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INDEFORMABILITE D’UN CORPS
A POTENTIEL POLYHARMONIQUE
CONSTANT

PAR

Robert SOUDAN
(Avec 3 fig.)

§ 1. — ENONCE DU THEOREME.

Soit un corps homogeéne V. Il engendre hors de sa frontiére S
le potentiel polyharmonique U (P):

U(P) =8 [¢,(M, P)dr, - (1)
v

On a posé:

2n-2

on(M, P) = N C, MP" .

a=-1

Les constantes C, sont arbitraires, éventuellement nulles.
On peut supposer sans restriction C,,_, et C,,_, non nulles

simultanément.
Toutefois nous supposons:

a) n > 1 sinon (1) serait I’expression du potentiel newtonien
ordinaire;
b) Au moins une constante C, est différente de zéro pour

o impair.

Dans ces conditions, il est impossible de déformer la fron-
tiere S du corps de maniére continue et de fagon a obtenir une
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suite analytique de surfaces composées chacune d’un nombre
fini de surfaces analytiques sans que U (P) ne change hors des
masses.

Nous ferons la démonstration de ce théoréeme en raisonnant
par 'absurde.

§ 2. — INVARIANCE DE LA MASSE.

Soit S’ une déformation de S a potentiel constant et 3" la
densité correspondante.
On sait que:

Done, si N est la plus grande valeur de l'indice des C, non

nulles:

(4
lim -~ = C
N

R—>©

.
D’autre part, la condition d’invariance du potentiel s’écrit.:
5 [(opde =8 [ogd= .
v \.I

Il s’ensuit:

A T
limS/_"dT_—_ lim 8',/—nd1‘.
. RN RN

v

R—> R—> % v’
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D’ou:
Cy9d fd‘t= CNS’ [.d'r
.v v’

et finalement:
M=M.

Ainsi la masse doit étre conservée pendant la déformation.

§ 3. — CONDITION NECESSAIRE.

Soit AU le potentiel de masses de densité + &' comprises
entre S et S’ et AV le volume de la couche sommé algébrique-

ment:
AV =V ' —V .

La condition d’invariance du potentiel s’écrit:

'/ Sand'g’ :"/ 8’ on dT =,[‘8, Vn dT +./ 8’ V.n dT .
v v/ v Av
Par suite:
AU = [(Sopde = (3—8) [o,dr = 8_8 v .
Av v

Le potentiel de la couche doit étre égal, & un facteur pres, au
potentiel primitif.
En vertu de l'invariance de la masse:

B8 _ ¥ _,_V _AV
) - ) Vv’ v’
Finalement:
7
AU(P) = ¥ U(P) . (2)

I1 faut remarquer que AV peut étre positif, négatif ou nul.
Soit maintenant A I'épaisseur de la couche et Az sa borne

supérieure. Déplagons normalement les masses de la couche de

fagon & les amener toutes sur S. Le potentiel de la couche
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deviendra un potentiel polyharmonique engendré par une
densité superficielle. Nous I'écrirons A U.

Chaque masse ayant été déplacée au plus de Az, on aura, en
vertu du théoréme de la moyenne (® étant une fonction com-
prise entre — 1 et + 1):

|14, U—AU| = | [8¢(MP) AEdo —

8

— [(¥0(MP + ©AF) Ak do
8

MP MP !
< [lISIHAE.”O(.\IP)ﬁV(J\“)+@Aa) de .

s

Puis, en majorant A% et ©O:

|8,U— AU | < |¥]Az [ |o(MP) — o(MP = Az)|do .
s

On choisira le signe de la fagon la plus désavantageuse.
Il est aisé de voir que:

IO(MT’)—O(W + Ax)[ < AAzx

A étant un nombre donné, suffisamment grand et a la condition
de se trouver a une distance d des masses telle que:

B>d>a>Az>0.

a et B sont deux constantes. Il faut remarquer que B est aussi
grand que 'on veut, mais A croit avec B.
Nous obtenons finalement:

|A,U— AU| < A|¥|SAa? = A*Aa? . (3)

Le potentiel de la couche n’a varié qu’au second ordre par
rapport a I'épaisseur de celle-ci. Ce résultat est intuitif: on a
déplacé selon des distances du premier ordre, des masses du
premier ordre.

(3) s’écrit, en tenant compte de (2):

AV

v U | < A*az .

AU —
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D’autre part, la densité superficielle Aw engendrant AU a
pour expression:

Am=g§=3%?tji5=s'—§—iax=mm. (4)
Remarquons que la fonction w ne peut étre identiquement
nulle ni supérieure a 8’. Cest en effet une fonction analytique
égale a &' 1a ou A% = Az. Cette propriété subsiste a la limite
ot Az — 0 en vertu des hypothéses faites au § 1 sur les sur-
faces S'.

En tenant compte de (4), nous obtenons:

(MP)d<| < A* Az® .

Az [ w(M)o

S A4

Divisons membre & membre par Az puis passons a la limite
ou Ar — 0. Nous obtenons la condition nécessaire:

? = AV
M) o (MP) do = ( lim
's/w( ) ¢(MP) do i AxV) ‘f'o(MP)
La limite du second membre existe en vertu de I'analyticité
de la déformation.
Elle peut, a priori, étre nulle.
Elle ne peut étre supérieure, en valeur absolue, a S/V car:

L AN
‘AIV

Dans tous les cas nous arrivons a la condition nécessaire:

-fAV dt
V' Az

_Javldxl _ Jgbeds g

S Vaz S Vaz TV

fm(M) o (MP) oy = C [' (MP) d=y (1)

pour tout point P a distance B > d > a > 0 des masses. Or B
peut étre aussi grand que I'on veut. (I) est donc vrai pour toute
distance d des masses telle que:

d>o0 >0

a est un nombre choisi aussi petit que I’on veut.
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Il convient de remarquer que (I) exprime qu'il doit exister
(st G 0) une densité superficielle de matiere engendrant le
méme potentiel polyharmonique, hors des masses, que le corps
homogéne envisagé.

Montrons maintenant que C # 0, c'est-a-dire qu’'une défor-
mation a potentiel constant ne saurait se faire aussi a volume
constant. Cette propriété est vraie également pour le potentiel
newtonien ordinaire; cela résulte du fait que nous n’avons pas
encore fait usage, et nous n’en ferons pas usage dans ce para-
graphe, de la restriction @) du premier paragraphe.

Si C = 0, nous aurions:

fm(M) 0, (MP) do = (5)
S

pour P hors de S.

Soit & = 2l — 1 la valeur impaire la plus élevée de I'indice
des constantes C, non nulles. (Il y en a au moins une en vertu
des hypothéques faites au § 1.) Faisons opérer [ fois le laplacien
sur les deux membres de (5). On trouve aisément:

Y —=2k-2

Co-y ) wdo | > Co | o MP do = 0 (6)

avec:

o — (e +1)!C,
@« (e — 20 + 1)1 °

Le deuxiéme terme représente un polynome < de degré
2n — 21 — 2 en les variables cartésiennes x, y, z, repérant le
point potentié P. Soit m la puissance la plus élevée de x dans
ce polynéme. Divisons (6) par 2™ et faisons croitre x en gardant
constantes y et z. (6) se réduit & un polyndéme en y, z et & des
termes dont on peut rendre la somme inférieure & e choisi
arbitrairement petit pourvu que x soit assez grand. Par suite
ce polyndme (primitivement facteur de 2™) est nul pour toutes
valeurs de y, z, donc identiquement nul. De proche en proche
on voit que tous les termes de € sont nuls. Par conséquent (6)
se réduit a:

wdo
-fﬁ=°'
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On démontre en théorie du potentiel newtonien que la derniére
relation ne peut étre satisfaite que pour « identiquement
nulle. Cette derniére conclusion est absurde, @ devant étre
analytique et égale a 8’ en un point de S. Par suite C = 0 dans
(I) et peut étre incorporé a cw.

§ 4. — BALAYAGE AU MOYEN DES FONCTIONS
DE GREEN.

Cherchons d’une maniére générale a remplacer la densité
spatiale § par une densité superficielle engendrant horsde V + S

le méme potentiel.
Portons dans la formule de Gutzmer qui généralise 'identité
de Green:

[(AA,B—BA,A)dz = —

D

-1 ,
Y d d
o -\—i ._[. ( Ap A dn An—-k—! B2 x B e Ay A) do
h=0 7

A = ¢, (B, P) donc ALA =0 dans V ,

n

B=g¢g,(B,M).

Fig. 2 L.

! Dans la figure lire ¢ au lieu de .
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., est la fonction de Green de scconde espece ! pour 'intérieur
de S. Elle est nulle sur S, continue dans V, méme pour B = M
(s1 » > 1) et symétrique 2 en B et M. Enfin:

nd - ) .
Am (c"n - (x"n*m ’

— ¢, est la fonction de Green ordinaire.

Intégrons dans V — g, ¢ étant une petite sphére centrée sur
M. Il vient, en tenant compte des propriétés de Cj, et en faisant
tendre ¢ vers O:

n—1
d

Y o
D f Ay on(B, P) =G, (B, M)do, =0 —
=0 s

n-1

— N Apen (M, an/d (B, M)do, . (7)
k=0 0—>0‘

Montrons que seul le terme & = 0 du second membre n’est pas
nul. Tenons compte de I'expressionT définissant (j, par récur-
rence, du fait que ¢j, est continue pour B =M si k> 2 et
symétrique en B et M. Alors:

d - 1 d & >
Zn net By M) = = = ["G4(B, Q) Gi(M, Q) d=

v

-_=4L'/'g (B, Q)—QI(M Q) dr,

v

ou encore:

d , 1 d o

pour k > 2. A est la borne supérieure de (j,, (qui existe puisque
k > 2). B est une constante choisie convenablement.

Par suite de la derniére relation les termes du second membre
de (7) sont tous nuls pour & > 2.

! Voir par exemple: Actualités scientifiques et industrielles, 331,
Miron NicoLEesco, Les fonctions polyharmoniques, p. 29.

2 Pour la symétrie, généraliser au moyen de la formule de Gutzmer
la démonstration décrite dans Mémorial Sc. Math. 1926, fasc. XI,
Bouligand, p. 12.
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Envisageons maintenant le terme & = 1: Il faut étudier le
comportement de:
1d’1°B s (M, Q) d B-M
e dn 1B, Q) 1 (M, € pour Sl

LS
v

d .
E%'E(B’ M) -

Le second membre de 'expression ci-dessus se comporte comme:

»

1 1

— —— d‘t‘ .
J BQ MQ

Pour étudier cette expression lorsque B — M, centrons sur B
et M deux spheéres ¢ et ¢’ de rayon MB/2, sur M une sphére ¢”’

de rayon a = 2 MB, puis une quatrieme, ¢’’’, de rayon fixe b.
Divisons le domaine d’intégration en cinqg domaines: o, ¢,

¢’ —¢ —o0, 06" —a"’, V—¢'. 1l vient successivement:
"' d~ & 4 J“ d~ 91
=— ——5 b —3 —_— = 7
¢ BQ MQ MB® Y BQ
|_d1_2<2‘d72:&n’
<, BQ MQ MB ¢ MQ
r _d1_2 < ia ’qdr = 25::: )
Y _g_e BQ MQ MB® ¢,
- ~ o T
d'l' 1 1 B
g = = =i N (:)P(.,)dr
0;.‘,_0. Q MQ? u-’_a, MQ® 5\ M "
Q

Fig. 31,

! Dans la figure lire ¢ au lieu de =.
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La série du développement classique de 'inverse de la dis-
tance au moyen des polynomes de Legendre est absolument et
uniformément convergente dans le domaine d’intégration

puisque ﬁQ > 2MB. Par conséquent:

1< [ s ,_,(iig) 4 =

b
[. n:p_n_idp<8n+4'n:L—b__— .
== 2MB

oh/s

D’autre part:

L < [ <3
_Qﬁ_ J B S

v GII‘

Par suite des calculs précédents L] ¢, tend vers oo si B—M
dn

comme L MB. 1l en résulte que le terme du second membre de
(7) pour lequel k = 1 est nul.
La second membre de (7) s’écrit finalement:

d 1
+ o M,P)lim | ———do = —4bme (M, P
nl )Ho dn BM nl )

et la formule (7) devient:
—1 , d
on(M, P) = 57— Z fAhvn(B, P) = Gpey (B, M) do, . (8)

(8) exprime que I'on peut remplacer une masse unité située
; By i : —1 d o
dans V en M par une suite de densités superficielles -— —~ Srir

engendrant hors de S le méme potentiel. On peut donc écrire:

n-1
UP) = [ 300 0, P)dr, = 3 [(@y(B) & 0,(B, P
v R=03%
(1)
avec:

-1 da ,
op(B) = 7 | 300 = Gay O, Bydz, - (11D

v
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Les intégrales ci-dessus ont un sens en vertu de ce que nous
; d ;o
Rl &7
avons dit de an In
Les formules (II) et (I11) généralisent le probleme du balayage
de Poincaré qui consiste & remplacer une densité spatiale par

une densité superficielle engendrant le méme potentiel newto-
nien hors du corps.

§ 5. — INDEFORMABILITE A POTENTIEL CONSTANT.

La condition nécessaire (I) s’écrit, en tenant compte de (II):

n-1

fm(M) on(M, P)do, = > fmk(M) Ao, (M, P)do, . (9)
0 8

Faisons opérer ! fois le laplacien sur les deux membres de (9)
en nous rappelant que 2/ — 1 est la valeur impaire la plus élevée
de l'indice des constantes C, non nulles. On trouve aisément:

4 "wdo . w, do
Cu-i‘J = _C-zt—if = =
S

P MP
S
n-1 n-1 )
- (2 + 1)! C,; - .
= N % 2 ——2(i-k-1)
2 2 (2i+1—21f—21)!t’ “x ME ¢g —
R=0i=h+l s
-1
n\‘ c MB ¢ g 10
— 2 2i‘ w G . (10)

i=1 S

Le second membre ne contient que des puissances paires de

MP. C'est donc un polynéme (de degré 2n — 2l — 2) en les
variables cartésiennes repérant le point P. En raisonnant
comme au § 3 on voit que ce polyndéme doit étre identiquement
nul. Donc (10) devient:

——do = 0, ce qui implique ()
MP i B

l
2

»
{m—mo
o«

s
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et la condition nécessaire (9) devient:

n-1
> fwk(M) A, op(M, P)do, = 0 . (IV)
k=13

Deux cas peuvent se présenter:

a) 21 —1 £ —1, alors I > 1.

Faisons opérer [ — 1 fois le laplacien sur les deux membres
de (IV). Il vient:

. "w,(M)do
Car-s ’T:_
-1 1
n 'J'lﬁ (21+1 . ?(l‘rlkl)d
<~ (2;-{-3—21:——21)!' =
R=1 i=h+l-1

Le second membre de cette expression est un polynéme de
degré 2n — 20 — 2. Comme précédemment on voil qu’il doit
étre identiquement nul. Par suite (IV) implique:

w (M) =

Nous en déduisons une condition nécessaire:

o, do = 0 . (V)
8

b) 2l —1 = —1.

Il ne subsiste plus de puissance impaire de MP dans (IV). La

plus grande puissance paire de MP est 2n — 2. Faisons opérer
n — 2 fois le laplacien sur les deux membres de (IV). Tous les
termes pour lesquels k£ > 1 s’annulent et il vient:

f"’IAn—ivnd°= (2n—‘l)!C2n2f de = 0 .
5

S
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Dans les deux éventualités nous arrivons a la condition néces-

saire (V). Le théoréme sera démontré si elle est absurde. C'est
ce que nous allons montrer.

(V) s’écrit, en tenant compte de (III):

al

—1 d
— J - Ga(M. B)do, dv, =0 .
) v

Par suite de notre étude de —d—L}' nous pouvons permuter
dn 92

I'ordre des sommations et écrire la condition nécessaire sous
la forme:

;v

i d ) T
Jama | o 901, By do, =0 V1)
v s B

Posons dans 'identité de Green:

: o d d
( (AAB — BAA)dx = m_:T[ (Ad—nB——B&;A)do
A=1,
B =‘;}2

e’ intégrons dans le domaine V — ¢, 6 étant une petite sphére
cantrée sur M. Il vient, en faisant tendre o vers 0:

el

AB‘£;2(M1 B)dT =

B

il

d (d .,
— ) g Ga0, B)ch—hm;} = Gydo .

o
5 =0

Nous avons vu précédemment que le dernier terme était nul.
En tenant compte de cette derniére relation, (VI) devient:

fdfm fABgz(M, B)dz, = 0
v v

ARCHIVES DES ScIENCES. Vol. 5, fase. 1, 1952.
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ou:

» gl

| j G,(M, B)dr, dr, = 0 .

e
Y v

Cette derniére condition nécessaire est absurde car —(j; reste
positive dans V. L’indéformabilité annoncée au début en résulte.

La démonstration précédente subsiste dans l'espace a m
dimensions. Pour m pair, on léve facilement quelques petites
difficultés supplémentaires.
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