Zeitschrift: Archives des sciences [1948-1980]

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 3 (1950)

Heft: 3

Artikel: Approximation galiléenne de l'attribution relativiste onde-corpuscule

Autor: Keberle, Edouard

DOI: https://doi.org/10.5169/seals-739454

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Edouard Keberle. — Approximation galiléenne de l'attribution relativiste onde-corpuscule.

1. La dualité onde-corpuscule dans l'approximation galiléenne. — Considérons un corpuscule massif.

Les expressions $(\frac{E}{c^2}, \overrightarrow{p})$ et $(\frac{v}{c^2}, \overrightarrow{\varkappa})$ étant celles de vecteurs d'espace-temps, les relations

$$E = hv$$
, $\overrightarrow{p} = h\overrightarrow{x}$ (1)

de L. de Broglie possèdent la variance relativiste, car h est scalaire.

Lorsqu'on envisage le cas des petites vitesses, ces relations n'ont pas la variance galiléenne correspondante. En effet, dans $p = \frac{h}{\lambda}$, p seul se transforme alors que λ en tant que longueur reste inchangé lors des transformations de Galilée, h conservant de toute manière sa valeur. Cette incompatibilité entre la dualité de L. de Broglie et les transformations de Galilée provient du fait que E et ν s'introduisent différemment dans le raisonnement physique: Dans les formules de transformation de Lorentz pour $(\frac{E}{c^2}, p)$ et pour $(\frac{\nu}{c^2}, x)$, il faut d'une part calculer l'énergie E' et la quantité de mouvement p' du corpuscule de masse au repos m et de vitesse u au moyen des formules

$$E' = \frac{mc^2}{\sqrt{1 - \frac{u^2}{c^2}}}, \qquad p'_1 = \frac{mu}{\sqrt{1 - \frac{u^2}{c^2}}}, \qquad (2)$$

tandis que la fréquence ν' et le vecteur de propagation \varkappa' de l'onde s'obtiennent à partir de la fréquence au repos ν de l'onde grâce aux formules

$$v' = \frac{v}{\sqrt{1 - \frac{u^2}{c^2}}}, \qquad \varkappa_1' = \frac{\frac{u}{c^2}v}{\sqrt{1 - \frac{u^2}{c^2}}}$$
(3)

(la longueur d'onde « au repos » étant infinie). On remarquera la place différente occupée par c^2 dans (2) et (3).

Au moyen de la transformation

$$p_{1}'' = \frac{p_{1}' - v \frac{E'}{c^{2}}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}, \qquad \qquad \varkappa_{1}'' = \frac{\varkappa_{1}' - v \frac{v'}{c^{2}}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}, \qquad (4)$$

on obtient en tenant compte de (2) et (3), d'une part

$$p_{1}'' = \frac{\frac{mu}{\sqrt{1-u^{2}/c^{2}}} - \frac{c}{c^{2}} \frac{mc^{2}}{\sqrt{1-u^{2}/c^{2}}}}{\sqrt{1-\frac{c^{2}}{c^{2}}}} = \frac{m(u-c)}{\sqrt{1-\frac{u^{2}}{c^{2}}}\sqrt{1-\frac{c^{2}}{c^{2}}}},$$

pour p_1^r , les deux carrés $\frac{1}{c^2}$ et c^2 se compensant au second terme du numérateur, tandis que d'autre part

$$\varkappa_{1} = \frac{\frac{u}{c^{2}} \sqrt{1 - u^{2}/c^{2}} - \frac{v}{c^{2}} \frac{v}{\sqrt{1 - u^{2}/c^{2}}}}{\sqrt{1 - v^{2}/c^{2}}}$$
(5)

expression dans laquelle c^2 ne se simplifie nulle part.

Lorsqu'on passe à l'approximation galiléenne, p'' et κ'' se comportent alors tout différemment, p''_1 valant

$$p_1'' = m (u - v)$$
 (approximation galiléenne)

et \varkappa_I s'évanouissant totalement :

et
$$\varkappa_1'' = 0$$
 (approximation galiléenne),

alors qu'on aurait trouvé $\varkappa'' = \varkappa'$ en traçant simplement le second terme du numérateur dans la seconde formule (4) sans savoir, il est vrai, quel est le rapport de \varkappa' à $\frac{\rho}{c^2}$ ν' .

Si l'on tient à écrire des relations d'ondes-corpuscules valables aussi bien dans l'approximation galiléenne que dans la représentation relativiste, il faut introduire des grandeurs fictives. Soit v * une fréquence fictive telle, que

$$v^* c^2 = v.$$

Alors

$$m = h v^*$$
.

La fréquence v' et le vecteur de propagation valent

$$v' = \frac{v^* c^2}{\sqrt{1 - \frac{u^2}{c^2}}}, \qquad \varkappa'_1 = \frac{\frac{u}{c^2} v^* c^2}{\sqrt{1 - \frac{u^2}{c^2}}},$$

de sorte que x, s'écrit maintenant

On peut simplifier cette fois-ci par c^2 comme dans l'expression de p_1'' :

$$x_{1}'' = \frac{v^{*}(u-v)}{\sqrt{1-\frac{u^{2}}{c^{2}}}\sqrt{1-\frac{v^{2}}{c^{2}}}}$$

et l'on a réalisé une attribution onde-corpuscule pour laquelle il existe un passage à l'approximation galiléenne

$$p = \frac{h}{\lambda} \tag{6.1}$$

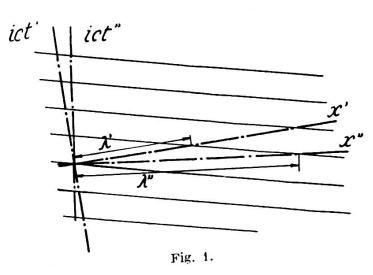
avec

$$\frac{1}{\lambda} = v^* w$$
, $p = mw$ (6.2 et 3)

2. L'approximation galiléenne d'un état de choses relativiste ne doit pas être confondue avec un état de choses galiléen. Au paragraphe précédent, ce que nous sommes parvenus à faire grâce à l'emploi d'une grandeur fictive v* a été la construction d'une approximation galiléenne (formule 6.2) de la relation qui existe en relativité (formule 5) entre la longueur d'onde, la

fréquence et la vitesse. De la sorte, on a évité de négliger sans justification des termes apparemment petits parce qu'ils contiennent le facteur $\frac{\rho}{c^2}$.

Mais cette construction ne signifie en aucune manière que sur la base unique de la cinématique galiléenne il existe une relation entre ces trois grandeurs.



Autrement dit, l'application des formules (6.1, 2 et 3), si elle ne va effectivement que dans les limites de l'approximation, n'a de sens que pour un état de choses reconnu comme relativiste bien qu'à faible vitesse relative, c'est-à-dire pour lequel on doit transformer d'après Lorentz, par exemple à l'aide de la figure 1 où l'angle φ est très petit, alors qu'il n'existe pas de transformation de Galilée qui correspondrait à la rotation d'angle φ.

Il faut distinguer entre une approximation galiléenne d'un état de choses relativiste (cette approximation n'ayant pas le caractère intrinsèque d'un état de chose galiléen) et l'état de choses galiléen lui-même, dans lequel on est en présence d'équations qu'il n'est pas question d'adapter simplement au cas des grandes vitesses. Aussi, l'impossibilité de faire, des transformations de Galilée, une représentation géométrique analogue à celle que donne, des transformations de Lorentz, une représentation de type minkowskien, est-elle certainement liée au fait qu'il existe des équations (teiles que (1)) qui décri-

vent un état de choses *physiquement* incompatible avec l'état de choses galiléen.

3. Remarque sur la vitesse de groupe. — La formule (6.2) peut s'interpréter comme exprimant la propagation de la grandeur fictive v^* à la vitesse w de la particule. Or on sait que cette valeur w est aussi celle de la vitesse de groupe:

$$\frac{\partial x}{\partial y} = \omega$$

Or la vitesse de groupe comme la vitesse de v^* sont des grandeurs de pure cinématique ondulatoire, aussi doit-il y avoir dans le groupe quelque chose de fictif comme v^* . C'est bien le cas: on sait que les champs attribués aux corpuscules massifs, c'est-à-dire à ceux qui possèdent une fréquence au repos non nulle, ne sont pas observables eux-mêmes et que leur fréquence n'est pas mesurable; ils ne fournissent que des paquets d'onde de probabilités. Par contre, lorsque m=0 (cas de la lumière), le champ est observable lui-même (réalité physique), sa fréquence est effectivement mesurable et il n'est pas question de construire une grandeur fictive v^* .

Pour les champs de masse non nulle, seule la longueur d'onde $\lambda = \frac{1}{\varkappa}$ tirée du vecteur $(\frac{\nu}{c^2}, \stackrel{\rightarrow}{\varkappa})$ est réelle (mesurable par des expériences de diffraction), tandis que ν est fictif puisque

$$v\lambda = \frac{c^2}{v} > c$$
.

Pour les champs de masse au repos nulle, λ et ν sont tous deux réels, puisqu'on peut mesurer non seulement λ (diffraction) mais ν aussi (méthode de résonance).

La nécessité d'introduire une grandeur fictive telle que v* provient de l'inexistence d'un état de choses galiléen. Pour la lumière cependant, il n'y a pas de v*, ce qui fait que dans certains cas la construction d'un système galiléen est possible, une onde stationnaire correspondant alors à un oscillateur classique, tandis que les ondes de matière, pour lesquelles v* existe, ne possèdent pas d'analogue classique et sont décrites par des « superoscillateurs » 1.

Université de Berne

Séminaire de physique théorique.

¹ Voir Ed. Keberle, Archives des Sciences, 3, 1950.