelque
sorte automatique, il convient d'entourer l'origine par un petit
cercle de rayon e inferieur au plus petit des modules | xa |.

Eliminant Hn (p) ä l'aide de l'identite de Chandrasekhar

1
H-)

Xn (p2)

nous aurons
n-t

äV^ + Q £.
1 ^ ^

_ p (3 - p«) H„(- p) Tn (p2)

et passerons ensuite ä la limite n —>• oo. Alors e — 0, et

In (0, p) devient1

I(o,p) ^-iH(p)

1 S. Chandrasekhar, Radiative transfer (Oxford, 1950; abrege
R.T. par la suite), § 45.
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oü ocj est le premier moment de la fonction H (p.), definie main-
tenant comme la solution (unique) de l'equation integrale

H (p) 1 + P H (p) (1.4)
« {X -f {J.
0

OÜ * (p) ^ (3 — p»).

En outre, la forme limite de Tn (p2) s'ecrit:

T (p3) i+i^/(3.,"iy i1-5)

0

Envisagee comme une fonction de la variable complexe p,
la fonction (1.5) apparait multiforme et il faut en choisir une
determination particuliere afin d'ecarter toute ambiguite dans le

passage ä la limite n — oo. II est naturel d'adopter, avec
V. Kourganoff, la determination de (1.5) pour laquelle cette
fonction est reelle sur l'axe reel en dehors de l'intervalle (— 1, 1).

Posant alors

arg (1 + p) 0' arg (1 — p) 0"

nous trouvons, apres integration,

TM I-|p2 + {iog|Hnii +' (6"—9' + 7t)}

(1.6)

et la forme limite de cpn (p) devient

T

O „ IL

3«j P (3 p2) H p) T (p2)

•oü T (p2) est la determination (1.6).
Integrons done <p (p) le long d'un contour allant de — e ä

— 1 par le bord superieur de la coupure (0, — 1), contournant
le point — 1 dans le sens positif et revenant ä — e par le bord
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inferieur de la meme coupure. Nous obtenons, en ecrivant
p. — it, une expression de la forme:

a-1 0

OÜ

Z(«) + log^^]2+ (ff)'"2 <3 — «2)2

et nous parviendrons finalement ä Ia valeur exacte de la fonc-
tion-source en substituant (1.7) dans (1.3) oil la constante Q

aura ete remplacee par le rapport a2/ax des moments d'ordre 2

et 1 de la fonction H (p.).

2. Remarques sur la diffusion isotrope
AVEC ADSORPTION PURE.

Nous savons que l'equation caracteristique de ce probleme,
oil l'albedo to est inferieur ä l'unite, a pour expression 1

" a:
Tn (x2) 1 - V • O (2.1)

J=1
z2 — n,-

et qu'elle possede n racines positives distinctes. Chassant les

denominateurs de (2.1), nous avons un polynöme de degre n en
x2 X

R (X) — toX2°/R/(X) o
3

oil

R (X) n (X - My), R/(X) XI (X - Mft), My p2

1 h^tj

Ecrivant explicitement le premier et le dernier terme de ce

polynöme ordonne suivant les puissances de X,

(1 — to) Xn + + (— 1)" Mi M2 Mn O

1 R.T., § 26.4.

Archives des Sciences. Vol. 7, fasc. 4, 1954. 20
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nous tirons de lä une relation entre les raeines Xa de (2.1) et
les raeines ä savoir

Mj M2 Mn

Xlx2...xn 1-" (2-2>

Le probleme d'interet physique majeur, lorsque to < 1, est le

plus souvent celui de la reflexion diffuse; l'intensite diffusee

par reflexion ä la surface t 0 de l'atmosphere vaut:

red. ,n " TT
I V1 x*ljai Y Ho

In (0>11)-IFj^_ + irn;

si l'intensite incidente forme avec la normale aux plans de

stratification l'angle cos-1 |i.0.

La fonction-source s'ecrit ici:

tf
n t_ 1

V Lae~^ + ye~*o I (2.3)
«=1 J

Son role physique est moins important qu'il n'etait dans le

probleme ä flux net constant, mais ceci ne nous empeche pas
de rechercher la forme exacte de (2.3) quand n—> co par la

meme methode qu'au § 1.

En particulier, la constante y s'ohtient immediatement en

ecrivant

Y residu en fj. — n0 de la fonction —— H (n0) II (fi).
H + [x0

hHyH(- M-„)

Parmi les n racines positives de (2.1), l'une d'entre elles,
soit xn, peut devenir, contrairement aux autres, superieure ä

n
l'unite. En exprimant alors la somme 2Lae x* comme une

l
integrale complexe, nous devrons ajouter ä une integrale prise
sur le contour entourant les points — ay, —a:n_j et excluant
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l'origine, le residu relatif au pole isole p — xn. Nous n'allons

pas reproduire ce calcul ici, car il se revele identique ä celui

qu'avait effectue V. Kourganoff pour le probleme, mathema-

tiquement equivalent, de la formation des raies d'absorption 1

selon Eddington et Milne; nous nous bornerons ä quelques

remarques.
Demontrons que (1 — o>)-1 est une limite superieure des

racines de (2.1). En effet, les a3- etant tous > 0 et tels que
n

1, 'es uf etant d'autre part tous < 1, nous pouvons
T1
ecrire l'inegalite

n a n a-

X2

Or la valeur E,2 (1 — co)-1 annule le second membre de cette

inegalite, de sorte qu'elle en rend positif le premier membre

Tn (E,2). Cependant, la fonction (2.1) est monotone croissante

au-delä du dernier de ses poles (soit pn) et jusqu'ä l'infini; eile

passe, dans cet intervalle (pn, co) de la valeur — oo ä la valeur

positive 1 — w, de sorte qu'elle ne s'annulera plus, avant meme

que x2 n'atteigne la valeur £2.

II resulte de lä et de la relation (2.2), que nous aurons

Mj M2 Mn

Xx x2 xn_,
<

inegalite qui est ä rapprocher du cas oil le premier membre

vaut 1/3, lorsque co 1.

3. Cas general de la diffusion Rayleigh-Thomson
AVEC FLUX NET CONSTANT.

Ce probleme, qui a ete resolu completement par S. Chan-

drasekhar en ce qui concerne les lois d'assombrissement 2, nous

1 V. Kourganoff, Ap. J., 113 (1951), 419.
2 R.T., § 68.
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met en presence de deux intensites, I, (t, p) et Ir (t, jz)

relatives aux radiations polarisees dans des directions respecti-
vement parallele et perpendiculaire au plan meridien contenant
la direction d'emission. A la surface de l'atmosphere, nous
avons en zi-ieme approximation les valeurs

of n=i s l n M 1

Il(O.H-) |Fj(z + Q + (i-,*.) £-!_!-+
(3.1)

of "Ml X
M0,|Z) |F p + Q_ y-i-—(3.2)' Xr. fZI 1 « ^

3 nl'+'.r
n-« 8 V2 r(|i>

oil q, c, Q sont des constantes ä exprimer finalement en termes
des moments des fonctions H, (p.), Hr (p.), lesquelles seront
solutions d'equations integrales du type (1.4) d'Ambarzumian-
Chandrasekhar avec

3 3
•Mi*) % I1 — ^ > respectivement i>r(p) - (1 — p2).

Dans les formules (3.1) et (3.2), les Lp et Ma sont des

constantes arbitraires, les ^ sont les n — 1 racines positives de

l'equation

T;(p2) 1 - §P2 V g'(1
0 (3.3)

j l V- - Vj

ces racines, separees par les poles p3-, sont toutes < 1 (a}- > 0).

Quant aux xa, qui sont les racines positives de

Tr(p2) 1 - |p2 V g'(1 ~ ^ _ 0 (3.4)
1 1 V-

les n — 1 plus petites d'entre elles sont, pour la meme raison

que tout ä l'heure, inferieures ä 1 et il en va de meme pour la
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derniere, soit xn, contrairement au cas de la fonction (2.1),

puisqu'ici Tr (p2) est croissante monotone de Tr (1) - ä

Tr(oo) =1
Les fonctions-source ont pour expression

q f _JL n M -JL
(x) g-F | T + Q + (i — ji2) 2 Lpe + S — ^e x«

[ ß l a=I X0L

' n M.
;Tr(x, p) |f j T + Q - 2 ^f1 - <)

l ot 1 xa

Procedant comme § 1, nous mettrons leurs valeurs exactes sous
la forme

3,(t, p) £f | t + Q + ?u(z)dz +
C1

+ ik J <P'"-(z)dZ + 2
C2 C2

;7rKp) |f jx+ Q + 2^i/«PrrWd»J

ou

9"(l*} \/2 H(1 - n")
H((|X)

p + c pe"?',>) Hr(p)

p + c e M'

•\/2 t* I1 — H2)
9-«rW =-^rM^«Hr(p)

Le contour Cx englobera tous les poles — ^ de I, (0, p) et
le contour C2 tous les poles — xx de Ir (0, p); tous deux doivent
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exclure les points 0 et — 1. Comme precedemment, nous
eliminons H( (p) et Hr (p) non definies en (0, — 1) ä l'aide des

identites

oil les fonctions T designent maintenant les determinations

particulieres uniformes

qui sont reelles sur l'axe reel en dehors de l'intervalle

Isolant les singularity 0 et — 1 dans des cercles de rayons e,

respectivement y) suffisamment petits, nous adoptons pour
Cx et C2 un contour longeant le bord superieur de la coupure
(0, — 1) de — e ä — 1 + y\, traversant cette coupure (l'argu-
ment de log (1 + p) passe alors de fa<jon discontinue de 0 ä 2t:,
tandis que celui de log (1 — p) reste nul) et revenant ä — e

par le bord inferieur.
On trouve un resultat de la forme

H,(p) H,(- p) Hr(p) Hr( p) ^
(0 < 6' < 2k, 0 < — 0" < 27t)

T,(p«) 1 _ | pt + |p(i _ pi) { log | l-j-H | + i {r _ 0' +

Tr(p») l-|p2 + |p(l - P2) {log|[^| + £ (6* — 0' + 7t)

(- 1, + I)-

T

J,(T,rt |F +
0

e " du

H,(«)Z,(«)
+

T

T

£%Kp) f-F t + Q-
8

' e u (c — it) (1 — u2) jH» Z» dU
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011

Z,(li) [l — -|u2 + — a2) log* ~ "j + u2(l —u2)

Zr(u) — -|m2 + lit (1 — u2) log*
+ "j + «2(1 — "2)

Les constantes q et c, qui apparaissent dans les lois d'assom-

brissement, ont d'apres Chandrasekhar les valeurs 1

„ 4 (At + 2 <xt) — 3 Ao «i + Ai <*o)

q
3 (A2 + 2 x)

1 l

_ 8 (At — g,) + 3 (2 op a, — A„ A,)
3 (A2 + 2 a2)

1 1

en fonction des moments d'ordre 1 et 2, ax et a2 de H; (p.), Ax
et A2 de Hr (p).

Pour obtenir la valeur exacte de la constante Q, nous mul-

tiplions les deux membres de (3.2) ou p — pt par al( 1 — p2)

et sommons sur i de — n ä + n. Tenant compte de l'equation
(3.4) et de ce que

+n
Ir(0>Pt <0) 0, Vat(l-p2) |

l=-?l

nous trouvons sans peine

S "i (1 - ^ Jr(0. ^ F | |Q - 2 Ma^ }
3 1 l a l XOL J

et, passant fmalement ä la limite n —> oo, apres quelques

reductions,

Q ——7= (A3 + c A2 — Al — c A0) + c \/2
4 V 2

ce qui acheve de resoudre le probleme.

1 R.T., eq. (99), ch. X.
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