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THEORIE

DE LA

RELAXATION DIPOLAIRE

FORMALISME FONDAMENTAL

PAR

Georges-J. BENE

(Avec 16 fig.)

1. LA RELAXATION, EFFET DE RETARD.

On a coutume, en électrodynamique élémentaire, de consi-
dérer le champ et le déplacement correspondant comme pro-
portionnels I'un a l'autre. Ainsi, par exemple, la polarisation
électrique est proportionnelle au champ électrique, la polarisa-
tion magnétique est proportionnelle au champ magnétique, la
déformation mécanique proportionnelle a la contrainte [1].

Une étude plus approfondie de ces phénomeénes nous révéle
que, lorsque I'amplitude du champ appliqué (pris dans le sens
le plus général) varie assez vite, le déplacement correspondant
ne suit plus, dans certains cas, les variations du champ appliqué.

Le coeflicient ¢ de la relation

D (déplacement) = ¢ E (champ) (1)

n’est plus une constante mais devient une fonction plus ou
moins compliquée du temps.

Pour préciser la forme de cette relation, nous partirons d’un
exemple simple: on a un condensateur plan contenant un dié-
lectrique. Lorsqu’un champ constant E est appliqué a Il'ins-
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tant ¢, on observe que le déplacement prend pratiquement au
méme instant la valeur D,. Puis, le déplacement croit graduel-
lement jusqu’a la valeur finale D (o0). On dit alors que le
diélectrique présente un «effet de retard» (effet d’inertie ou
_effet postiche) [2].

La partie du déplacement qui dépend du temps est habituel-
lement exprimée par une formule indiquant sa déviation par

D
Do)

D(9)

rapport a la valeur d’équilibre finale. La figure 1 nous montre
qu’a un instant arbitraire ¢, le déplacement D (¢) est donné
par:
D(t) = Do) —D(t) Dt —1t5) t =1 (2)
on a:
D =0 pour t <t
D(t—1t) =0 pour t = o

D(t—1t) =1 pour t =1,

La fonction @ (¢) est la fonction d’effet de retard.
L’observation d’un tel régime d’établissement dépend de
trois facteurs d’importance inégale suivant les cas:

‘ 1) son amplitude totale, c’est-a-dire de la grandeur
(De — Dy) /Do

2) de la grandeur de la « constante » de temps de la courbe
d’établissement, ou plutét de I'exponentielle la plus voi-
sine de cette courbe d’établissement;
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3) de I'élimination des autres causes possibles d’effets varia-
bles avec le temps.

Bien que 'existence de 'effet de retard des diélectriques ait
été indirectement mise en évidence depuis plus d’un demi-
siecle, on n’a, en raison de la petitesse de la constante de temps
mise en jeu, observé que depuis trés peu de temps la courbe
d’établissement du déplacement en fonction du temps. A I'aide
d’un dispositif convenable, D. Davidson, R. Auty et R. Cole [3],
ont récemment construit point par point la partie variable de

54\

Fig. 2.

la réponse du glycérol & un champ donné pour T, = — 60,5°
cent. Le méme diagramme contient I’exponentielle la plus voi-
sine. La constante de temps de cette exponentielle vaut
T, = 1,81.1073 sec.

Le but de la théorie de la relaxation est d’interpréter les
causes possibles de l'effet de retard. Sans anticiper sur la
théorie de la relaxation diélectrique on admet que le milieu
diélectrique contient a la fois des molécules dipolaires et d’autres
molécules n’ayant pas de moment dipolaire.

L’application d’un champ E, constant:

1) provoque une distortion des molécules non polaires,
induisant un moment électrique. Cette induction est pra-
tiquement instantanée et conduit a la valeur D, du dépla-
cement;

2) provoque une réorientation des dipéles préexistant dans
le milieu. Cette réorientation, génée par le milieu dans



232 THEORIE DE LA RELAXATION DIPOLAIRE

lequel baignent ces dipdles, ne se fait que progressive-
ment et conduit & la valeur finale D*. Le milieu agit
comme ayant une certaine viscosité a I’égard des dipdles.

Comme nous ’avons laissé prévoir, l'effet de retard n’est
pas confiné a la polarisation diélectrique. Il peut étre provo-
qué par des forces mécaniques. Un exemple nous est fourni
par 'effet thermoélastique [4].

Effectuons I’expérience suivante: une tige, encastrée a une
extrémité, est brusquement fléchie sous Deffet d’une force
exercée a 'autre extrémité. On s’attendrait a ce que, l'effort
fléchissant restant constant, la fleche reste constante. Il n’en
est rien; la fleche augmente encore légérement vers un nouvel
état d’équilibre réel; il se produit un effet de retard élas-
tique 1. Un tel effort est souvent attribuable a la conduction
thermique [5].

En effet, si I'on admet que le coefficient de dilatation de la
matiére est positif, conformément aux lois de la thermodyna-
mique, le c6té brusquement comprimé se sera légérement
réchauffé. Le c6té chaud comprimé opposera donc une plus
grande résistance a la compression, car, par suite de I'accrois-
sement de la température, il aura précisément tendance a se
dilater. Il en est de méme pour le coté allongé, qui avait ten-
dance a se rétrécir. Dés que la conduction thermique a annulé
la différence de température, la force élastique diminue légére-
ment et la tige acquiert une, fleche plus grande.

Une analyse plus poussée montre que l’accroissement de la
température se produit de maniére que, en chaque point de la
tige, la variation de la température T est donnée par la rela-
tion:

AT = AT,ell" (3)

Par conséquent, la fleche y provoquée par une force constante a
peut-étre exprimée par la loi:

Yy =y + y. (1 — e—!/r) (4)

1 On évitera les oscillations de la barre si la force est brusquement
appliquée pendant un temps court par rapport a I'effort de retard,
mais long par rapport au temps propre d’oscillation de la barre.
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la fleche additionnelle s’établit progressivement. L’intensité de
I'effet est donnée par le quotient y,/y; (19, environ) T est le
temps de relaxation.

A coté de 'effet thermoélastique, il existe un grand nombre
d’effets de retard d’origine élastique; il est hors du cadre de
cette étude de les décrire ou de les interpréter.

Pour résumer, la relaxation nous apparait comme un phéno-
meéne général, caractérisé par «'effet de retard » & 1’établisse-
ment brusque ou & la suppression soudaine d’un champ au
sens le plus général. Cet aspect nous a déja permis de définir:

la force de relaxation
le temps de relaxation

tous deux trés variables en grandeur absolue ou relative sui-
vant le genre de relaxation ou, pour un genre donné, suivant
les conditions de relaxation; précisons dés maintenant que la
température est un des facteurs les plus importants, étant liée
a la vitesse de contact des éléments mis en jeu.

On examinera d’abord le cas le plus simple, celui d’une
approche exponentielle de 1’équilibre.

A. Approche exponentielle de I équilibre.

On a vu que dans ce cas le déplacement (pris au sens le
plus général) avait la forme:

D () = D, + Dy(1 — €'l

Dans le cas des diélectriques, il y a deux composantes & la
« constante » diélectrique, reliant le déplacement au champ
appliqué D =c¢E

une composante g, qui conduit instantanément a D,;
une composante g, qui conduit, a partir de D,, 4 la valeur
d’équilibre du déplacement.

Il est normal d’appeler cette valeur d’équilibre, celle que I'on
observe dans le cas statique D, et la valeur de la constante
diélectrique correspondante &,
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Pour des raisons que nous verrons plus loin, nous appellerons
D_, la valeur instantanée que prend le déplacement immédia-
tement apres I'application du champj; il lui correspond la cons-
tante diélectrique € ; dans ces conditions:

D(f) = Da + (Dy — Da) (1 — &™) (5)

si on introduit les constantes diélectriques et le champ L

Duo = EmE
D, = gE ,
on aura.
D()/E = clt) = ea + (o —ea) (1 — ) (6)

Pour étudier la forme du déplacement lorsque le champ est
une fonction sinusoidale du temps, nous chercherons d’abord
le réseau ¢électrique [6] analogue & un systéme présentant
I'effet de retard, c’est-a-dire dont la réponse soit de la forme:

R(1) = R, + Ry(1 — ™)

On peut montrer que cet équivalent est donné par la capacité
instantanée d’un circuit de la forme

e

Il
"Ca,

Fig. 3.

Si on considére la partie supérieure du circuit et qu’on applique
la différence de potentiel V a des bornes, on a, d’aprés la loi
d’0Ohm
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si 'on pose RC;, = t; si maintenant la différence de potentiel
est appliquée au réseau complet, on aura:

L =G+ au—ety

la capacité instantanée est de la forme
C(t) = Cy + C; (1 — e7t/7)

qui est exactement la forme proposée plus haut.
On aura I'équivalent de la constante diélectrique instanta-
née si
g = Gy gg — € = ()
= RC, = R(gp — ew)
d’out

T

R =

On aura l'effet d’'un champ alternatif en appliquant au
réseau, non plus une tension fixe, mais sinusoidale V = V,e*!
I’équation de la moitié supérieure du circuit devient

dg

BRI+ Cil = V,elo!
sa solution est encore égale 4 la somme d’une intégrale par-
ticuliere et de l'intégrale générale de I’équation sans second
membre. L’intégrale générale, la méme que dans le cas de V
constante, s’amortit rapidement et il reste I'intégrale particu-
liere périodique.

Si cette derniére est de la forme ¢ = ¢, ¢'!, la capacité du
réseau est

C g, — €
=10 1 - et gy e B B
2 + R avec T RC, et g(w) £ + 1T o

(7)

On séparera les composantes réelle et imaginaire en multipliant
haut et bas (1 —iw~) et posant

e =¢ —ig”, (8)
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on a
, €y — Ex»
€ —Eo = -10+ 0.)2 Tz (9)
P (80_"8“’)(‘)7
1 + wz.rz (10)

On est conduit a P'existence d’un véritable spectre d’absorp-
tion dont le domaine spectral sera fixé par la grandeur du
temps de relaxation .

Les temps de relaxation mesurés varient entre plusieurs
heures et 107" seconde environ. Les absorptions par des
champs sinusoidaux se situent donc dans le domaine hertzien
et ultrahertzien. On se trouve donc en présence de véritables
spectres d’absorption hertziens.

On se rendra mieux compte de I'allure du spectre de relaxa-
tion en prenant comme variable z = log wt et en rapportant
les susceptibilités & I'unité gy —e_, on en déduit les expres-
sions:

e —ew _ 1 . 1 — tg hz
€) — € _ 1 + 8‘2: — 92 (11)
g 1 sech z
€9 — €o» - ez + e_z - 9 (12)
qui conduisent & la représentation graphique:
1 (1)
(42)
o : —>
(o] L’j w¥

Fig. 4.

Largeur de la raie d’absorption.

On peut, pour se rendre compte de l'allure du spectre de
relaxation dans le cas d’une approche exponentielle de I'équi-
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libre, évaluer la largeur de la raie d’absorption.

w __ (eg—etx)oT
T wit? 41

La position du maximum est donnée par la condition:

oc” . . .
25 =0, c’est-a-dire o, t = 1, qui conduit a
oo ! M q

(o) = 3 (5 — <o)

Pour déterminer la largeur de la raie & mi hauteur, il faut
calculer les fréquences pour lesquelles:

e’ (w) = %(e,J — €x) on en tire w = (24 43) A
La largeur de la raie d’absorption & mi-hauteur est donc de
prés de quatre octaves.

L’étude des spectres hertziens de relaxation requiert donc
une gamme étendue de fréquences; on évite souvent ce grave
inconvénient en étudiant l'absorption & une fréquence fixe,
mais & température variable. On a remarqué en effet que les
temps de relaxation varient trés rapidement avec la tempéra-
ture T.

Il ressort de la théorie cinétique de la chaleur que

T = 1,elk

dans laquelle 7, est une constante de la matiére tandis que ¢
a la dimension d’une énergie.

On observera donc un spectre d’absorption en faisant varier
la température au lieu de la fréquence. La courbe ¢"(T), de
méme allure que £”(w) ne lui sera évidemment pas superpo-
sable.

Hystérése due a Ueffet de retard.

Si le champ est E = E,e'®! et la constante diélectrique

e =¢' —i€", le déplacement sera donné par la partie réelle
du - produit de ces deux grandeurs, soit:

D = E,(¢’coswt + ¢”"sinwt) ,
0

ARCHIVES DES ScIENCES. Vol. 5, fasc. 4, 1952. 16
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en donnant & ¢ et £ les valeurs données par les équations
(9) et (10), on obtient:

(Dp—Do)w=
Do(l + &%) + D, — Da

D=(Dm+D°_D°°

m) [COS wt +

sin mt]

et siD_ >> D,— D_, on aura: D = D, cos (wt — ¢) avec

D, — Da
Dy = De + v

et
_ (DO_ Doo) wT

e = Dy + Deow?1?

L’effet de relaxation se traduit donc, lors de I’application
pendant un certain temps d’'un champ sinusoidal, par un
retard de phase du déplacement par rapport au champ.

Si l'on porte sur un diagramme la variation du déplace-
ment D = D, cos (wt + ¢) en fonction de celle du champ
E = E,cos wt, le point figuratif décrit une ellipse telle que
celle représentée ci-dessous

DA

/ .
0/,‘

Fig. 5.

La largeur de cette ellipse est déterminée par ¢.
L’aire de D’ellipse donne I’énergie développée par période;
elle est facile a calculer si E = Eje®' et ¢ =& —ic" avec

D = ¢E on aura
2n/w

A:fEdD:Eis”n (13)
0
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Cette énergie dans le cas de I'effet de retard magnétique a
été exploitée par Gorter et ses collaborateurs a Leyde pour
établir une échelle de températures absolues au voisinage de
1072 degré Kelvin.

Lorsqu’on a la possibilité de mesurer les deux susceptibilités,
il est facile de montrer que la fonction " =" (") est repré-
sentée par un cercle. Il suffit d’éliminer wt entre les rela-
tions (9) et (10); on obtient:

r '__Eo—smz ,,2_(80_803)2
[(s em) — 22 ] + e = (25 (14)
C’est un cercle de rayon E"_; E°°, centré sur l'axe réel,
le coupant aux points
e =g (0 = 0)
g = tn (0 = x)
pour lesquels " = 0.
EN Eo » £ ’
r
'3
Y
Fig. 6.

Nous citerons a titre d’exemple la constante diélectrique
complexe de la glace qui conduit 4 un demi-cercle & la préci-
sion des mesures [7].

D’autres vérifications de la forme exponentielle de I'effet de
retard sont possibles.

On peut, a partir de I’expression des composantes €' et "
de la constante diélectrique, calculer la valeur de 7 et en
déduire la relation

’

gg— ¢ = wTe” (15)
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Pour une substance a température constante le diagramme
représentant ¢, — ¢’ en fonction de we” doit donner une ligne
droite de pente 7.

On peut, également, de (9) et (10) déduire

tg o = £ = T

Sl—Em

La variation de tg ¢ par rapport a4 la fréquence est encore
une droite de pente 7. La fréquence f, pour laquelle tg ¢ =1
donne le temps de relaxation & partir de la relation [7]:

T=1/2xf,

B. Insuffisance du modéle exponentiel.

Nous avons admis jusqu’d présent, de maniére un peu for-
melle, que la composante non instantanée du déplacement cor-
respondant a I'application soudaine d’'un champ de grandeur
finie avait ’allure d’une courbe de la forme

K(1 — et (16)

Expérimentalement, on peut souvent assimiler une courbe
d’établissement & I'exponentielle la plus voisine, bien que
I'écart soit parfois systématique; parfois on s’écarte franche-
ment de I'exponentielle et il faut admettre une loi différente
de l'effet de retard.

Comme il a été dit plus haut, Davidson, Auty et Cole [3]
ont établi point par point la partie variable de la réponse du
glycérol & un champ donné & une température de — 60,5° C.
Leur diagramme trés suggestif (p. 682) montre a la fois la
courbe expérimentale et 'exponenticelle la plus voisine:

Les deux courbes, quoique trés voisines, sont systématique-
ment distinctes et on voit nettement que cette réponse n’a pas
la forme de I’équation (16).

D’autres cas sont encore plus nets:
L’élasticité des verres montre un effet de retard dont I’am-
plitude croit fortement avec la température. Divers auteurs
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(Michelson 1917, Stott 1937, Jones 1944) [8] étudiant la courbe
d’établissement en fonction du temps, lui ont trouvé une
forme tout a fait inattendue: les points expérimentaux sont
bien rangés sur la courbe

fl) =1—eVi (17)
et s’écartent de facon grossiére et systématique de la courbe
fl =1—¢&'"

comme le montre le diagramme

(T

Fig. 1.

Non seulement les courbes sont assez éloignées, mais elles se
distinguent formellement par le fait que la pente de I’expo-
nentielle & I'origine est 1/t tandis que celle de la courbe expé-
rimentale est oo .

Nous n’avons envisagé jusqu’ici que les fonctions d’établis-
sement; 1l est certain que la réponse du systéeme a un champ
sinusoidal nous révélera des anomalies par rapport aux fonc-
tions qui ont été obtenues en partant de la réponse exponen-
tielle.

Ainsi si nous portons en diagramme, en fonction du log de
la fréquence, d’une part la partie réelle, d’autre part la partie
imaginaire de la constante diélectrique, les courbes n’ont pas
toujours la forme attendue.
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Le diagramme 2" = z” (2") a normalement 1’allure d’un demi-
cercle centré sur 'axe réel.

Fig. 9.

Il arrive parfois que tous les points expérimentaux tombent
sur cette courbe, sauf le point correspondant a la fréquence 0
qui est a l'extérieur [9].

N

X

Fig. 10.

Dans d’autres cas, les points sont tous sur un arc de cercle
dont le centre n’est plus sur I'axe 2’ [10].
Ces cas ne sont que de petites variantes du cas classique;



THEORIE DE LA RELAXATION DIPOLAIRE 243

I’alun de fer ammoniacal, pres de 1° k [9] montre un diagramme
trés lointain du demi-cercle attendu:

Xy

Xy I X

Fig. 11.

et par conséquent une variation du temps de relaxation avec

la fréquence.
La constante diélectrique du glycérol montre une courbe du
méme genre, mais tournée dans le sens opposé [11].

£'a

50, E‘l’ 'Sr
Fig. 12.

Enfin la représentation de gy — ¢’ (ou X° — X’) en fonction
de we” (ou wX”) [9] qui devrait donner une droite dont la

!

/Kr'x“

Fig. 13.
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pente donne précisément le temps de relaxation a souvent
’allure d’une courbe concave vers les ordonnées négatives.

Il est clair que la fonction adoptée n’est pas apte a inter-
préter ces diagrammes; le probléeme n’est pas nouveau: il s’est
posé depuis fort longtemps au sujet des constantes diélectriques.

Dés 1907 von Schweidler a proposé de remplacer la fonction
exponentielle simple par une fonction nouvelle composée d’un
nombre infini de termes exponentiels, chacun de ces termes
correspondant & un temps de relaxation. Ceci revient en
quelque sorte a remplacer une valeur unique du temps de
relaxation par une distribution de temps de relaxation.

Pour établir simplement la forme nouvelle de la réponse,
nous supposerons par exemple que I’échantillon soumis a I'in-
vestigation est composé de trois parties d’égal volume dont
les temps de relaxation sont t,, 75, 73 avec 7, 4 T, + T3. Cha-
cune de ces trois parties conduit & un spectro d’absorption de
la forme donnée par Debye mais les maxima successifs sont
décalés. On observe la somme des trois courbes, soit une courbe
nouvelle qui est assez différente de la courbe de Debye qui
correspondrait a tout 1’échantillon; elle est

plus large
moins haute

on verrait de méme qu'une distribution aussi simple (trois
temps de relaxation de poids statistiques 1/3) modifie la courbe
de dispersion dans le sens attendu par I'expérience (fig. 9).

11 est facile, par ailleurs de se rendre compte, comme l’ont
récemment mis en évidence Benzie et Cooke [9] qu’une distri-
bution aussi simple entraine une variation du temps de relaxa-
tion avec la fréquence a laquelle il est déterminé.

Partant de I'’exemple paramagnétique

X' = X +——T— = (18)

X7 — (19)
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on déduit:
w? 2
X — X’ 2 .2
i SO .5 55 A (20)
ks © _ 0T
1 4+ w?1?

La connaissance de X, la mesure a la fréquence » de X' et X"
permettent de calculer t expérimental.

Supposons maintenant que l’échantillon se compose de n
portions dont les temps de relaxation sont 7, 75, ..., T, On
aura a 1'aide des expressions ci-dessus:

S"‘ w? T
1 ;_'_:; 1 + o2 ‘r:
Texp — o " n (21)
@ NV mTT
1+ o? 'r:
lorsque o est trés petit w7t ({1
pIN 2
10 T = ' = —
exp T T T 7
sl au contraire wt ;) 1
20 Texp — n — 1

% (3
T?‘ T

expressions dans lesquelles T sont des valeurs moyennes.

On voit que dans le cas 1) Texp €80 > que 7 tandis que
dans le cas 2) 7., est < que T.

On observe ainsi une diminution du temps de relaxation
lorsque croit la fréquence, conformément aux données expéri-
mentales.

Jusqu’ici nous n’avons envisagé qu'un nombre peu élevé de
temps de relaxation différents affectés du méme poids statis-
tique; ce que nous avons dit reste encore vrai si nous envisa-
geons une distribution continue de temps de relaxation, avec
une fonction de répartition donnée. Il est presque évident que
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le choix de la fonction de distribution permettra de régler tous
les cas expérimentaux.

On sait que la contribution des dipdles a la constante dié-
lectrique est g, —e_. Si I'on admet que tous les dipéles ne se
réorientent pas avec la méme constante de temps = et si nous
appelons y (t) dr, la contribution a ¢, —e¢_, du groupe de dipdles
dont les temps de relaxation sont compris dans l'intervalle d=
autour de T, on aura alors pour la contribution de tous les
dipdles contenus dans I’échantillon:

€g — € = /Qy('r] dt
0

la fonction y (t) décrit la fonction de distribution des temps
de relaxation entre 0 et oo .
On aura dans ces conditions:

Ay (z) dx)

w J1—iloeT
0
~yls)d
, *y(t) d<
¢ e = [ 2=
[ ]
v y(t)wrtdr

_l 1+&)2T2
0

I1 est clair que pour les substances de ce genre les équations
données ci-dessus remplaceront les équations de Debye — et
que, par conséquent, les équations de Debye ne seront pas
satisfaites. Il reste évidemment a déterminer la fonction de
distribution. On peut soit 'imposer et voir 'accord de I'expé-
rience (par exemple a partir d’une théorie donnée). On peut
aussi la déduire des données expérimentales. Voici quelques
exemples.

Jusqu’ici, les exemples ont porté sur une fonction discontinue
dont tous les éléments ont la méme hauteur; on peut la rem-
placer par une courbe continue limitée par une courbe alge-
brique qui donnera un poids statistique différent aux divers



THEORIE DE LA RELAXATION DIPOLAIRE 247

temps de relaxation: le nombre des éléments doués d’un temps
de relaxation t varie avec la valeur de T.

Von Schweidler ne s’est pas préoccupé de fixer une forme a
la fonction de distribution mais seulement d’obtenir pour &’
et €” des valeurs satisfaisant les résultats expérimentaux.

En 1913, K. W. Wagner [12] introduisit le premier une loi
de distribution des temps de relaxation: il proposait de distri-
buer les temps de relaxation suivant la fonction de probabilité:

y(x)dr = (yb)/ (V) e dz avec s = log, — (23)

N
To

Cette loi établit que les logarithmes des temps de relaxation
des divers termes sont groupés autour du logarithme du plus
important temps de relaxation <7, la densité de distribution
étant gouvernée par la constante de distribution .

Quand b > 2, le groupement des temps de relaxation autour
de 1, (valeur correspondant au maximum) est trés dense;
lorsque & décroit de 2 a4 0, la densité de distribution diminue
et s’élargit tendant vers oo pour b = 0.

Cette loi permet de déduire les valeurs de ¢’ et €” en fone-
tion de la fréquence — et conduit & des courbes de représen-
tation voisines des données expérimentales.

Les 1ntégrales entrant en jeu ne s’évaluent que par approxi-
mations, aussi Wagner a-t-il établi des tables d’évaluation.
Les figures 2 et 3 de Yager [13] montrent les variations de
" et ¢’ en fonction de log. wt, pour b variant entre 0,15 et oo .
Pour & = o0, on retrouve les équations de Debye avec un
seul temps de relaxation — on voit que la zone de dispersion
s’élargit de plus en plus lorsque b — 0.

Yager a montré dans son mémoire I'application de cette
méthode a l'analyse des données en courant alternatif d’un
certain nombre de cas; I'accord est évidemment bon — en
genéral (cas du glycérol mis a part). Il reste évidemment — et
nous verrons cette question plus tard --- & interpréter physique-
ment une telle distribution de temps de relaxation.

On peut, comme il a été indiqué plus haut, faire 'opération
inverse qui — lorsqu’elle est possible — conduit & coup sir a
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I'interprétation des données expérimentales. On part des
courbes d’absorption et de dispersion d’oi on déduira la forme
de la fonction de distribution. C’est & Fuoss et Kirkwood [14]
que l'on doit la méthode de calcul. Nous n’avons en effet,
jusqu’a présent, aucune preuve de la nécessité de l'existence
d’une distribution de temps de relaxation pour un systéme
donné, et on n’a pas le droit de poser a priori que cette dis-
tribution suit la loi de Gauss. Certaines substances montrent
d’ailleurs une asymétrie dans la courbe d’absorption en fonc-
tion de Log wT.

Fuoss et Kirkwood se proposent de déduire la fonction de
distribution des temps de relaxation a partir de la courbe
d’absorption en fonction du log de la fréquence qu’ils admettent
hyperbolique. Leur méthode nécessite malheureusement 1’em-
ploi de la relation modifiée [15] d’Onsager [16] entre la cons-
tante diélectrique et la polarisation. Elle ne conduit donc &
des résultats intéressants, que pour s*l))i et €2>>¢"2
Par ailleurs, les formes analytiques de ¢’ ne sont calculées que
pour deux valeurs déterminées du parameétre « spécifiant la
demi-largeur de la fonction de distribution des temps de relaxa-
tion. J. Ross Macdonald [17] a étendu récemment le calcul de
Fuoss et Kirkwood en utilisant &4 l'aide des relations de
Kramers-Kronig les données expérimentales de dispersion, en
éliminant la relation citée d’Onsager, et en utilisant tout le
domaine possible de valeurs de a.

L’avantage de ces méthodes est de ne faire aucune hypo-
these sur la forme de la fonction de distribution.

Cole et Cole [10] ont montré qu’'un grand nombre de cas
expérimentaux pouvaient s’primer par la relation

€% — ¢, eov_sml < a1
1+ (lox)" ™%

qui n’est différente de 1’expression de Debye que par lexpo-
sant 1 — a.

On peut séparer la partie réelle de la partie imaginaire et
simplifier un peu les expressions obtenues en introduisant les
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fonctions hyperboliques; on obtient alors:

cos =T
__s__zé e - (24-1)
o e ch (1 —a)z + sin =~
s:e(,:%_% sh(1 — o)z (24-2)
fo T Ee ch(i—a)x+sin°‘__2"

Il est intéressant d’étudier la relation entre &' et £”. Elimi-
nant wt entre les deux relations, on obtient I'équation d’un
cercle dont le centre n’est sur aucun des deux axes; il est dans
le quadrant ¢ > 0 ¢" < 0.

¥

€y

e

>

EI

Fig. 14.

Evidemment cette courbe coupe I'axe des &’ suivant des

.

N;I 3 o

angles différents de g— ils sont égaux a (1 — a)

On voit la différence avec le formalisme de Debye le demi-
cercle est réduit & un segment plus petit.

Il est intéressant d’étudier le diagramme £” = f (w) et d’éva-
luer Pamplitude du maximum de la courbe d’absorption; il se
déduit de ’expression de €”.

Il suffit d’écrire que la dérivée de €” par rapport & wt est
nulle. -

M 1 )
———:-Q-tg(l—oz}— (25)
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tandis que Debye avec a = 0 conduit a

”

eM

1
done

5;1 < e;{ Debye

Suivant le calcul proposé par Fuoss et Kirkwood on peut,

a partir de la relation de ¢” = f (w), admettre que ce diagramme

est dd a4 une distribution de Gauss des temps de relaxation
— distribution de la forme

F(s)ds = i, e_b282 ds s = Log T—T T, = val. moy. (26)
TT/* 0

P

1 sin a T
Flsjds = g2 & (1 — a)s — cos Rl &3)

4
F(»

8
v v

+4 Lloi %’

Fig. 15.

I1 resterait bien entendu a interpréter le sens d’une telle dis-
tribution et surtout sa raison d’étre.
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Récemment Davidson et Cole [11] ont interprété une forme
nouvelle du diagramme &” = ¢”(¢) qui ne présente plus d’axe
de symétrie parallele & I'axe des &".

Leurs données expérimentales sont bien traduites par I'ex-
pression sulvante:

e — e = (gp—€a) /(1 + i)™ (23)

si I’on pose maintenant:

. —1!
e —ie" = retv

on trouve:
_ -
r=(1+ o) *? ¢ = (1 —a) Arctg 0 <

Par définition, lorsque « = 0, on aura un cercle; si 0 << o << 1
le point figuratif du nouveau diagramme se déduit du cercle
par allongement du rayon vecteur et diminution de l'angle
polaire. Ce n’est donc plus un demi-cercle (fig. 12).

On peut mettre en évidence la dissymétrie de la courbe en
calculant la pente aux points d’intersection avec 1'axe des €'.
On voit immédiatement que pour A on a w =, r =0 et

¢ =(1— a)i;, tandis que pour le second point, on a
d

J— r _ —_
th_rdd,J— 0T 0

d’on

T
E=g
la courbe coupe I'axe des ¢’ sous deux angles inégaux.
k3
A— (1 — o) 5 B —
Dans le cas étudié par Davidson et Cole o 22 0,4 et A = 54°,

La distribution des temps de relaxation déduite de la méthode
de Fuoss et Kirkwood donne:

Fiefrg) = (Sinnd TE) [To T T}i—a - (29)

F(t/t) =0 T > T
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On trouve une distribution continue de temps de relaxation
7 < T, mais aucun plus grand.

F
A

|
'
|
|
!
|
|
]
]
|
1
!
|
|
|
|
!
|
|
|
1
To

Fig. 16.

Signalons que le calcul de J. Ross Macdonald permet de
résoudre le cas ou I’arc de cercle rejoint 'axe des €' par deux
droites.

Nous tenons & remercier le Professeur Richard C Extermann,
directeur de I'Institut de Physique, dont l'aide et les encou-
ragements ne nous ont jamais manqué pendant la préparation
de ce travail.
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